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In this article, we consider a nonparametric estimator of the Lorenz curve under
censored dependent model. We show that this estimator is uniformly strongly
consistent for the associated Lorenz curve. Also, a strong Gaussian approximation
for the associated Lorenz process are established under appropriate assumptions. A
law of the iterated logarithm for the Lorenz process is also derived.
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1. Introduction and Preliminaries

Pietra (1915) and Gastwirth (1971) independently introduced the Lorenz curve
corresponding to a non-negative random variable (rv) X with a distribution function
(df) F , quantile function Q�p�, and finite mean EX = � as:

LF�t� �=
1
�

∫ t

0
Q�s�ds� 0 ≤ t ≤ 1�

In econometrics, with X representing income, L�t� gives the fraction of total
income that the holders of the lowest tth fraction of income possesses. Most of the
measures of income inequality are derived from the Lorenz curve. An important
example is the Gini index associated with F defined by

GF �=
∫ 1
0 �u− LF�u��du∫ 1

0 udu
= 1− 2�CL�F �
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324 Ghalibaf et al.

where �CL�F = ∫ 1
0 LF�u�du is the cumulative Lorenz curve corresponding to F . This

is a ratio of the area between the Lorenz curve and the 45� line to the area under
the 45� line. The numerator is usually called the area of concentration. Kendall and
Stuart (1963) showed that this is equivalent to a ratio of a measure of dispersion
to the mean. In general, these notions are useful for measuring concentration and
inequality in distributions of resources, and in size distributions. For a list of
applications in different areas, we refer the readers to Csörgő and Zitikis (1996a).

To estimate the Lorenz curve, one can use the Lorenz statistic Ln�y� defined by

Ln�y� �=
1
�n

∫ y

0
Qn�u�du� 0 ≤ y ≤ 1�

where �n is the sample mean and Qn�y� is the empirical quantile function
constructed from i.i.d. sample taken from F .

Goldie (1977) proved the uniform consistency of Ln to LF and derived the weak
convergence of the Lorenz process ln�t� �=

√
n�Ln�t�− L�t��� 0 ≤ t ≤ 1 to a Gaussian

process under suitable conditions. Csörgő et al. (1986) gave a unified treatment
of strong and weak approximations of the Lorenz and other related processes. In
particular, they established a strong invariance principle for the Lorenz process,
by which Rao and Zhao (1995) derived one of their two versions of the law of
the iterated logarithm (LIL) for the Lorenz process. Different versions of the LIL
under weaker assumptions are also obtained by Csörgő and Zitikis (1996a, 1997). In
Csörgő and Zitikis (1996b), confidence bands for the Lorenz curve that are based on
weighted approximations of the Lorenz process are constructed. Csörgő et al. (1987),
obtained weak approximations for Lorenz curves under random right censorship.
Strong Gaussian approximations for the Lorenz process when data are subject to
random right censorship and left truncation are established by Tse (2006), he is also
derived a functional LIL for the Lorenz process.

However, in most economic situations, the basic sequence of observations
may not be independent. It is more realistic to assume some form of dependence
among the data are observed. Csörgő and Yu (1999) obtained weak approximations
for Lorenz curves and its inverse under the assumption of mixing dependence.
Glivenko–Cantelli-type asymptotic behavior of the empirical generalized Lorenz
curves based on random variables forming a stationary ergodic sequence with
deterministic noise were considered by Davydov and Zitikis (2002). Davydov
and Zitikis (2003) established a large sample asymptotic theory for the empirical
generalized Lorenz curves when observations are stationary and either short-range
or long-range dependent. Strong laws for the generalized absolute Lorenz curves
when data are stationary and ergodic sequences established by Helmers and Zitikis
(2005). Based on the generalized Lorenz curves, Davydov et al. (2007) proposed
a statistical index for measuring the fluctuations of a stochastic process. They
developed some of the asymptotic theory of the statistical index in the case where
the stochastic process is a Gaussian process with stationary increments and a nicely
behaved correlation function. The uniform strong convergence rate of the estimator
under strong mixing hypothesis is obtained by Fakoor and Nakhaei Rad (2009).
They also established a strong Gaussian approximation for the Lorenz process, by
which they derived a functional LIL for the Lorenz process, under the assumption
of strong mixing.
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Asymptotic Behaviors of the Lorenz Curve 325

The purpose of this article is to provide some asymptotic results for Lorenz
process ln�t�, for the case in which data are assumed to be strong mixing subject to
random right censorship.

Consider a sequence of strictly stationary rv’s X1� X2� � � � � Xn with common
unknown absolutely continuous df F and finite mean �. The rv’s are not assumed to
be mutually independent (see Assumption A1 for the kind of dependence stipulated).
Let the rv Xi be censored on the right by the rv Ci, so that one observes only

Zi = Xi ∧ Ci and 	i = I�Xi ≤ Ci��

where ∧ denotes minimum and I�·� is the indicator of the event specified in
parentheses. In this random censorship model, we assume that the censoring rv’s
C1� � � � � Cn are not mutually independent (see Assumption A2 for the kind of
dependence stipulated), having a common unknown continuous df G, and that they
are independent of the Xi’s. We assume that Xi and Ci are non negative. The actually
observed Zi’s have a distribution function H satisfying

H�t� = 1−H�t� = �1− F�t���1−G�t���

Denote by

F∗�t� = P�Z ≤ t� 	 = 1��

the sub-distribution function for the uncensored observations. Define

Nn�t� =
n∑

i=1

I�Zi ≤ t� 	 = 1� =
n∑

i=1

I�Xi ≤ t ∧ Ci��

the number of uncensored observations less than or equal to t, and

Yn�t� =
n∑

i=1

I�Zi ≥ t��

the number of censored or uncensored observations greater than or equal to t
and also the empirical distribution functions of H̄�t� and F∗�t� are, respectively,
defined as

Y n�t� = n−1Yn�t�� Nn�t� = n−1Nn�t��

Then the Kaplan–Meier estimator for 1− F�t�, based on n pairs 
�Zi� 	i�� 1 ≤ i ≤ n�
is given by

1− F̂n�t� =
∏
s≤t

(
1− dNn�s�

Yn�s�

)
� (1.1)

where dNn�t� = Nn�t�− Nn�t
−� and Nn�t

−� = lim�→0+ Nn�t − ���
The quantile function Q and its empirical counterpart Qn are defined by

Q�p� = inf
x ∈ R F�x� ≥ p� and Qn�p� = inf
x ∈ R F̂n�x� ≥ p� (1.2)
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326 Ghalibaf et al.

where F̂n�x� is the KM estimator defined in (1.1). Suppose that 0 < p0 ≤ p1 < 1. We
defined the Lorenz curve corresponding to rv X as:

LF�t� �=
1
�

∫ t

p0

Q�s�ds� p0 ≤ t ≤ p1�

where � = ∫ p1
p0

Q�s�ds. Therefore the natural estimator for the Lorenz curve LF�t� is

Ln�t� �=
1
�n

∫ t

p0

Qn�s�ds� p0 ≤ t ≤ p1�

where �n =
∫ p1
p0

Qn�s�ds�

The main aims of this article are to derive strong uniform consistency of the
Lorenz statistic and a strong Gaussian approximation for Lorenz process, for the
case in which data are assumed to be dependent subject to random right censorship.
As a result of our strong Gaussian approximation, we obtain a functional LIL for
the Lorenz process.

In this article, we consider the strong mixing dependence, which amounts to a
form of asymptotic independence between the past and the future as shown by its
definition.

Definition 1.1. Let 
Xi� i ≥ 1� denote a sequence of random variables. Given a
positive integer n, set

��n� = sup
k≥1


	P�A ∩ B�− P�A�P�B�	 A ∈ � k
1 � B ∈ ��

k+n�� (1.3)

where � k
i denote the �-field of events generated by 
Xj i ≤ j ≤ k�� The sequence is

said to be strong mixing (�-mixing) if the mixing coefficient ��n� → 0 as n → ��

Among various mixing conditions used in the literature, �-mixing is reasonably
weak and has many practical applications (see, e.g., Doukhan, 1994, or Cai, 1998,
2001 for more details). In particular, Masry and Tjostheim (1995) proved that,
both ARCH processes and nonlinear additive AR models with exogenous variables,
which are particularly popular in finance and econometrics, are stationary and �-
mixing.

Now we introduce some assumptions that are used to state our results gathered
below for easy reference.

• A1. 
Xi�i≥1 is a sequence of stationary �-mixing random variables with
continuous df F and mixing coefficient �1�n�.

• A2. 
Ci�i≥1 is a sequence of stationary �-mixing random variables with
continuous df G and mixing coefficient �2�n�. Moreover, the censoring times
are independent of 
Xi�i≥1.

• A3. ��n� = O�e−�log n�1+�
� for some � > 0, with ��n� = max
�1�n�� �2�n�� (For

the interpretation of this assumption, see Remark 2.1 in Ould-Saïd and Sadki
(2005).

In the next section, we present our main results.
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Asymptotic Behaviors of the Lorenz Curve 327

2. Asymptotic Behaviors of Lorenz Curve

2.1. Strong Uniform Consistency

Theorem 2.1 below proves the uniform strong consistency with rate of the
estimator Ln.

Theorem 2.1. Under Assumptions A1–A3, assuming that F ′ = f is continuous and
strictly positive on �Q�p0�− 	�Q�p1�+ 	�, for some 	 > 0. Then,

sup
p0≤t≤p1

	Ln�t�− LF�t�	 = O

(√
log log n

n

)
a�s� (2.1)

Proof. An elementary computation shows that,

Ln�t�− LF�t� =
1
�n

∫ t

p0

�Qn�s�−Q�s��ds − �n − �

�n

LF�t�� (2.2)

It is easy to see that

�n − � =
∫ p1

p0

�Qn�s�−Q�s��ds� (2.3)

Now, by using (2.2), (2.3), and Lemma 3.2 of Ould-Saïd and Sadki (2005), we obtain
the result.

2.2. Strong Gaussian Approximation

We first introduce the following Gaussian process, which plays an important role to
present our strong approximation.

Let gj�s� = I�Zj ≤ s�−H�s�� j ≥ 0,

��s� s′� = Cov�g1�s�� g1�s
′��+

�∑
j=2

�Cov�g1�s�� gj�s
′��+ Cov�g1�s

′�� gj�s���� (2.4)

Define, for t ≥ 0 two-parameter mean zero Gaussian process,

B�t� n� =
∫ t

0

K�x� n�/
√
n

�H̄�x��2
dF∗�x��

where 
K�s� t�� s� t ≥ 0� is a Kiefer process in Theorem 3 of Dhompongsa (1984)
with covariance function

�∗�t� t′� s� s′� = min�t� t′���s� s′��

and ��s� s′� given by (2.4).
We now restate below a strong approximation by Fakoor and Nakhaei Rad

(2010) for the normed quantile process �n�u� �=
√
nf�Q�u���Q�u�−Qn�u�� by a

two-parameter Gaussian process at the rate O��log n�−��, for some � > 0.
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328 Ghalibaf et al.

Theorem 2.2 (Fakoor and Nakhaei Rad, 2010). Let 0 < p0 ≤ p1 < 1. Under
Assumptions A1–A3, assume that F is Lipschitz continuous and that F is twice
continuously differentiable on �Q�p0�− 	�Q�p1�+ 	�, for some 	 > 0, such that f

is bounded away from zero. Then there exists a two-parameter mean zero Gaussian
process B�t� u� for t� u ≥ 0, such that,

sup
p0≤u≤p1

	�n�u�− �1− u�B�Q�u�� n�	 = O��log n�−�� a�s��

with � > 0.

We will give strong Gaussian approximation of the Lorenz process over
restricted interval �p0� p1� for fixed 0 < p0 ≤ p1 < 1.

In the full model, Langberg et al. (1980) defined the total time on test transform
curve corresponding to a continuous distribution F on �0����H−1

F �u�� for u ∈
�0� 1� as

H−1
F �u� =

∫ u

0
�1− y�dQ�y� = �1− u�Q�u�+

∫ u

0
Q�y�dy� Q�0� = 0�

Obviously, H−1
F �u� ≤ H−1

F �1� �= limu↑1 H−1
F �u� = �. For the our model, we modify

the definition of H−1
F �u� as

H−1
F �u� = �p1 − u�Q�u�+

∫ u

p0

Q�y�dy� u ∈ �p0� p1�� (2.5)

As p0 ↓ 0 and p1 ↑ 1� H−1
F �p1� →

∫ 1
0 Q�y�dy = �. We can regard H−1

F �p1� as a
surrogate for the finite mean �. A natural estimator for H−1

F �u� is

H−1
n �u� = �p1 − u�Qn�u�+

∫ u

p0

Qn�y�dy� u ∈ �p0� p1��

In the next theorem, we construct a two-parameter mean zero Gaussian process
that strongly uniformly approximate the empirical process ln�t��

Theorem 2.3. Let 0 < p0 ≤ p1 < 1. Under Assumptions A1–A3, assume that F is
Lipschitz continuous and that F is twice continuously differentiable on �Q�p0�−
	�Q�p1�+ 	�, for some 	 > 0 such that f is bounded away from zero, then there exists a
two-parameter mean zero Gaussian process B�t� u� for t� u ≥ 0, such that, almost surely,

sup
p0≤u≤p1

∣∣∣∣ln�u�− 1

H−1
F �p1�

( ∫ u

p0

�p1 − y�B�Q�y�� n�

f�Q�y��
dy

− LF�u�
∫ p1

p0

�p1 − y�B�Q�y�� n�

f�Q�y��
dy

)∣∣∣∣ = O��log n�−��� (2.6)

with � > 0.

Proof. See the Appendix.
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Asymptotic Behaviors of the Lorenz Curve 329

2.3. Functional LIL

The next theorem gives a functional LIL for the Lorenz process. We work on the
probability space of Theorem 2.3. Let D�a� b� be the space of functions on �a� b�
that are right continuous and have left limits and B is the unit ball in the reproduce
kernel Hilbert space H��∗�.

Theorem 2.4. Suppose that conditions of Theorem 2.3 are satisfied. On a rich enough
probability space, ln���/

√
2 log log n is almost surly relatively compact in D�p0� p1� with

respect to the supremum norm and its set of limit points is

G =
{
gh � gh�u� =

1

H−1
F �p1�

( ∫ u

p0

h�y�

f�Q�y��
dy − LF�u�

∫ p1

p0

h�y�

f�Q�y��
dy

)
�

p0 ≤ u ≤ p1� h ∈ �
}
�

where

� =
{
h � �p0� p1� → R� h�u� =

∫ Q�u�

0

g�x�

��H�x��2
dF∗�x� � g ∈ B

}
�

Proof. Theorem 2.4 follows at once from (2.6) and Theorem A in Berkes and
Philipp (1977).

Appendix

In establishing Theorem 2.3, we were aided by some ideas found in Tse (2006),
but first we start with the following lemmas which are necessary for achieving the
establishment of the our results.

Lemma A.1. Suppose the conditions of Theorem 2.2 are satisfied. We have:

lim
n→� sup

p0≤u≤p1

	H−1
n �u�−H−1

F �u�	 = O

(√
log log n

n

)
a�s�

Proof. By Lemma 3.2 of Ould-Saïd and Sadki (2005), we have:

sup
p0≤u≤p1

	H−1
n �u�−H−1

F �u�	

≤ sup
p0≤u≤p1

��p1 − u�	Qn�u�−Q�u�	�+ sup
p0≤u≤p1

∫ u

p0

	Qn�y�−Q�y�	dy

= O

(√
log log n

n

)
a�s�

�

Next, define the normed total time on test empirical process tn�u� by

tn�u� =
√
n�H−1

n �u�−H−1
F �u��� u ∈ �p0� p1��

Lemma A.2 characterize the asymptotic limit of tn�u�.
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330 Ghalibaf et al.

Lemma A.2. Suppose the conditions of Theorem 2.2 are satisfied. Then there exists a
two-parameter mean zero Gaussian process B�t� u� for t� u ≥ 0, such that,

sup
p0≤u≤p1

∣∣∣∣tn�u�− (∫ u

p0

�p1 − y�B�Q�y�� n�

f�Q�y��
dy + �p1 − u�2B�Q�u�� n�

f�Q�u��

)∣∣∣∣
= O��log n�−�� a�s�

Proof. Proof of this lemma can be done using similar augment of Lemma 3.2 in
Tse (2006), we therefore omit the proof.

Next, we define the scaled total time on test transform, its statistic and
associated empirical process corresponding to F .

WF�u� �=
H−1

F �u�

H−1
F �p1�

� Wn�u� �=
H−1

n �u�

H−1
n �p1�

(2.7)

and

wn�u� �=
√
n�Wn�u�−WF�u��

for u ∈ �p0� p1�.
The following lemmas give the strong uniform consistency of Wn�u� and

strong Gaussian approximation of the scaled total time on test empirical process
respectively.

Lemma A.3. Suppose that conditions of Theorem 2.2 are satisfied. We have:

sup
p0≤u≤p1

	Wn�u�−WF�u�	 = O

(√
log log n

n

)
a�s�

Proof. By triangular inequality and Lemma A.1, the left-hand side is bounded by

sup
p0≤u≤p1

∣∣∣∣ H−1
n �u�

H−1
n �p1�

− H−1
n �u�

H−1
F �p1�

∣∣∣∣+ sup
p0≤u≤p1

∣∣∣∣ H−1
n �u�

H−1
F �p1�

− H−1
F �u�

H−1
F �p1�

∣∣∣∣
≤ sup

p0≤u≤p1

∣∣∣∣H−1
n �u�

H−1
F �p1�−H−1

n �p1�

H−1
n �p1�H

−1
F �p1�

∣∣∣∣+ sup
p0≤u≤p1

∣∣∣∣ 1

H−1
F �p1�

�H−1
F �u�−H−1

n �u��

∣∣∣∣
= O

(√
log log n

n

)
a�s�

Lemma A.4. Suppose that conditions of Theorem 2.2 are satisfied. Then there exists a
two-parameter mean zero Gaussian process B�t� u� for t� u ≥ 0, such that,

sup
p0≤u≤p1

∣∣∣∣wn�u�−
1

H−1
F �p1�

(∫ u

p0

�p1 − y�B�Q�y�� n�

f�Q�y��
dy + �p1 − u�2B�Q�u�� n�

f�Q�u��

)
+ H−1

F �u�(
H−1

F �p1�
)2 ∫ p1

p0

�p1 − y�B�Q�y�� n�

f�Q�y��
dy

∣∣∣∣ = O��log n�−�� a�s�

for some � > 0.
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Proof. Proof can be done along the lines of Lemma 3.5 of Tse (2006), we therefore
omit the proof.

Proof of Theorem 2.2. By definition of the Lorenz curve corresponding to F in the
our model and by using (2.5) and (2.7) we have:

WF�y� =
�p1 − y�Q�y�∫ p1

p0
Q�u�du

+ LF�y�� (2.8)

We have also

Wn�y� =
�p1 − y�Qn�y�∫ p1

p0
Qn�u�du

+ Ln�y�� y ∈ �p0� p1�� (2.9)

Substituting (2.8) and (2.9) in Lemma A.4, we obtain the result.
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Csörgő, M., Csörgő, S., Horváth, L. (1987). Estimation of total time on test transforms and
Lorenz curves under random censorship. Statistics 18:77–97.

Davydov, Y., Zitikis, R. (2002). Convergence of generalized Lorenz curves based on
stationary ergodic random sequences with deterministic noise. Statist. Probab. Lett.
59:329–340.

Davydov, Y., Zitikis, R. (2003). Generalized Lorenz curves and convexifications of stochastic
processes. J. Appl. Probab. 40(4):906–925.

Davydov, Y., Khoshnevisan, D., Shic, Z., Zitikis, R. (2007). Convex rearrangements,
generalized Lorenz curves, and correlated Gaussian data. J. Statist. Plann. Infer.
137:915–934.

Dhompongsa, S. (1984). A note on the almost sure approximation of the empirical process
of weakly dependent random variables. Yokohama Math. J. 32:113–121.

Doukhan, P. (1994). Mixing: Properties and Examples. Lecture Notes in Statistics. 85. New
York: Springer-Verlag.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
F
e
r
d
o
w
s
i
 
U
n
i
v
e
r
s
i
t
y
 
o
f
 
M
a
s
h
h
a
d
]
 
A
t
:
 
0
4
:
2
2
 
2
3
 
O
c
t
o
b
e
r
 
2
0
1
0



332 Ghalibaf et al.

Fakoor, V., Nakhaei Rad, N. (2009). Asymptotic behaviors of the Lorenz curve under strong
mixing. Pak. J. Stat. (in press).

Fakoor, V., Nakhaei Rad, N. (2010). Strong Gaussian approximations of product-limit and
Quantile processes for strong mixing and censored data. Commun. Statist. Theor. Meth.
39:2271–2279.

Gastwirth, J. L. (1971). A general definition of the Lorenz curve. Econometrica 39:1037–1039.
Goldie, C. M. (1977). Convergence theorems for empirical Lorenz curve and their inverses.

Adv. Appl. Probab. 9:765–791.
Helmers, R., Zitikis, R. (2005). Strong laws for generalized absolute Lorenz curves when

data are stationary and ergodic sequences. Proc. Amer. Math. Soc. 133:3703–3712.
Kendall, M. G., Stuart, A. (1963). The Advanced Theory of Statistics I. 2nd ed. London:

Charles Griffen and Company.
Langberg, N. A., Leon, R. V., Proschan, F. (1980). Characterization of nonparametric classes

of life distributions. Ann. Probab. 8:1163–1170.
Masry, E., Tjostheim, D. (1995). Nonparametric estimation and identification of nonlinear

ARCH time series: Strong convergence and asymptotic normality. Econ. Theor.
11:258–289.

Ould-Saïd, E., Sadki, O. (2005). Strong approximation of quantile function for strong mixing
and censored processes. Commun. Statist. Theor. Meth. 34:1449–1459.

Pietra, G. (1915). Delle relazioni fra indici di variabilitá, note I e II. Atti del Reale Istituto
Veneto di Scienze, Lettere ed Arti. 74:775–804.

Rao, C. R., Zhao, L. C. (1995). Strassens law of the iterated logarithm for the Lorenz curves.
J. Multivariate Anal. 54:239–252.

Tse, S.M. (2006). Lorenz curve for truncated and censored data. AISM 58:675–686.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
F
e
r
d
o
w
s
i
 
U
n
i
v
e
r
s
i
t
y
 
o
f
 
M
a
s
h
h
a
d
]
 
A
t
:
 
0
4
:
2
2
 
2
3
 
O
c
t
o
b
e
r
 
2
0
1
0


