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We will use the joint entropy of progressively censored order statistics in terms of an
incomplete integral of the hazard function, and provide a simple estimate of the joint
entropy of progressively Type-II censored data, has been introduced by Balakrishnan
et al. (2007). Then We construct a goodness-of-fit test statistic based on Kullback-
Leibler information for Normal distribution by using approximate MLE. Finally, we
used Monte Carlo simulations, the power of the test is estimated and compared against
several alternatives under different progressive censoring schemes.
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1. Introduction

Suppose a random variable X has a distribution function F (x) and a continuous density
function f(x). The differential entropy H(f) of the random variable is defined in Shannon
(1948), to be

H(f) = −
∫ ∞

−∞
f(x) log f(x)dx. (1)

The first time, the test normality performed based on sample entropy by Vasicek (1976)
and the power compared with some leading test statistics for complete samples.
The entropy difference H(f) −H(g) has been considered in Dudewicz et al. (1981) and
Gokhale (1983) for establishing goodness-of-fit tests for the class of the maximum entropy
distributions.

The Kullback-Leibler (KL) information in favor of g(x) against f(x) is defined in
Kullback (1959) to be

I(g : f) =

∫ ∞

−∞
g(x) log

g(x)

f(x)
dx,

which is an extended concept of entropy.
Because I(g : f) has the property that I(g : f) ≥ 0, and the equality holds if g = f , the
estimate of the KL information has also been considered as a goodness-of-fit test statistic
by some authors including Arizono et al. (1989) and Ebrahimi et al. (1992), for complete
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samples. Park (2005) and Balakrishnan et al. (2007), respectively, for Type-II censored
data and progressively Type-II censored data.
Now, in this paper we will extend the goodness-of-fit test based on KL information with
progressively Type-II censored data for Normal distribution.

The rest of the paper is organized as follows: In Section 2 as Preliminary, we introduce
Type-II progressive censoring data, the joint entropy of progressively censored data in
terms of the hazard function and the nonparametric estimate of the joint entropy. In Sec-
tion 3, we define the KL information for progressively Type-II censored data and propose
a goodness-of-fit test for Normality based on KL information, in Section 4. Finally, in
Section 5 we use Monte Carlo simulations to evaluate the power under different Type-II
progressive censoring schemes.

2. PRELIMINARY

2.1. Progressively Type-II Censored Data

Suppose n identical items are placed on a life-testing experiment. Assume that their life-
times are independent and identically distributed with probability distribution function
(cdf) F (x; θ) and probability density function (pdf) f(x; θ), where θ is a vector of pa-
rameters.

There are several scenarios in life-testing and reliability experiments in which units
that are subject to test are lost or removed from the experiment before failure. Such
units are usually called the censored unites. The two most common censoring schemes
are termed as conventional Type-I and Type-II censoring schemes which are extensively
studied in statistical and reliability literature, Balakrishnan and Cohen (1991). Briefly,
they can be described as follows: Consider n items under observations in a particular
experiment. In the conventional Type-I censoring scheme, the experiment continues up a
pre-specified time T. The conventional Type-II censoring scheme requires the experiment
to continue until a pre-specified number of failures m(≤ n) occur.
One of the drawbacks of the conventional Type-I, Type-II censoring schemes is that they
do not allow for removal of units at points other than the terminal point of the experi-
ment. One censoring scheme known as Type-II progressive censoring scheme, which has
this advantage, so it becomes very popular for the last few years. It can be described as
follows: Consider n units in a study and suppose m(≤ n) is fixed before the experiment.
Moreover, m other integers, R1, · · ·Rm are also fixed before so that R1+· · ·+Rm+m = n.
At the time of the first failure, say X1:m:n, R1 of the remaining units are randomly re-
moved. Similarly, at the time of the second failure, say X2:m:n, R2 of the remaining units
are randomly removed and so on. Finally, at the time of the m− th failure, say Xm:m:n,
the rest of the Rm units are removed. Fore further details on Type-II progressive censor-
ing, refer to Balakrishnan and Aggarwala (2000).

The joint probability density function (pdf) of all m progressively Type-II censored
order statistics (X1:m:n, · · ·Xm:m:n) which is define in Balakrishnan (2000) to be

fX1:m:n,X2:m:n,··· ,Xm:m:n
(x1, x2, · · · , xm) = c

m∏
i=1

f(xi){1− F (xi)}Ri ,
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x1 < x2 < · · · < xm,
where

c = n(n−R1 − 1) · · · (n−R1 −R2 − · · · −Rm−1 −m+ 1).

2.2. Entropy of Progressively Censored Data in Terms of the Hazard
Function

The joint entropy of X1:m:n, · · · , Xm:m:n defined in literature (Park, 2005), to be

H1···m:m:n = −
∫ ∞

−∞
· · ·

∫ x2:m:n

−∞
fX1:m:n,X2:m:n,··· ,Xm:m:n

(x1, x2, · · · , xm)

× log fX1:m:n,X2:m:n,··· ,Xm:m:n
(x1, x2, · · · , xm)dx1:m:n · · · dxm:m:n,

where fX1:m:n,X2:m:n,··· ,Xm:m:n
(x1, x2, · · · , xm) is the joint pdf of all m progressively

Type-II censored order statistics.
H1···m:m:n is an m-dimensional integral, and we need to simplify this multiple inte-

gral.
The simple calculation of the entropy of the usual single and consecutive order statis-

tics has been studied in Wong et al. (1990) and Park (1995). The multiple integral of the
entopy for Type-II censored data be simplified to a single-integral by Park (2005) and the
joint entropy of progressively Type-II censored order statistics in terms of an incomplete
integral of the hazard function , h(x), has been simplified by Balakrishnan et al. (2007),

H1···m:m:n = − log c+ nH1···m:m:n,

where

H1···m:m:n =
m

n
− 1

n

∫ ∞

−∞

m∑
i=1

fXi:m:n
(x) log h(x)dx.

2.3. Nonparametric Entropy Estimate

The nonparametric estimate of the joint entropy (H1···m:m:n) was obtained, as

H1···m:m:n(w, n,m) = − log c+ nH(w, n,m),

where

H(w, n,m) =
1

n

m∑
i=1

log

(
(xi+w:m:n − xi−w:m:n)

E(Ui+w:m:n)− E(Ui−w:m:n)

)
− (1− m

n
) log(1− m

n
).

(Balakrishnan et al., 2007).

3. Goodness-of-fit Test Based on the Kullback-Leibler Information

For a null density function f0(x; θ), the KL information from a progressively Type-II
censored data is given by

I1···m:m:n(f : f0) =

∫ ∞

−∞
· · ·

∫ x2:m:n

−∞
fX1:m:n,X2:m:n,··· ,Xm:m:n

(x1, x2, · · · , xm; θ)

× log
fX1:m:n,X2:m:n,··· ,Xm:m:n

(x1, x2, · · · , xm; θ)

f0X1:m:n,X2:m:n,··· ,Xm:m:n
(x1, x2, · · · , xm; θ)

dx1 · · · dxm,
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where fX1:m:n,X2:m:n,··· ,Xm:m:n
(x1, x2, · · · , xm) is the joint pdf of all m progressively

Type-II censored order statistics.

The KL information can be estimated by

I1···m:m:n(f : f0) = −nH1···m:m:n −
m∑
i=1

log f0(xi; θ)−
m∑
i=1

Ri log
(
1− F 0(xi; θ)

)
. (2)

Thus, the test statistic based on 1
nI1···m:m:n(f : f0) is given by

T (w,n,m) = −H(w,n,m)− 1

n

[
m∑
i=1

log f0(xi; θ̂) +
m∑
i=1

Ri log(1− F 0(xi; θ̂))

]
, (3)

where θ̂ is an estimation of θ.

4. Test for Normality

Suppose we are interested in goodness-of-fit test for

H0 : f0 = (2πσ2)
−1
2 exp{−(x − µ)2/2σ2} vs HA : f0 �= (2πσ2)

−1
2 exp{−(x − µ)2/2σ2}

where θ = (µ, σ2) is unknown.
Then, the KL information for a progressively Type-II censored data can be approximated,
by (3) and we estimate the unknown parameters (µ, σ2) by the maximum likelihood
estimate (MLE).
The MLE for progressively Type-II censored sample from a Normal(µ, σ2) distribution
obtain by solving the below equations, (Balakrishnan and Aggarwala, 2000)∑m

i=1 xi
m

= x = µ− σ

m

m∑
i=1

RiZi,

∑m
i=1(xi − x)2

m
= s2 = σ2{1− 1

m

m∑
i=1

RiξiZi − (
1

m
)2

m∑
i=1

(RiZi)2},

where Zi =
ϕ(ξi)

1−φ(ξi)
and ϕ(.) is the probability density function of the standard normal

distribution.
At the first we used a simple iterative procedure such as Newton’s method for solving the
above equations, but the MLE can not be obtained in explicit form so the next section
we propose the approximate maximum likelihood estimates which have explicit forms.

4.1. Approximate Maximum Likelihood Estimates for Normal
Distribution

In this section, we use the approximate maximum likelihood estimation method (AMLE)
developed by Balakrishnan (1989 a,b, 1990 a,b,c) to estimate the scale and location
parameters µ and σ.The likelihood function based on progressive Type-II censored sample
x1:m:n, ..., xm:m:n with censoring scheme R1, ..., Rm can be written as

L(µ, σ) = c
1

σm

m∏
i=1

f(zi:m:n)(F̄ (zi:m:n))
Ri ,
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where c = n(n−R1−1) · · · (n−R1−R2−· · ·−Rm−1−m+1), zi:m:n = xi:m:n−µ
σ , F (.) =

1 − F (.) and f, F are the probability density function(pdf) and cumulative distribution
function (cdf) of Normal standard distribution, respectively.
Upon partial differentiation of the logarithm of the likelihood function with respect to µ
and σ, the score equations to be solved for µ and σ in this case are given by

∂ lnL

∂µ
=

1

σ

m∑
i=1

zi:m:n +
1

σ

m∑
i=1

Ri
f(zi:m:n)

F̄ (zi:m:n)
= 0 (4)

∂ lnL

∂σ
= −m

σ
+

1

σ

m∑
i=1

z2i:m:n +
1

σ

m∑
i=1

Rizi:m:n
f(zi:m:n)

F̄ (zi:m:n)
= 0, (5)

Clearly, (4) and (5) do not have explicit solutions. We expand the function
f(zi:m:n)
F̄ (zi:m:n)

in

Taylor series around the point ξi = F−1(pi), where pi = 1 − qi = 1 −∏m
j=m−i+1 αj .

Balakrishnan and Aggarwala(2000) deduced that: if Ui:m:n, i = 1, · · · ,m denote a
progressive Type-II censored sample from the uniform(0, 1) distribution obtained from
a sample of size n with the censoring scheme (R1, · · · , Rm), then Vi, i = 1, · · · ,m are all

independent random variables with Vi = Beta(i +
m∑

j=m−i+1
Rj , 1), i = 1, · · · ,m, such

that

Ui:m:n = 1−
m∏

j=m−i+1

Vj , i = 1, · · · ,m,

and

E(Ui:m:n) = 1−
m∏

j=m−i+1

αj , i = 1, · · · ,m,

where

αj =

j +
m∑

i=m−j+1
Ri

1 + j +
m∑

i=m−j+1
Ri

, j = 1, · · · ,m.

Then we consider the following approximations

f(zi:m:n)

F̄ (zi:m:n)
� αi + βizi:m:n, (6)

where

αi =
f(ξi)

F̄ (ξi)
− ξi

[
−ξi f(ξi)

F̄ (ξi)
+

(
f(ξi)

F̄ (ξi)

)2
]
,

βi = −ξi f(ξi)
F̄ (ξi)

+

(
f(ξi)

F̄ (ξi)

)2

.
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Using the approximations (6) in (4) and (5), we obtain

m∑
i=1

zi:m:n +
m∑
i=1

Ri(αi + βizi:m:n) = 0, (7)

−m+
m∑
i=1

z2i:m:n +
m∑
i=1

Rizi:m:n(αi + βizi:m:n) = 0. (8)

From (7) we obtain the AMLE of µ as

µ̂ = B + σ̂C,

where

B =

mx̄+
m∑
i=1

Riβixi:m:n

m+
m∑
i=1

Riβi

,

C =

m∑
i=1

Riαi

m+
m∑
i=1

Riβi

.

From (8), we obtain σ̂ as a solution of the quadratic equation

A1σ
2 +A2σ + A3 = 0,

where

A1 = −m,A2 =
m∑
i=1

Riαi(xi:m:n −B),

A3 =
m∑
i=1

(1 +Riβi)(xi:m:n −B)2 > 0.

Therefore

σ̂ =
−A2 −

√
A2
2 − 4A1A3

2A1
,

is the only positive root.

5. Implementation of Test

Because the sampling distribution of T (w,n,m) is intractable, we determine the percent-
age points using 10,000 Monte Carlo simulations from Normal distribution. In determin-
ing the window size w which depends on n,m and α, we define the optimal window size
w to be one which gives minimum critical points. However, we find from the simulated
percentage points that the optimal window size w varies much according to m rather
than n, and does not vary much according to α, if α ≤ 0.1. In view of these observations,
our recommended values of w for different m are as given in Ebrahimi (1992) and Park
(2005).
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To obtain the critical values, after deciding about the value of w, simulate the whole
procedure by taking the observation from Normal(0, 1) distribution and calculate the
value of T (w, n,m), for about 10,000 times. Critical values can then be the percentage
points of the thus derived (empirical) distribution of T .

5.1. Power Results for Normal Distribution

As the proposed test statistic is related to the hazard function of the distribution, we
consider the alternatives according to the type of hazard function as follows:
a) Monotone increasing hazard: Gamma and Weibull (shape parameter 2),
b) Monotone decreasing hazard: Gamma and Weibull (shape parameter 0.5),
c) Nonmonotone hazard: Center Beta (shape parameter 0.5),

Log-normal (shape parameter 1).
We used 10,000 Monte Carlo simulations for n = 10, 20, to estimate the power of our
proposed test statistic. The simulation results are summarized in Tables 1 and 2.

We can see from Tables 1 and 2 that the scheme (R1 = 0, · · · , Rm−1 = 0, Rm = n−m)
(the conventional Type-II censored data) shows better power than the other schemes
when the alternative is monotone increasing hazard function. For the alternative with
monotone decreasing hazard functions, the scheme (R1 = n −m,R2 = 0, · · · , Rm = 0)
shows better power; finally, for the alternative with nonmonotone hazard function, some-
times the former censoring scheme gives higher power and sometimes the latter censoring
scheme does.
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Table 1:Power for different hazard alternatives at 10% significance level for several pro-
gressively censored samples when the sample size is n = 10.

monotone increasing monotone decreasing nonmonotone
hazard alternatives hazard alternatives hazard alternatives

m schemes Gamma Weibull Gamma Weibull Center Beta Log-normal
(R1, · · · , Rm) shape 2 shape 2 shape 0.5 shape 0.5 shape 0.5 shape 1

5 5,0,0,0,0 .198 .123 .555 .705 .341 .403
5 0,5,0,0,0 .196 .118 .563 .700 .387 .388
5 1,1,1,1,1 .165 .116 .516 .624 .417 .274
5 0,0,0,5,0 .123 .101 .435 .566 .312 .214
5 0,0,0,0,5 .173 .133 .464 .539 .422 .235

7 3,0,0,0,0,0,0 .272 .137 .709 .853 .420 .564
7 0,3,0,0,0,0,0 .272 .142 .711 .851 .426 .563
7 1,0,0,1,0,0,1 .262 .148 .704 .825 .507 .486
7 0,0,0,0,0,3,0 .165 .118 .567 .719 .395 .326
7 0,0,0,0,0,0,3 .262 .163 .681 .789 .561 .433

9 1,0,0,...,0,0,0 .319 .147 .808 .926 .501 .660
9 0,1,0,...,0,0,0 .325 .149 .809 .928 .505 .673
9 0,0,...,1,...,0,0 .288 .131 .798 .920 .490 .636
9 0,0,0,...,0,1,0 .249 .141 .735 .876 .506 .542
9 0,0,0,...,0,0,1 .355 .188 .834 .930 .596 .654

Table 2:Power for different hazard alternatives at 10% significance level for several
progressively censored samples when the sample size is n = 20.

monotone increasing monotone decreasing nonmonotone
hazard alternatives hazard alternatives hazard alternatives

m schemes Gamma Weibull Gamma Weibull Center Beta LogNormal
(R1, · · · , Rm) shape 2 shape 2 shape 0.5 shape 0.5 shape 0.5 shape 1

5 15,0,0,0,0 .194 .114 .586 .727 .388 .401
5 0,15,0,0,0 .230 .136 .639 .762 .482 .429
5 3,3,3,3,3 .158 .121 .576 .644 .546 .221
5 0,0,0,15,0 .129 .102 .584 .671 .499 .223
5 0,0,0,0,15 .167 .144 .493 .535 .482 .196

10 10,0,0,...,0,0,0 .354 .148 .906 .973 .667 .745
10 0,10,0,...,0,0,0 .409 .181 .918 .977 .708 .769
10 1,1,1,...,1,1,1 .332 .175 .912 .960 .830 .595
10 0,0,0,...,0,10,0 .146 .123 .651 .788 .507 .265
10 0,0,0,...,0,0,10 .346 .224 .890 .930 .847 .515

15 5,0,0,...,0,0,0 .438 .182 .967 .995 .836 .856
15 0,5,0,...,0,0,0 .472 .204 .969 .996 .846 .869
15 1,1,...,1,...,1,1 .526 .263 .981 .996 .907 .851
15 0,0,0,...,0,5,0 .260 .182 .789 .918 .657 .468
15 0,0,0,...,0,0,5 .558 .302 .982 .996 .934 .833

18 2,0,0,...,0,0,0 .480 .209 .980 .998 .897 .904
18 0,2,0,...,0,0,0 .492 .210 .981 .998 .898 .902
18 1,0,0,...,0,0,1 .630 .287 .996 .999 .948 .940
18 0,0,0,...,0,2,0 .379 .212 .935 .987 .826 .740
18 0,0,0,...,0,0,2 .670 .324 .997 .999 .962 .945
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