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Factorization law for two lower bounds of concurrence
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We study the dynamics of two lower bounds of concurrence in bipartite quantum systems when one party
goes through an arbitrary channel. We show that these lower bounds obey the factorization law similar to that of
[Konrad et al., Nat. Phys. 4, 99 (2008)]. We also discuss the application of this property in an example.
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I. INTRODUCTION

Entanglement, one of the important features of quantum
systems, which does not exist classically, has been known as a
key resource for some quantum computation and information
processes. But the entanglement of a system changes due
to its unavoidable interactions with environment. To study
the entanglement changes, one needs to make use of an
entanglement measure in order to specify the entanglement
amount of a system. Unfortunately, most of the measures
having been proposed for quantification of entanglement
cannot be computed in general, and because of this, many
lower and upper bounds, which can be computed easily, have
been introduced for these entanglement measures. Using these
bounds, one can estimate the amount of entanglement.

In Ref. [1], Konrad et al. have provided a factorization law
for concurrence, which is one of the remarkable entanglement
measures. They have shown that the concurrence of a
two-qubit state, when one of its qubits goes through an
arbitrary quantum channel, is equal to the product of its initial
concurrence and concurrence of the maximally entangled
state undergoing the effect of the same quantum channel.
Then Li et al. [2] have shown that the generalization of the
preceding factorization law to arbitrary dimensional bipartite
states only leads to an upper bound for the concurrence of the
system. If, besides this upper bound, we have a lower bound
obeying a similar factorization law, then we can make better
use of this useful dynamical property. So, it will be valuable
to seek such entanglement lower bounds.

In Sec. II, we introduce the concurrence and some of
its lower bounds. Next, in Sec. III, we briefly review the
results of Refs. [1,2]. Then, in Secs. IV and V, we investigate
the factorization property of the lower bounds introduced in
Sec. II. In Sec. VI, as an application, we discuss an example.
Finally, we give some conclusions in Sec. VII.
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II. CONCURRENCE AND SOME OF ITS LOWER BOUNDS

For a pure bipartite state |�〉, |�〉 ∈ HA ⊗ HB , concur-
rence is defined as [3]

C(�) =
√

2
[〈�|�〉2 − tr ρ2

r

]
, (1)

where ρr is the reduced density operator obtained by tracing
over either subsystem A or B. Concurrence of |�〉 can also be
written in terms of the expectation value of an observable with
respect to two identical copies of |�〉 [3–5],

C(�) =
√

AB〈�|A′B ′ 〈�|A|�〉AB |�〉A′B ′ ,
(2)

A = 4P AA′
− ⊗ P BB ′

− ,

where P AA′
− (P BB ′

− ) is the projector onto the antisymmetric sub-
space of HA ⊗ HA′ (HB ⊗ HB ′). A possible decomposition of
A is

A =
∑

i<j,m<n

|χij,mn〉〈χij,mn|,
(3)

|χij,mn〉 = (|ij 〉 − |ji〉)AA′(|mn〉 − |nm〉)BB ′ ,

where |i〉 and |j 〉 (|m〉 and |n〉) are two different members of
an orthonormal basis of the A (B) subsystem (instead of the
index α in Ref. [3], we use the indices ij,mn because they
seem most convenient for future usage).

For mixed states, the concurrence is defined as follows [3]:

C(ρ) = min
{pk,�k}

∑
k

pkC(�k), ρ =
∑

k

pk|�k〉〈�k|,
(4)

pk � 0,
∑

k

pk = 1,

where the minimum is taken over all decompositions of ρ

into pure states |�k〉. Like most of the other entanglement
measures, C(ρ) cannot be computed in general [i.e., in
general, one cannot find the optimal decomposition of ρ

minimizing Eq. (4)]. Any numerical effort to find the optimal
decomposition is equivalent to find an upper bound for C(ρ).
So, some lower bounds have been introduced for C(ρ) (e.g.,
Refs. [6,7]).
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It has been shown that

CALB
ij,mn(ρ) ≡ min

{pk,|�k〉}

∑
k

pk|〈χij,mn|�k〉|�k〉| (5)

is a lower bound of concurrence (ALB is the abbreviation of
the algebraic lower bound) [3,6,8]. CALB

ij,mn(ρ) can be computed

analytically; CALB
ij,mn(ρ) = max {0,S ij,mn

1 − ∑
l>1 S ij,mn

l } [3].

S ij,mn

l are the singular values of matrix T ij,mn in de-
creasing order. T ij,mn’s entries are defined as T

ij,mn
rs ≡√

λrλs〈χij,mn|�r〉|�s〉, where |�r〉 and λr are eigenvectors
and eigenvalues of ρ, respectively.

Other lower bounds of concurrence are those introduced in
Ref. [8]. In this reference, it has been shown that in terms of
two identical copies of an arbitrary mixed state ρAB , we have

C2(ρAB) � CMLB2

(k)ij,mn(ρ) ≡ tr (ρAB ⊗ ρA′B ′V(k)ij,mn),

k = 1,2, V(1)ij,mn = 4P AA′
−ij ⊗ (

P BB ′
−mn − P BB ′

+mn

)
, (6)

V(2)ij,mn = 4
(
P AA′

−ij − P AA′
+ij

) ⊗ P BB ′
−mn.

(MLB is the abbreviation of the measurable lower bound)
where 2P AA′

−ij = (|ij 〉 − |ji〉) (〈ij | − 〈ji|) and 2P AA′
+ij =

(|ij 〉 + |ji〉) (〈ij | + 〈ji|) + 2|ii〉〈ii| + 2|jj 〉〈jj | operate on
HA ⊗ HA′ , whereas 2P BB ′

−mn=(|mn〉 − |nm〉) (〈mn| − 〈nm|)
and 2P BB ′

+mn = (|mn〉 + |nm〉) (〈mn|+〈nm|) + 2|mm〉〈mm| +
2|nn〉〈nn| operate on HB ⊗ HB ′ [|i〉,|j 〉,|m〉, and |n〉 were
introduced in Eq. (3)]. The previous expression means that
measuring V(k)ij,mn on two identical copies of ρ (i.e., ρ ⊗ ρ)
gives us a measurable lower bound on C2(ρ).

In Ref. [9], another lower bound of concurrence was
introduced. There, it was shown that

τ (ρ) ≡
∑

i<j,m<n

C2
ij,mn(ρ) � C2(ρ),

(7)
Cij,mn(ρ) = min

{pk,|ψk〉}

∑
k

pk|〈�k|LA,ij ⊗ LB,mn|�∗
k 〉|,

where LA,ij and LB,mn are the generators of SO(dA) and
SO(dB), respectively [dA(dB) is the dimension of HA(HB)],
and |�∗

k 〉 is the complex conjugate of |�k〉 in the computational
basis. In this basis, LA,ij and LB,mn are [10]

LA,ij = |i〉A〈j | − |j 〉A〈i|,
(8)

LB,mn = |m〉B〈n| − |n〉B〈m|.

III. FACTORIZATION OF THE CONCURRENCE

According to the Schmidt decomposition, any pure bipartite
state |�〉, |�〉 ∈ HA ⊗ HB , can be expressed as

|�〉 =
d∑

i=1

√
ωi |αiβi〉, 0 � √

ωi � 1,

d∑
i=1

ωi = 1, (9)

where d = min (dA,dB).
We can rewrite this |�〉 as |�〉 = (M ⊗ I )|φ+〉 where

|φ+〉 = ∑d
i=1

1√
d
|αiβi〉 is a maximally entangled state and

M = √
d

∑d
i=1

√
ωi |αi〉〈αi |.

Assume that the second part of this state goes through an ar-
bitrary channel S, then this state transforms to ρ ′ = (1⊗S)|�〉〈�|

p′

where p′ = tr [(1 ⊗ S)|�〉〈�|]. Since M and S act on two
different parts of |�〉, ρ ′ can be written as ρ ′ = (M⊗I)ρS (M†⊗I)

p

where ρS = (1⊗S)|φ+〉〈φ+|
p′′ , p = tr [(M ⊗ I)ρS (M† ⊗ I)], p′′ =

tr [(1 ⊗ S)|φ+〉〈φ+|], and p′ = pp′′.
By using these relations, for any two-qubit state |�〉,

Konrad et al. [1] have proved the following factorization
law [11]:

C[(1 ⊗ S)|�〉〈�|] = C[(1 ⊗ S)|φ+〉〈φ+|]C(�). (10)

The right-hand side of the preceding equation is factorized
into two independent parts. The first part is the concurrence
of |φ+〉 after going through the channel (1 ⊗ S), which is
independent of the initial state |�〉, and the second part is
the concurrence of the initial state |�〉 (before going into the
channel). So, if we know the concurrence of |φ+〉, after one
of its qubits goes through a channel S, we know, up to the
factor C(�), the concurrence of any arbitrary state |�〉 truly
undergoing the same quantum channel.

For higher-dimensional bipartite systems, Li et al. [2] have
shown that the previous equality changes to the following
inequality:

C[(1 ⊗ S)|�〉〈�|] � dB

2
C[(1 ⊗ S)|φ+〉〈φ+|]C(�). (11)

For the dA × 2-dimensional states, we have the equality
instead of the inequality in the foregoing relation. But, in
general, the concurrence of (1 ⊗ S)|φ+〉〈φ+| provides only
an upper bound for C[(1 ⊗ S)|�〉〈�|]. We point out that, in
relations (10) and (11), instead of |φ+〉, we can use any other
maximally entangled state.

It is also interesting to investigate a similar relations for
the lower bounds of concurrence. In Sec. IV, we study the
factorization property of the lower bounds introduced in
Sec. II.

IV. FACTORIZATION OF THE LOWER BOUNDS
OF CONCURRENCE

Let us at first consider the lower bound introduced in
expression (6). From this relation, we have

p2CMLB2

(1)ij,mn(ρ ′) = p2 tr (ρ ′
AB ⊗ ρ ′

A′B ′V(1)ij,mn)

= tr [(MA ⊗ IB)ρSAB(M†
A ⊗ IB)

⊗ (MA′ ⊗ IB ′)ρSA′B ′ (M†
A′ ⊗ IB ′)V(1)ij,mn]

= tr [(MA ⊗ IB ⊗ MA′ ⊗ IB ′) (ρSAB ⊗ ρSA′B ′ )

× (M†
A ⊗ IB ⊗ M

†
A′ ⊗ IB ′)V(1)ij,mn]

= tr [(ρSAB ⊗ ρSA′B ′) (M†
A ⊗ IB ⊗ M

†
A′ ⊗ IB ′)

×V(1)ij,mn(MA ⊗ IB ⊗ MA′ ⊗ IB ′)]

= d2ωiωj tr [ρSAB ⊗ ρSA′B ′V(1)ij,mn]. (12)

In order to obtain the last equality, we have used (M†
A ⊗

M
†
A′)P AA′

−ij (MA ⊗ MA′) = d2ωiωjP
AA′
−ij where P AA′

−ij is written
in the Schmidt basis (i.e., we choose |i〉 = |αi〉 and |j 〉 = |αj 〉
in construction of P AA′

−ij ). Also, writing P BB ′
−mn and P BB ′

+mn in the
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Schmidt basis, we have CMLB2

(1)ij,mn(|�〉) = 4ωiωjδimδjn. Using
this relation, Eq. (12) can be written in the form:

CMLB2

(1)ij,mn((1 ⊗ S)|�〉〈�|)

= d2

4
CMLB2

(1)ij,mn((1 ⊗ S)|φ+〉〈φ+|)CMLB2

(1)ij,ij (|�〉). (13)

The preceding equation (which is our main result) is similar
to Eq. (10), so CMLB2

(1)ij,mn(ρ) has the same factorization property
as concurrence [i.e., knowing the effect of (1 ⊗ S) on the
CMLB2

(1)ij,mn(ρ) when the initial state is |�+〉, we know this effect

for any other initial state |�〉, up to a factor CMLB2

(1)ij,ij (|�〉)].
For the CMLB2

(2)ij,mn(ρ), we obtain exactly the same result as
earlier if instead of the second part, the first part of the state
|�〉 goes through the channel S.

Now, we discuss the factorization property of CALB
ij,mn(ρ ′).

We use a similar method as Ref. [2], namely, at first, we
restrict ourselves to those cases where ρS is a pure state
(i.e., ρS = |ψ〉〈ψ |). In this case, ρ ′ is also a pure state [i.e.,
ρ ′ ≡ |ψ ′〉〈ψ ′| = (M⊗I)|ψ〉〈ψ |(M†⊗I)

p
]. From Eq. (5), we have

pCALB
ij,mn(|ψ ′〉) = p|〈χij,mn|ψ ′〉|ψ ′〉|

= |〈χij,mn|M ⊗ I ⊗ M ⊗ I|ψ〉|ψ〉|
= d

√
ωiωjC

ALB
ij,mn(ρS ), (14)

where we used (M† ⊗ I ⊗ M† ⊗ I)|χij,mn〉〈χij,mn|(M ⊗ I ⊗
M ⊗ I) = d2ωiωj |χij,mn〉〈χij,mn| and |χij,mn〉 is written in the
Schmidt basis. Using CALB2

ij,mn (|�〉) = 4ωiωjδimδjn, we obtain

pCALB
ij,mn(|ψ ′〉) = d

2
CALB

ij,ij (|�〉)CALB
ij,mn(ρS ). (15)

Next, we consider the general case where ρS is a mixed
state. Corresponding to any pure state decomposition of
ρS as ρS = ∑

k pk|ψk〉〈ψk|, there exists a pure state de-
composition for ρ ′ in terms of pure states |ψ ′

k〉 = (M⊗I)|ψk〉√
pqk

,

qk = tr [ (M⊗I)|ψk〉〈ψk |(M†⊗I)
p

] such that ρ ′ = ∑
k pkqk|ψ ′

k〉〈ψ ′
k|.

Thus, by using the same arguments as before, for any |ψ ′
k〉,

we have pqk|〈χij,mn|ψ ′
k〉|ψ ′

k〉| = d
√

ωiωj |〈χij,mn|ψk〉|ψk〉|.
Now, assume ρS = ∑

k pk|ψk〉〈ψk| is the optimal pure state
decomposition, which gives CALB

ij,mn(ρS ) [i.e., CALB
ij,mn(ρS ) =∑

k pk|〈χij,mn|ψk〉|ψk〉| so p
∑

k pkqk|〈χij,mn|ψ ′
k〉|ψ ′

k〉| =
d
√

ωiωjC
ALB
ij,mn(ρS )]. But

∑
k pk|ψ ′

k〉〈ψ ′
k| is not necessarily the

optimal pure state decomposition of ρ ′ such that CALB
ij,mn(ρ ′) =∑

k pk|ψ ′
k〉〈ψ ′

k|. Therefore, in general,

CALB
ij,mn((1 ⊗ S)|�〉〈�|)

� d

2
CALB

ij,ij (|�〉)CALB
ij,mn((1 ⊗ S)|φ+〉〈φ+|). (16)

In the cases where M−1 exists [i.e., when in Eq. (9) for all
ωi we have ωi 	= 0], as for the dA × 2-dimensional systems
(the case of the separable initial states is not of interest),
corresponding to any pure state decomposition for ρ ′, there
is a pure state decomposition for ρS and vice versa, namely,
for any |ψ ′

k〉 in the expression ρ ′ = ∑
k pk|ψ ′

k〉〈ψ ′
k|, we have

|ψk〉 = √
p(M−1 ⊗ I)|ψ ′

k〉 such that ρS = ∑
k pk|ψk〉〈ψk|.

So, if the ρS = ∑
k pk|ψk〉〈ψk| is the optimal decomposition

for CALB
ij,mn(ρS ), then

∑
k pk|ψ ′

k〉〈ψ ′
k| is the optimal pure state

decomposition of ρ ′ for CALB
ij,mn(ρ ′). Therefore, in Eq. (16), we

have an equality instead of the inequality.

V. FACTORIZATION OF THE LOWER BOUND
OF SQUARED CONCURRENCE (τ )

In Ref. [12], Liu and Fan have shown that τ [Eq. (7)], for a
d × d bipartite quantum state, obeys the relation

τ ((1 ⊗ S)|�〉〈�|) � d2

4
τ ((1 ⊗ S)|φ+〉〈φ+|)C2(�). (17)

The preceding relation is the factorization law for τ similar to
Eq. (11), which is for the concurrence itself.

Now, we show that CALB
ij,mn(ρ) is closely related to τ ; for an

arbitrary |�〉, according to the definition of |χij,mn〉 in Eq. (3), it
can be seen that |〈�|LA,ij ⊗ LB,mn|�∗〉| = |〈χij,mn|�〉|�〉| .
So, from Eq. (5), we have

CALB
ij,mn(ρ) = min

{pk,|�k〉}

∑
k

pk|〈χij,mn|�k〉|�k〉|

= min
{pk,|�k〉}

∑
k

pk|〈�k|LA,ij ⊗ LB,mn|�∗
k 〉|. (18)

From Eq. (7) and the previous equation, we deduced that

Cij,mn(ρ) = CALB
ij,mn(ρ) (19)

and so

τ (ρ) =
∑

i<j,m<n

CALB2

ij,mn (ρ). (20)

Therefore, from Eqs. (16) and (19), we deduce that Eq. (12)
of Ref. [12], that is,

C2
ij,mn((1 ⊗ S)|�〉〈�|)

= d2

4

(
d−1∑

l>k=0

Cij,kl(|�〉
)

Ckl,mn((1 ⊗ S)|φ+〉〈φ+|))2, (21)

and so Eq. (15) of the same reference, that is,

τ ((1 ⊗ S)|�〉〈�|) � 2dη

d − 1

d2

4
τ ((1 ⊗ S)|φ+〉〈φ+|)C2(|�〉),

(22)

where η = min{p,r} ωpωr for any pair p < r satisfying
ωpωr 	= 0 does not hold in general.

VI. EXAMPLE

Consider a two-qutrit system where one of its qutrits
interacts with an environment. The time evolution of this
system is given by the following master equation:

ρ̇ = Lρ, L = 1A ⊗ LB, (23)

where LB , for a one-qutrit ρB , is

LB = �

2
(2γρBγ † − ρBγ †γ − γ †γρB).
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FIG. 1. Time evolution of the CMLB2

(1)12,12 when the initial state
of the system is |φ+〉 = 1√

3
(|00〉 + |11〉 + |22〉) for the cases (a)

spontaneous decay(dashed line) (b) decoherence (solid line).

� is the decay constant, and γ is a coupling operator
characterizing the dynamics of system.

For γ =

⎛
⎜⎝

0 0 0√
2 0 0

0 1 0

⎞
⎟⎠ ,

Eq. (23) represents the spontaneous decay of the system. and
for

γ =

⎛
⎜⎝

2 0 0

0 1 0

0 0 0

⎞
⎟⎠ ,

Eq. (23) represents the system’s decoherence [13].

In order to evaluate the entanglement dynamics of this
system, we use the CMLB2

(1)ij,mn(ρ) (which is a lower bound of
squared concurrence). Figure 1 shows the time evolution of
CMLB2

(1)ij,mn(ρ) for the case i = 1, j = 2, m = 1, and n = 2, when

the initial state of the system is |φ+〉 = 1√
3
(|00〉 + |11〉 + |22〉)

(for other values of i, j , m, and n, CMLB2

(1)ij,mn(ρ) does not give a
better estimate for entanglement). From this figure and using
Eq. (13), we can deduce the behavior of CMLB2

(1)12,12(ρ) for any
initial states of the form |ψ〉 = a|00〉 + b|11〉 + c|22〉. For
any such initial state, the ability of the CMLB

(1)12,12 in detecting
the entanglement of ρ ′ = (1 ⊗ S)|�〉〈�| is determined by
the ability of CMLB

(1)12,12 in detecting the entanglement of ρS =
(1 ⊗ S)|φ+〉〈φ+|, which is shown in Fig. 1. Also, the amount
of the lower bound CMLB

(1)12,12(ρ ′) is, up to a factor, equal to
CMLB

(1)12,12(ρS ).

VII. CONCLUSIONS

We have studied the dynamics of two lower bounds of
bipartite concurrence introduced in Eqs. (5) and (6), when one
party goes through an arbitrary channel. In Eq. (13), we have
shown that, for arbitrary bipartite quantum states, CMLB

(1)ij,mn(ρ)
obeys the factorization law similar to that of Eq. (10) for the
concurrence. In an example, we have discussed the application
of this factorization law in determining the behavior of the
CMLB

(1)ij,mn(ρ) in estimating the entanglement of the system. Also,
we have shown that the CALB

ij,mn(ρ) obeys a similar factorization
law for concurrence as Eq. (11).
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