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SOLVING OF SECOND ORDER NONLINEAR PDE
PROBLEMS BY USING ARTIFICIAL CONTROLS WITH

CONTROLLED ERROR

M. GACHPAZAN AND A. V. KAMYAD

Abstract. In this paper, we find the approximate solution of a second
order nonlinear partial differential equation on a simple connected region
in R2. We transfer this problem to a new problem of second order non-
linear partial differential equation on a rectangle. Then, we transformed
the later one to an equivalent optimization problem. Then we consider
the optimization problem as a distributed parameter system with artificial
controls. Finally, by using the theory of measure, we obtain the approxi-
mate solution of the original problem. In this paper also the global error
in L1 is controlled.
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1. Introduction

Numerical methods such as finite difference and finite element methods usu-
ally are used to find the approximate solution of boundary value problems. Non-
linear partial differential equations are difficult to solve by finite difference or by
finite element method, because the system of algebraic equations which arises
from discretization of these equations usually are nonlinear [14], [17]. In this
paper we introduce a new technique for finding an approximate solution of a
second order nonlinear partial differential equation.

Let A be a simple connected region. By the Riemann mapping theorem,
there exists a conformal mapping which maps A onto a circle [13]. Also by using
Schwarz-Christoffel theorem, we can map A the region A onto a rectangle [13].
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By this mapping may be the nonlinear partial differential equation convert to
another one, which is defined on a rectangle. We will see that it is not important.
So, we consider a nonlinear partial differential equation of the form

f0

(
x, y, u,

∂u

∂x
,
∂u

∂y
,
∂2u

∂x2
,
∂2u

∂y2
,
∂2u

∂x∂y

)
= 0, (x, y) ∈ A◦ (1)

with the boundary condition

B0(u(x, y)) = g(x, y), (x, y) ∈ Γ, (2)

where A = [xa, xb] × [ya, yb] with interior A◦, f0 is a nonlinear function on R8,
B0 is a linear partial differential operator on Γ of order at most one, g : Γ → IR
is continuous functions. Our objective is to find an approximate solution for the
problem (1) and (2) by using measure theory.

The solution of the classical optimal control problems by using measure theory
has been introduced by Rubio [16]. Finding optimal control for diffusion and
wave equations, using measure theory, has been considered by several authors,
including [1], [4], [6], [7], [9], [10], [11], [12], [18]. The solution of systems of
ordinary differential equations using measure theory has been considered in [2].
Also the solution of second order nonlinear PDE problems has been considered
in [8] without controlling error function.

2. Transforming the problem into an optimization problem

Let u(x, y) be the solution of the problem (1) and (2). Let us define new
functions v1, · · · , v5 on A◦ as follows:

v1(x, y) =
∂u(x, y)
∂x

, v2(x, y) =
∂u(x, y)
∂y

,

v3(x, y) =
∂v1(x, y)

∂x
, v4(x, y) =

∂v2(x, y)
∂y

,

v5(x, y) =
∂v1(x, y)

∂y
=
∂v2(x, y)

∂x
.

(3)

We assume that v1 and v2 are C1(A) functions and v3, v4, and v5 are contin-
uous functions on A◦. Now, we define a function F : A ⊂ IR2 −→ IR by

F (x, y) = |f0(x, y, u(x, y), v1(x, y), v2(x, y), v3(x, y), v4(x, y), v5(x, y))|.

For given ε > 0, which we call it admissible error, we want to find u(·, ·) such
that

∫
A
F (x, y)dxdy less than ε, and the condition (2) is satisfied too. Also, we
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compute the minimization of
∫

A
F (x, y)dxdy. On the other hand, we consider

the following optimization problem:

min
∫

A

F (x, y)dxdy

onK, whereK is the set of all (x, y, u, v1, v2, v3, v4, v5) that satisfies the following
conditions:

B0(u(x, y)) = g(x, y), (x, y) ∈ Γ,

∂u(x, y)
∂x

= v1(x, y),
∂v1(x, y)

∂x
= v3(x, y), (x, y) ∈ A◦,

∂u(x, y)
∂y

= v2(x, y),
∂v2(x, y)

∂y
= v4(x, y), (x, y) ∈ A◦,

∂v1(x, y)
∂y

= v5(x, y), (x, y) ∈ A◦,

∫

A

F (x, y)dxdy ≤ ε.

(4)

Assume u, the solution of the problem (1) and (2), be bounded and u ∈
U ≡ [ua, ub] and v = (v1, v2, v3, v4, v5) ∈ V ≡ V1 × V2 × V3 × V4 × V5, where
vi ∈ Vi ≡ [via, vib] and Ω = A× U × V ⊆ IR8. We call v a control function.

Definition 1. A trajectory for v is an absolutely continuous function u(·, ·) on
A◦ such that u(·, ·) satisfies (3).

Definition 2. We call the pair P = (u, v) as a trajectory-control pair, and we
call it admissible if (u, v) satisfies the boundary condition of (4).

Note that in view of the above definitions, u is the solution of the problem
(1) and (2).

The set of admissible pairs will be denoted by W . The set W is nonempty,
since it is assumed that the problem (1) and (2) has a solution. We conclude
that K is nonempty.

Consider the mapping I : W → R defined by

I(P ) =
∫

A

F (x, y)dxdy. (5)
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If the minimum of the mapping I over the set W be zero, then we have
F (x, y) = 0 on A. Therefore,

f0

(
x, y, u,

∂u

∂x
,
∂u

∂y
,
∂2u

∂x2
,
∂2u

∂y2
,
∂2u

∂x∂y

)
= 0

and
B0(u(x, y)) = g(x, y) on Γ,

that is, the exact solution for the problem (1) and (2) is obtained. If minimum
of the mapping I is less than ε, then we obtain F (x, y) ≈ 0, in the sense of L1

topology, so we have approximate solution for the problem.

Let B be an open ball in IR3 containing A × U and C ′(B) be the space of
all real functions that are twice continuously differentiable on B such that they
and their first and second partial derivatives are bounded on B. Now for all
ϕ ∈ C ′(B) we define Φ : Ω ⊂ IR8 −→ IR by

Φ(x, y, u, v1, v2, v3, v4, v5) = ϕuuuxuy + ϕuxuy + ϕuyux + ϕuuxy + ϕxy. (6)

Let u01 = u(xa, ya), u02 = u(xa, yb), u03 = u(xb, ya), and u04 = u(xb, yb). Then,
if P = (u, v) is an admissible pair, we have

∫

A

Φ(x, y, u, v1, v2, v3, v4, v5)dxdy = 4ϕ, (7)

where 4ϕ = ϕ(xa, ya, u01) − ϕ(xa, yb, u02) − ϕ(xb, ya, u03) + ϕ(xb, yb, u04). In
particular, if ϕ ∈ C ′(B) is of the form ϕ = θ(x, y) then from (6) we have

∫

A

ϕxydxdy =
∫ xb

xa

∫ yb

ya

θxydxdy = aθ, (8)

where aθ is the value of the integral of θxy(x, y) on A. Now let D(A◦) be the
space of all infinitely differentiable real functions with compact support in A◦.
For any ψ ∈ D(A◦) define the function Ψ as follows:

Ψ(x, y, u, v1, v2, v3, v4, v5) = B0(u(x, y))(ψx(x, y) + ψy(x, y)) (9)
+B0((ux(x, y) + uy(x, y)))ψ(x, y),

then we have [15]
∫

A

Ψ(x, y, u, v1, v2, v3, v4, v5)dxdy =
∫

Γ

B0(u)ψdτ = 0, (10)

since ψ is a function with compact support in A◦ and P = (u, v) is an admissible
pair.

The relations (7), (8) and (10) are the generalization of the properties of the
admissible pairs in the formulation of the optimal control problems in distribu-
tion systems. Thus, we can obtain a new measure theoretical control problem.
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For an admissible pair P , the mapping

ΛP : G 7→
∫

A

G(x, y, u(x, y), v1(x, y), v2(x, y), v3(x, y), v4(x, y), v5(x, y))dxdy

(11)
defines a positive linear functional on the space C(Ω) of continuous real-valued
functions on Ω. The admissible pair P ∈ W corresponds to a positive linear
functional ΛP on C(Ω) in one-to-one correspondence [16]. The equations (7), (8),
and (10) can be written as follows:





ΛP (Φ) = 4ϕ, ϕ ∈ C ′(B),
ΛP (θ) = aθ, θ ∈ C1(Ω),
ΛP (Ψ) = 0, ψ ∈ D(A◦),

(12)

where C1(Ω) denotes the subspace of C(Ω) of those functions θ which depend
on x and y only.

To enlarge the set W , and perhaps to overcome some of the difficulties associ-
ated with the formulation of the distributed optimal control problems, we shall
develop a new framework by considering all positive linear functionals on C(Ω)
satisfying (12).

By the Riesz representation theorem, it is convenient to identify each of such
functions with a positive Radon measure on Ω [3]. Let M+(Ω) be the set of all
positive Radon measure on Ω. We can consider the set Q ⊂ M+(Ω) such that
for µ ∈ Q we have





µ(Φ) = 4ϕ, ϕ ∈ C ′(B),
µ(θ) = aθ, θ ∈ C1(Ω),
µ(Ψ) = 0, ψ ∈ D(A◦).

(13)

Therefore, the new optimization problem consists of minimizing the linear
functional I : Q −→ R, defined by

µ 7→ µ(F ) =
∫

A

Fdµ. (14)

Hence, we have the following optimization problem:
{

min µ(F )
s.t. : µ ∈ Q.

(15)

Note that all the functions in (13) and (14) are linear in µ. Thus, the problem
(15) is an infinite dimensional linear programming problem. Now, we consider
the existence of an optimal measure in the set Q for the functional I . We define
a topology on the set Q induced by the weak*-topology on M+(Ω), then we have
the following proposition [16]:
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Proposition 1. The measure-theoretical control problem, which is to find the
minimum of the linear functional I over the set Q attains its minimum µ∗ in Q.

The proof of Proposition 1 is similar to theorem II.1 in [16].

3. Approximation

We shall approximate the infinite dimensional linear programming (2.13) by a
finite dimensional one, then we shall obtain the approximate solution of the orig-
inal problem (1.1) and (1.2) by using the optimal solution of the latter problem.
In the following we state the stages of obtaining the approximation solution.

We consider the minimization of I over the subset of M+(Ω) defined by
requiring that only a finite number of the constraint in (13) be satisfied. This is
achieved by choosing countable sets of functions whose linear combinations are
dense in the appropriate space, and then selecting a finite number of them. Let
the functions ψ ∈ D(A◦) be in the form

sin(2π`(x− xa)/hx) sin(2π`(y − ya)/hy),
sin(2π`(x− xa)/hx)(1 − cos(2π`(y − ya)/hy)),
(1 − cos(2π`(x− xa)/hx)) sin(2π`(y − ya)/hy),
(1 − cos(2π`(x− xa)/hx))(1 − cos(2π`(y − ya)/hy)),

(16)

where hx = xb −xa, hy = yb −ya, and ` = 1, 2, · · · . Then, we have the following
theorem:

Theorem 1. Consider the following linear programming:




min µ(F )
s.t. : µ(Φi) = 4ϕi, i = 1, 2, · · · ,M1,

µ(Ψj) = 0, j = 1, 2, · · · ,M2,

(17)

where Ψj , j = 1, 2, · · · ,M2, are obtained from the functions ψ which are of the
form (16). As M1 and M2 tend to infinity, the solution of (17) tends to the
solution of (15).

Proof. Let Q(M1,M2) be the set of measures in M+(Ω) satisfying in the con-
straints of problem (17), and η and γ(M1,M2) be the optimal values of problems
(15) and (17) respectively. As M1 and M2 tend to infinity, γ(M1,M2) converges
to ξ, and also ξ ≤ η, [16]. Let

P =
∞⋂

M1=1

∞⋂

M2=1

Q(M1,M2).
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Then P ⊃ Q, [16]. So it is sufficient to show that P ⊂ Q. Let S1 = span{ϕi, i =
1, 2, · · · } and S2 = span{ψj , j = 1, 2, · · · }. If µ ∈ P then µ(Φ) = 4ϕ for all
ϕ ∈ S1. Now, for all ϕ ∈ C ′(B) there exists a sequence {ϕk} in S1 such that as
k tends to infinity, the following sequences:

sup
B

∣∣ϕuu(x, y, u) − ϕk
uu(x, y, u)

∣∣ , sup
B

∣∣ϕux(x, y, u) − ϕk
ux(x, y, u)

∣∣ ,

sup
B

∣∣ϕuy(x, y, u) − ϕk
uy(x, y, u)

∣∣ , sup
B

∣∣ϕu(x, y, u) − ϕk
u(x, y, u)

∣∣ ,

sup
B

∣∣ϕxy(x, y, u) − ϕk
xy(x, y, u)

∣∣

tend to zero. Thus

|µ(Φ) −4ϕ| =
∣∣µ(Φ) −4ϕ− µ(Φk) + 4ϕk

∣∣

=
∣∣∣∣
∫

Ω

{[
ϕuu − ϕk

uu

]
ux uy +

[
ϕux − ϕk

ux

]
uy +

[
ϕuy − ϕk

uy

]
ux

+[ϕu − ϕk
u]uxy + [ϕxy − ϕk

xy]
}
dµ− (4ϕ−4ϕk)

∣∣∣∣
≤ K1 sup

B
|ϕuu − ϕk

uu| +K2 sup
B

|ϕux − ϕk
ux|

+K3 sup
B

∣∣ϕuy − ϕk
uy

∣∣ +K4 sup
B

∣∣ϕu − ϕk
u

∣∣

+K5 sup
B

|ϕxy − ϕk
xy|.

In the above inequality, the expression on the right tends to zero as k tends to
infinity. Thus, it follows that µ(Φ) = 4ϕ for all ϕ ∈ C ′(B).

Now, we show that, µ(Ψ) = 0 for all ψ ∈ D(A◦). If µ ∈ P then µ(Ψ) = 0 for
all ψ ∈ S2. Let ψ ∈ D(A◦). For all ψ ∈ D(A◦), the double Fourier series for
ψ, ψx, and ψy converge uniformly on any subdomain of A. Thus, any function
Ψ can be approximated uniformly on Ω by a sequence of functions in S2. In a
similar manner we can prove that µ(Ψ) = 0 for all ψ ∈ D(A◦). Hence, we have
proved that P = Q and so ξ = η. �

The dimension of M+(Ω) is not finite. By using the following theorem, we
approximate µ∗ which is optimal measure of linear programming (17), [16].

Theorem 2. The measure µ∗ in the set Q(M1,M2) which minimizes µ(F ) has
the form

µ∗ =
M1+M2∑

k=1

α∗
kδ(Z

∗
k),

where Z∗
k ∈ Ω and δ is unitary atomic measure and α∗

k ≥ 0, k = 1, 2, · · · ,M1 +
M2.
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Of course, the support of these atomic measures, i.e., Z∗
k are unknown. These

supports can, however, be approximated by introducing a dense set in Ω. The
following theorem has been proved in [16]:

Theorem 3. Let ω be a countable dense subset of Ω. Then, for each ξ > 0, a
measure ν ∈M+(Ω) can be found such that

|(µ∗ − ν)F | < ξ, |(µ∗ − ν)Φi| < ξ, i = 1, 2, · · · ,M1,

|(µ∗ − ν)Ψj | < ξ, j = 1, 2, · · · ,M2

and the measure ν has the form

ν =
M1+M2∑

k=1

α∗
kδ(Zk),

where Zk ∈ ω and α∗
k ≥ 0, k = 1, 2, · · · ,M1+M2 are the same as in the previous

theorem.

The set Ω will be covered with a grid, by dividing each of the intervals to
which x, y, u, v1, v2, v3, v4, and v5 belong, into a number of equal subin-
tervals. Let Ω be divided to N cells Ωj , j = 1, 2, ..., N ; we choose points
Zj = (xj , yj , uj , v1j , v2j , v3j , v4j , v5j ) ∈ Ωj , and let σ = {Zj : j = 1, 2, · · · , N}.
The set σ is an approximate dense subset of the set Ω. Thus, by using the above
theorem we can approximate the solution of the infinite dimensional linear pro-
gramming problem (15) by the following problem:

min
N∑

j=1

αjf0(Zj) (18)

such that:




∑N
j=1 αjΦk(Zj) = 4ϕk, k = 1, 2, · · · ,M1,

∑N
j=1 αjΨk(Zj) = 0, k = 1, 2, · · · ,M2,

∑N
j=1 αjfk(xj , yj) = ak, k = 1, 2, · · · ,M3 ×M ′

3,

∑N
j=1 αjf0(Zj) ≤ ε,

αj ≥ 0, j = 1, 2, · · · , N,

(19)

where xj and yj are the first two components of Zj and ak =
∫

A
fk(x, y)dxdy.

The functions {ϕk; k = 1, 2, · · · ,M1} are monomials in the components of x, y
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and u only, and {ψk; k = 1, 2, · · · ,M2} is obtained from functions ψ of the form
(16). The functions {fk; k = 1, 2, · · · ,M3 ×M ′

3} are defined by

fk(x, y) =
{

1, (x, y) ∈ Akk′

0, otherwise,

where

Akk′ = (xa + (k − 1)d1, xa + kd1) × (ya + (k′ − 1)d2, ya + k′d2), d1 =
xb − xa

M3
,

and
d2 =

yb − ya

M ′
3

.

The above linear programming problem contains M constraints where M =
M1 +M2 +M3 ×M ′

3, and N variables.

We now construct u(·, ·), the approximate solution to the original problem (1)
and (2), by the optimal solution {αj : j = 1, 2, ..., N} of the linear programming
problem (18) and (19). We construct the functions vi and then by using the
condition (2) we can obtain u(x, y) for (x, y) ∈ A.

Let [xa, xb] and [ya, yb] be divided into r1 and r2 equal subintervals respec-
tively. Let t be define such that N = r1 × r2 × t. We can correspond to each
1 ≤ m ≤ N, a triple (i, j, k) as

i = 1, 2, · · · , r1
m = (i− 1)r2t+ (j − 1)t+ k, j = 1, 2, · · · , r2

k = 1, 2, · · · , t
and define λ(i, j, k) = m. Then, we define the piecewise-constant functions as
follows [5]:

vr(x, y) = (vr)m, (x, y) ∈ Bijk , r = 1, 2, · · · , 5, (20)
where (vr)m are the (r + 3)th component of Zm and

Bijk =


xi−1 +

∑

k′<k

rik′ , xi−1 +
∑

k′≤k

rik′


×


yj−1 +

∑

k′<k

sjk′ , yj−1 +
∑

k′≤k

sik′




(21)
and

rik = αλ(i,1,k) + αλ(i,2,k) + · · · + αλ(i,r2,k), i = 1, 2, · · · , r1,
sjk = αλ(1,j,k) + αλ(2,j,k) + · · · + αλ(r1,j,k), j = 1, 2, · · · , r2.

(22)

By using control functions and the boundary condition (1.2) we can obtain
the solution of original problem as follows:

u(x, y) = (v1)mx+ (v2)my + c, (x, y) ∈ Bijk , (23)

where c is a constant and is determind by the boundary condition (2).
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Figure 1. approximate solution

4. Example

Consider the boundary value problem
(
∂u

∂y

)2
∂2u

∂x2
+

(
∂u

∂x

)2
∂2u

∂y2
+
∂u

∂x

∂u

∂y
−8u = 4(x−1)(y−1) in A◦ = (0, 2)×(0, 2),

u(x, y) =





1 + (y − 1)2 if x = 0
(x− 1)2 + 1 if y = 0
1 + (y − 1)2 if x = 2
(x− 1)2 + 1 if y = 2

on Γ.

This problem has the exact solution u(x, y) = (x−1)2+(y−1)2. Now, we obtain
an approximate solution of the above nonlinear partial differential equation. Let
A = [0, 2]× [0, 2], U = [0, 2], V = [−2, 2]× [−2, 2]× [−2, 2]× [−2, 2]× [−2, 2] and
ε = 0.025. Divide A into 6 × 6 subsets (in other hand M3 = M ′

3 = 6), U into 4
subsets and V into 42 × 33 subsets. So, N = 62208.

By choosing Zj in Ωj , the linear programming (18) and (19) contains 62208
variables. We solve the above linear programming problem using a programme
in Matlab software, by choosing different value for M1 and M2. We can obtain
an optimal solution for problem by M1 = 4 and M2 = 8 with the optimal
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Figure 2. error function

value of objective function as I∗ = 0.0236. By using the result of this finite
dimensional linear programming, we obtain an approximate piecewise constant
control function, and then we can obtain an approximate solution u(x, y). The
graphs of approximate solution, exact solution, and error function are shown in
Figures 1 and 2 respectively.
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