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Abstract: Characterization of porous materials is an attractive topic in the applied research studies. Efficient techniques are required to predict proper values of characterization parameters for the porous material. A novel method is introduced in the present article based on a special class of neural network known as Regularization network. A reliable procedure is presented for efficient training of the optimal network using two experimental data sets on characterization of activated carbon and carbon molecular sieve (CMS). These case studies were employed to compare the performances of two properly trained Regularization networks with conventional methods. It is also demonstrated that such Regularization networks provide more appropriate generalization performance over the conventional techniques. 
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1. INTRODUCTION

Neural networks have been extensively employed for empirical modeling of various chemical engineering processes [1-3]. Although, characterization and optimization of solid porous materials have been considerably explored by many researches [4,5], however, application of neural network for such tasks is relatively new. 

Characterization of solid porous materials has always been a topic of great interest [6,7]. The macroscopic properties of porous solids are closely connected to their micro-porous structure characterized by parameters such as density, surface area, porosity, pore size distribution, energy distribution and pore geometry.  Although numerous methods have been proposed previously to address the characterization of porous materials [4,8], no well developed theory is still available. The neural network approach is employed in this article to explore the relationship between characterization parameters of solid particles and related operating variables. 

Characterization of porous materials can be viewed as a function approximation problem. The close relationship between the function approximation problem and the feed-forward artificial neural networks was explored earlier [9]. Within this viewpoint, feed-forward neural networks are viewed as approximation techniques for reconstructing input-output mappings in high-dimensional spaces. Experimental data are required to effectively construct appropriate mapping.

Chemical engineering data are usually contaminated with some measurement errors. Proper noise filtering facilities are then essential to avoid over-fitting phenomenon.  Special class of feed-forward neural networks known as Radial Basis Function Networks (RBFN), which are originated from the well-studied subject of multivariate regularization theory, provides powerful method for hyper-surface reconstruction coupled with efficient noise removal property [9].

2. Theoretical ASPECTS
Poggio and Girosi [10] proved that the ultimate solution of the ill-posed problem of multivariate regularization theory could be represented as 
[image: image53.emf]0

2

4

6

750 800 850

Temparature (°C)

Selectivity 

20 min

5 min

10 min

, where G is the 
[image: image2.wmf]N

N

´

 symmetric Green’s matrix, 
[image: image3.wmf]l

 is the regularization parameter, 
[image: image4.wmf]N

I

 is the 
[image: image5.wmf]N

N

´

 identity matrix, 
[image: image6.wmf]l

w

is the synaptic weight vector and 
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 is the response value corresponding to the input vector 
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. Figure 1 illustrates the equivalent Regularization network (RN) for the above equation with N being the number of both training exemplars and neurons. The activation function of the 
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Figure 1. Regularization Network (RN) with single hidden layer.

For a special choice of stabilizing operator, the Green’s function reduces to a multidimensional factorizable isotropic Gaussian basis function with infinite number of continuous derivatives [10].
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Where 
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 Green’s function being identical for all input dimensions. The performance of RN strongly depends on the appropriate choice of the isotropic spread and the proper level of regularization.  The Leave One Out (LOO) Cross Validation (CV) criterion  can be used for efficient computation of the optimum regularization parameter 
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An RBF network consists of three sets of parameters, namely: centers, spreads and synaptic weights. The centers and spreads appear nonlinearly in the training cost function of the network and their efficient calculation requires heavy optimization techniques, while the linear synaptic weights can be readily computed. For a network consisting of “N” Green’s functions (neurons) with “p” input dimensions, the number of parameters are N×p for centers, N×p×p for spreads and N for weights.

Training of an RBF network requires calculation of N linear synaptic weights, selection of N(p((p+1) nonlinear centers and spreads and computation of 
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. The above problem can be avoided by using an isotropic spread (constant but unknown value) for all neurons. In such a case, the problem of finding the optimum values of linear weights, isotropic spread (
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) and regularization parameter (
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) reduces to the solution of linear sets of equations, which is trivial.

A convenient procedure is proposed to de-correlate the above parameters and select the optimal values of 
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 using only linear optimization techniques. As it will be shown, the plot of 
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 that can be regarded as the optimal isotropic spread for which the Regularization network provides appropriate model for the training data set. 

3. EXPERIMENTAL CASE STUDIES
The capabilities of the proposed algorithm for efficient training of Regularization network were demonstrated in the previous study using a synthetic example [9]. In the present investigation, two sets of experimental data are used to explore the application of radial basis function neural networks for empirical modeling of both optimization and characterization of porous materials. 

As a first example, a set of experimental data on carbon molecular sieve selectivity for air separation were used to train the Regularization network [12]. The optimum process conditions were then found for maximum selectivity of 
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. Details of experimental procedures for preparation and measurement processes of these porous materials are presented elsewhere [12]. 

Figure 2 shows the discrete three-dimensional plot and trend analysis of selectivity values versus activation temperature at constant residence times for the mentioned data set. Although, the dependency of 
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selectivity to temperature and residence time shows distinct maxima or minimum, however it is somehow difficult to represent the 3D points with a pre-specified function or surface. The interesting point is that the selectivity becomes independent of residence time at relatively elevated temperatures (850°C).

The entire process of preparation, treatment and characterization of the CMS adsorbents includes several experimental steps. Many tests were repeated to provide an estimation of the overall measurement error for these practical steps. The results showed that a maximum deviation of 20% in the reported selectivity values may be anticipated for the experimental data set [12]. Evidently, the overall measurement error can be greater than the above values, due to the complexity of the whole process of CMS adsorbents production and characterization.
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Figure 2. (a) 3D plot of the training data set, and (b) trend analysis of selectivity versus temperature at constant residence times.
The experimental data were used to train a Regularization network with 20 centers positioned exactly at training exemplars. A novel procedure was employed to select the optimum values of isotropic spread and regularization parameter [12]. The LOO-CV criterion was exploited to select the optimum level of regularization. Figure 3 illustrates the variation of optimum level of regularization and the corresponding approximate degrees of freedom with the isotropic spread of the trained RN. 
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Figure 3. Variation of optimum level of regularization (
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) and approximate degrees of freedom (ADF) with isotropic spread of RN.
The above figure reveals that the optimum value of isotropic spread (
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. The generalization performance of the optimally trained Regularization network (
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) was then computed on a 50(50 uniformly spaced grid in the normalized domain of inputs (
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Figure 4 illustrates the three-dimensional plot of such generalization performance for de-normalized inputs. Because of employing both the optimum level of regularization and optimal isotropic, the constructed surface does not follow the noise and provides a reasonably smooth surface. The 3D plot indicates two distinct maxima which can be investigated by further experiments.
The same data set was again used by two conventional softwares (3D Table-curve and SigmaPlot 2000) to find the appropriate models fitting the experimental data. Figure 5 compares the generalization performance of the optimum Regularization network with the best 3D-fitted model. It seems that the RBFN provides the finest fit to the experimental data. The folds in the polynomial surfaces (Table-curve predictions) are due to high level of noise in the experimental data and over-fitting phenomena. Evidently, such folds lead to poor generalization performance and are not reliable.

Obviously, decreasing the value of isotropic spread fits the noise and forces the correlation coefficient toward unity. As Figure 3 illustrates, the approximate degrees of freedom tends to 20 for very small spreads. Figure 6 clearly shows that the Regularization network with extremely small spread (which corresponds to maximum approximate degrees of freedom (df)), can fit the noise and exactly recover the training data. Evidently, the optimal prediction of Regularization network is more appropriate due to the high level of noise in measured values.

Characterization of activated carbons was also considered as another application of optimal Regularization network. The results show the superior generalization performance of Regularization network over Table-curve fitted surfaces [12]. 
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Figure 4. The 3D plot and contour map of the optimally trained Regularization network.
[image: image47.wmf]å

[image: image48.wmf]1

G

       [image: image36.emf]750

775

800

825

Temp. (°C) 

2.5

5

7.5

10

12.5

15

17.5

Time (min)

1

1.9

2.8

3.7

4.6

5.5

Selectivity

       [image: image37.png]Ananops

10
Tme (min)

T





Figure 5. Comparison of Table-Curve fitted surface with generalization performances of RN.
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Figure 6. Generalization performance of Regularization network with df=20.
 References
[1] Himmelblau, D.M. and J.C. Hoskins, Artificial Neural Network Models of Knowledge Representation in Chemical Engineering, Computers and Chemical Engineering, 12, 881, (1988).
[2] Iliuta şi, I. and V. Lavric, Two-Phase Downflow and Upflow Fixed-Bed Reactors Hydrodynamics Modeling Using Artificial Neural Network, Chem. Ind., 53 (6), 76,  (1999). 

[3] Tarca, L.A., P.A. Grandjean, and F.V. Larachi, Reinforcing the phenomenological consistency in artificial neural network modeling of multiphase reactors, Chemical Engineering and Processing, 42, (8-9), (2003).

[4] Lastoskie, C.M. and K.E.  Gubbins, Characterization of porous materials using molecular theory and simulation, Advances in Chemical Engineering, 28, 203, (2001).

[5] Moussatov, A., C. Ayrault, and B. Castagnede, Porous material characterization– Ultrasonic method  for estimation of  tortuosity and characteristic length using a barometric chamber, Ultrasonic, 39, 195, (2001).

[6] Russel, B.P. and M.D. LeVan, Pore size distribution of BPL activated carbon determined by different methods, Carbon, 32, 845, (1994). 
[7] Ahmadpour, A. , Fundamental studies on preparation and characterization of carbonaceous adsorbents for natural gas storage, PhD Thesis, University of Queensland, Australia, (1997).

[8] Jagiello, J., T.J. Bandosz, and , J.A.  Schwarz, Characterization of microporous carbons using adsorption at near ambient temperatures, Langmuir, 12, 2837, (1996).
[9] Shahsavand, A., A Novel Method for Predicting the Optimum Width of the Isotropic Gaussian Regularization Networks, Proceedings of the ICNN2003, Minsk, Nov. 12-14, 2003, Belarus, (2003).

[10] Poggio, T. and F. Girosi, Regularization algorithms for learning that are equivalent to multilayer networks, Science, 247, 978, (1990).

[11] Golub, G.H. and C.G. Van Loan, Matrix Computations, Johns Hopkins University Press, Baltimore, 3rd edition, (1996).

[12] Shahsavand, A. and A. Ahmadpour, Application of Optimal RBF Neural Networks for Optimization and Characterization of Porous Materials, Computers and Chemical Engineering 29, 2134, (2005).
[image: image40.png]



(1)





(RN)





�





(b)





(a)





� EMBED Excel.Chart.8 \s ���





� EMBED Equation.3  ���





� EMBED Equation.3  ���





� EMBED Equation.3  ���





�





� EMBED Equation.3  ���





� EMBED Equation.3  ���





� EMBED Equation.3  ���





� EMBED Equation.3  ���





� EMBED Equation.3  ���





� EMBED Equation.3  ���





Output of Neural Network





Output


Layer








Neurons of


Hidden Layer





Input


Layer





x1


x2





xp-1





xp














.


.





(TC)








� Corresponding author. E-mail: � HYPERLINK "mailto:shahsavand@um.ac.ir" ��ahmadpour@um.ac.ir�, � HYPERLINK "mailto:ahmadpour_ir@yahoo.com" ��ahmadpour_ir@yahoo.com� 









[image: image49.wmf]j

G

[image: image50.wmf]N

G

[image: image51.wmf]M

[image: image52.wmf]M

_1215079898.unknown

_1215080060.unknown

_1215080666.unknown

_1217153910.unknown

_1217153935.unknown

_1217154193.unknown

_1217153924.unknown

_1217153930.unknown

_1217153840.unknown

_1217153901.unknown

_1217153897.unknown

_1215080667.unknown

_1215080788.xls
Chart1

		750		750		750

		800		800		800

		830		830		830

		850		850		850

		750		750		750

		765		765		765

		785		785		785

		800		800		800

		810		810		810

		820		820		820

		830		830		830

		850		850		850

		750		750		750

		760		760		760

		800		800		800

		850		850		850



20 min

5 min

10 min

Temparature (°C)

Selectivity

1.2

1.5

2.95

1.85

1.34

1.57

1.72

5.14

3.36

3.2

2.63

1.85

4.4

3.9

1.57

1.85



Sheet1

		

		Temperature (°C)		Residence time (min)		Selectivity

										750		1.20

										800		1.50

		750		13		1:54				830		2.95

		750		17		0.1333333333				850		1.85

										750				1.34

										765				1.57

		780		14:05		2:59				785				1.72

										800				5.14

										810				3.36

										820				3.20

										830				2.63

										850				1.85

										750						4.40

										760						3.90

										800						1.57

		850		7:05		2:05				850						1.85





Sheet1

		0		0		0

		0		0		0

		0		0		0

		0		0		0

		0		0		0

		0		0		0

		0		0		0

		0		0		0

		0		0		0

		0		0		0

		0		0		0

		0		0		0

		0		0		0

		0		0		0

		0		0		0

		0		0		0

		0		0		0

		0		0		0



20 min

5 min

10 min

Temparature (°C)

Selectivity (%)

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0



Sheet2

		Temperature (°C)		Residence time (min)		Selectivity  (

		750		5		0.04

		750		10		0.07

		750		13		0.08

		750		17		0.13

		750		20		0.17

		760		20		0.13

		765		10		0.08

		780		14:05		0.12

		785		10		0.09

		800		5		0.05

		800		10		0.22

		800		20		0.19

		810		10		0.15

		820		10		0.13

		830		5		0.15

		830		10		0.13

		850		5		0.10

		850		7:05		0.09

		850		10		0.08

		850		20		0.07





Sheet3

		






_1215080150.unknown

_1215080572.unknown

_1215080580.unknown

_1215080584.unknown

_1215080577.unknown

_1215080567.unknown

_1215080116.unknown

_1215079920.unknown

_1215080032.unknown

_1215080057.unknown

_1215080023.unknown

_1215080028.unknown

_1215079909.unknown

_1215079914.unknown

_1215079904.unknown

_1215079867.unknown

_1215079880.unknown

_1215079886.unknown

_1215079873.unknown

_1149159007.unknown

_1215079851.unknown

_1215079859.unknown

_1215079863.unknown

_1215079802.unknown

_1181568772.unknown

_1147106112.unknown

_1149158874.unknown

_1020610264.unknown

_1020610219.unknown

