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Abstract  
In this study, the circular hydraulic jump (CHJ) is 
investigated experimentally by using the setup 
constructed in the Fluid Mechanics Laboratory. Also 
VOF numerical method based on Youngs’ algorithm is 
used to simulate the formation of the circular hydraulic 
jump. The results show that the numerical model is 
capable of simulating the jump formation and the 
numerical results are verified by the experimental 
observations. The both results indicate that enhancing 
the volumetric flow rate will increase the radius of the 
jump. Also, the agreement of both numerical and 
experimental results with the CHJ theory is satisfactory.  
 
Keywords: Circular Hydraulic Jump, Experimental 
Setup, Numerical Simulation, Volume-of-Fluid Method.  
 
1- Introduction  
At the beginning of the twentieth century, the great 
British physicist, Lord Rayleigh encountered a 
discontinuity in the geometry of linear one dimensional 
flow. The structure is called river bore if moving, and 
hydraulic jump, if stationary and is created due to e.g. 
variation in river bed. The classical planar hydraulic 
jump which occurs in open-channel flows is a very old 
and well-known phenomenon thoroughly considered in 
the literature. However, the Circular Hydraulic Jump 
(CHJ) although having a similar name, is completely a 
different Phenomenon. When a circular vertical liquid 
jet impacts on a solid horizontal surface, which is called 
target plate, the flow spreads radially away everywhere 
– from the stagnation point – until at a particular radius, 
which is called the radius of the jump, the thickness of 
the liquid film increases abruptly and a so-called 
circular or axisymmetric hydraulic jump occurs.  

As mentioned earlier, the first person who 
considered CHJ was probably Lord Rayleigh (1914) 
who proposed his model by using the continuity and 
momentum equations and assuming the flow as being 
inviscid [1]. He assumed that mass and momentum are 
conserved across the jump, but energy is not. He finally 
could derive some relations for the inviscid jump. 
Rayleigh’s method was based on the analogy of shallow 
water and gas theories. The complete theory of inviscid 
circular hydraulic jump was presented by Birkhoff and 
Zarantonello in 1957 [2].  

However, it is clear that the flow in such a problem 
is viscous and the inviscid theory is not adequate for 
predicting the location of the circular hydraulic jump 
occurrence, since the fluid layer thickness before the 

jump is typically sufficiently thin, so that the diffusion 
of vorticity from the lower boundary is dynamically 
significant. Therefore, the viscosity must be taken into 
account.  

The first person, who considered the effect of 
viscosity in CHJ, was Watson in 1964 who solved the 
problem analytically. He, in a strong, long and highly-
referred paper, described the flow in terms of a Blasius 
sublayer developing in the vicinity of the stagnation 
point, as on a flat plate, and also in terms of a similarity 
solution. By using the momentum equation, he could 
finally obtain some relations for predicting the radius of 
the jump. Watson’s model will be considered in detail in 
the next section.  

The validity of Watson’s theory has been 
investigated experimentally by many different 
researchers throughout the world in the last four decades 
such as Watson himself [3], Olson and Turkdogan [4], 
Ishigai et al. [5], Nakoryakov [6], Bouhadef [7], Craik 
et al. [8], Errico [9], Vasista [10], Liu and Lienhard 
[11], Ellegaard et al. [12], and in particular Bush and 
Aristoff [13, 14]. The agreement between the theory and 
experiment has been very diverse, from good to bad, 
depending on the jump conditions. Even Watson 
himself has presented some data that are in poor 
agreement with his own theory.  

Some other investigators also considered the 
problem from different aspects. Bowles and Smith 
studied the circular hydraulic jump -with surface tension 
considerations- and the small standing waves preceding 
the jump [15]. Higuera also proposed a model for planar 
jump by studying the flow in transition region in the 
limit of infinite Reynolds number [16]. Bohr et al. in 
1993 obtained a scaling relation for the radius of the 
jump [17]. In 1997, they also proposed a simple viscous 
theory for free-surface flows that can accommodate 
regions of separated flow and yield the structure of 
stationary hydraulic jumps [18]. 

Watanabe et al. presented integral methods for 
shallow free-surface flows with separation in the 
application of circular hydraulic jump and also the flow 
down an inclined plane [19]. Ellegaard et al. who in 
1996 investigated the CHJ empirically [12], for the very 
first time, observed the polygonal hydraulic jumps in 
their experiments [20] and reported them in detail in 
1999 [21]. In the same year, Yokoi and Xiao considered 
the transition in the circular hydraulic jump numerically 
[22]. Three years later, they also studied numerically the 
structure formation in circular hydraulic jumps with 
moderate Reynolds numbers [23]. Brechet and Neda 
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also investigated the circular hydraulic jumps and 
compared their theory and experiments [24]. 

Avedisian and Zhao studied in detail, the effect of 
gravity on the circular hydraulic jump and its different 
parameters experimentally [25]. Rao and Arakeri 
considered the CHJ empirically and measured the radius 
of the jump, film thickness and also the length of the 
transition zone and specially focused on jump formation 
and transition to turbulent flow [26]. In 2002, Ferreira et 
al. simulated the circular hydraulic jump numerically in 
order to compare the various upwind schemes for 
convective term of the Navier-Stokes equations [27].  

Gradeck et al. studied the impingement of an 
axisymmetric jet on a moving surface both numerically 
and experimentally in order to simulate the cooling of a 
rolling process in the steel making industry [28]. 

As mentioned before, so far circular hydraulic jump 
has been studied numerically by other numerical 
methods and also for some other cases like an oblique 
jet. But in this study, the circular hydraulic jump is 
studied both experimentally and numerically and the 
method used for simulating the CHJ has been the 
method of Volume-of-Fluid based on Youngs' 
algorithm. The numerical results for the variation of 
jump radius with different flow rates are compared with 
the experimental measurements. Also the both results 
are compared with Modified Watson's theory.  
 
2- Theory of Circular Hydraulic jump  
Circular hydraulic jumps might take place, when a 
vertical descending liquid jet impacts a solid horizontal 
surface. Figure 1 shows a sample of an empirically 
observed CHJ in our experiments.  

 

 
Figure 1: The circular hydraulic jump  

 
The important feature of CHJ is its potential for heat 

loss in downstream of the jump, especially for the 
processes in which the purpose is cooling a hot surface 
[25]. The general structure of a circular hydraulic jump 
is shown in Figure 2.  

Watson proposed two models for CHJ. His first 
model was an inviscid one for downstream of the jump 
in which he assumed the pressure force to be equal to 
the rate at which momentum is increasing. In his second 
model which was viscous, he had used the prandtl 
boundary layer theory for development of the flow 
which is considered here in brief.  

 
Figure 2: The general structure of CHJ 

 
In upstream region where the flow is viscous, 

Watson divided the flow field into four different 
regions: i.) The region very close to the stagnation point 
where the radial distance is of the same order of the jet 
radius ( )( )aOr =  and the boundary layer thickness is of 
order ( )0/UaO υδ =  where a  and 0U  are the radius 
and the velocity of the incoming jet and υ  is kinematic 
viscosity (see figure 2); ii) The region ar >>  in which 
the features of stagnation region are not important and 
the boundary layer is similar to the Blasius sublayer 
development over flat plate; iii) The region from the 
point where the boundary layer spans the whole fluid 
layer to the point where the velocity becomes self-
similar that can be called a transition region; iv) The 
region in which the similarity solution suggested by 
Watson is valid.  

According to Watson’s theory, the viscous solution 
is valid only in the second and fourth regions and for 

( ) 1/Re >>= aQ υ  where 0
2UaQ π=  is the volumetric 

flow rate. His approximate solution is clearly not correct 
in the first region, since the radii of the jump and the jet 
are of the same order. By neglecting the third region, 
Watson used the Karman-Pohlhausen method to match 
the solution of the second region (from Blasius velocity 
profile) and the solution of the last region for which he 
assumed the following velocity profile:  

( ) 





=

δ
zfrUu  (1) 

where )(rU is the velocity at the free surface and f  is 
the similarity function.  

By using the above velocity profile in momentum 
integral equation, Watson could derive this explicit 
relation for the thickness of the boundary layer:  

C
U
r

c
cr =
−

−
0

33
22

3
3 υ

π
δ  (2) 

where 402.1=c  and C  is the integration constant. By 
an order-of-magnitude analysis, Watson showed that in 
the region )(aOr = , ( )0

3 /UaOC υ=  and in the region 

0rra <<< , ( )33 / raOC =  where 3/1
0 Re315.0 ar =  is 

the radial location in which the boundary layer absorbs 
the whole flow and is also shown by vr  in the literature. 
The proportionality factor for this critical radius, which 
is the place that the transition from the second region to 
the forth one is occurred, was obtained by matching the 
two different solutions just mentioned.  

Watson ignored the integration constant C  and 
obtained two relations for predicting the fluid layer 
depthξ  as:  
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For reaching his main goal which was predicting the 
location of the jump occurrence, by assuming the 
downstream height to be known, Watson used the 
momentum balance and eventually could derive some 
relations for the jump radius. He also had ignored the 
effect of surface tension in his analysis.  

Liu and Lienhard stated that if the radius of the jump 
decreases or radius of the jet increases, then the 
upstream Froude number will be larger. They concluded 
finally that for jumps with large downstream height and 
high upstream Froude number, the Watson’s model is 
not accurate enough. Therefore, briefly it can be said 
that the accuracy of Watson’s theory is not appropriate 
for jumps of small radius and height, known as weak 
jumps [11]. Based on the experiments, the surface 
tension influence is underscored in small jumps. The 
empirical observations have shown that reducing the 
surface tension causes the radius of the circular jump 
increase and also makes the jump more gradual, i.e. the 
jump becomes less abrupt.  

Bush and Aristoff in 2003 have considered the 
influence of surface tension on CHJ analytically and 
could propose a very simple valuable relation for the 
curvature force –which for weak jumps is comparable 
with pressure forces in momentum equation- and 
eventually were capable of modifying Watson’s theory, 
i.e. his relations for predicting the jump radius. These 
modified relations are [13]:  

2/1

2/3

1

1
2

2

2

22
1

Re1297.010132.0

2
21

−







−

=+





 +

a
r

dr
a

BoQ
gadr

π
 0rr <  (5) 

1

1

3

1

1
2

2

2

22
1

1826.0Re01676.0

2
21

−

−












+









=+





 +

a
r

dr
a

BoQ
gadr

π
 0rr ≥  (6) 

where d  is the downstream height (or outer depth 
which is also shown by ∞h ), g  is the gravitational 
acceleration, 1r  (also shown by jr  or jR ) is the radius 
of the jump, σρ /HgRBo j ∆=  is the Bond number and 

H∆  is the jump height. It must be mentioned that these 
relations are valid for laminar flow which is the flow 
regime considered here numerically. Watson also 
derived some similar relations for turbulent flow in CHJ 
problem, but they were hardly ever validated and 
confirmed by researchers, since the turbulent circular 
hydraulic jump is so complicated that it makes it very 
difficult to study it in detail.  

The Bush and Aristoff relations for radius of the 
jump differ from those of Watson only in the term 
including Bond number that contains the surface tension 
effect which is highlighted in the weak jump regimes. 
By this modification to Watson’s theory, Bush and 

Aristoff could improve the accuracy of his model in 
small jump regimes in which his own theory had some 
imperfections. According to the above relations, if the 
jump is big enough, then the Bond number will become 
large and its term in the equations becomes negligible 
and so the old Watson’s relations will be obtained.  

In 1993, Bohr et al. proposed a scaling relation for 
the circular hydraulic jump radius as:  

8/18/38/5~ −− gqR j υ  (7) 
where )2/( πQq =  and jR  is the radius of the jump. 
According to this relation, decreasing gravity and 
viscosity and also increasing the flow rate will result in 
bigger jumps. They verified the validity of this scaling 
relation by their own experimental observations.  
 
3- Experimental Setup  
The main purpose of doing the experiments was 
validating our own numerical code which was 
developed to be able to simulate the circular hydraulic 
jump. The experimental setup which is shown in Figure 
3 was established in the Fluid Mechanics Laboratory at 
Ferdowsi University of Mashhad in order to study the 
circular hydraulic jump phenomenon empirically.  
 

 
Figures 3: The schematic of the experimental setup 

 
The experimental setup contains a reservoir, a pump, 

pipes of different diameters and some fixtures 
supporting them. The working fluid is pumped from the 
supply tank through the tubes and then enters the copper 
pipe which is long enough to make sure that the flow is 
laminar. The jet then leaves the pipe and impacts 
vertically on the circular disk and the jump is formed 
after which the liquid leaves the disk and fills a glass 
container which delivers the fluid to the reservoir again 
and the loop is now complete.  

The internal diameter of the used pipe is mm73.4 , 
the distance between the pipe exit and the disk is mm5 , 
the diameter of the target plate over which the jump is 
formed is mm30 and the experiments are performed for 
several different flow rates. The working fluid is the tap 
water and the radius of the jump is obtained by 
digitizing the images taken from the jump by a digital 
camera. The downstream height is also measured by 
calipers and the flow rate is measured directly by using 
a calibrated tube and a timer. One of the samples of the 
jumps observed in our experiments was already shown 
in Figure 1.  
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4- Numerical Method   
Also in this study, the circular hydraulic jump is 
simulated numerically by solving the Navier-Stokes 
equations, along with an equation for tracking the free-
surface. In this section, we present a brief account of the 
numerical method. The governing equations are the 
continuity and momentum equations:   

0=⋅∇ V
rr

 (8) 

bp
t

FgVVV rrtrrrrr
r

ρ
τ

ρρ
111)( ++⋅∇+∇−=⋅∇+

∂
∂  (9) 

where V
r

is the velocity vector, p is the pressure,τ is the 

stress tensor and bF
r

represents the body forces acting on 
the fluid.  

The free surface is tracked by using the volume-of-
fluid (VOF) method by means of a scalar field f  
(known as volume of fluid fraction) whose value is 
unity in the liquid phase and zero in the vapor. When a 
cell is partially filled with liquid, i.e. the interface, f  
will have a value between zero and one:  








<>=

 gasin 0
interface gas-liquid at the1,0

liquidin 1
f

 
(10) 

The discontinuity in f is propagating through the 
computational domain according to:  

0=∇⋅+
∂
∂

= fV
t
f

dt
df rr

 
(11) 

For the advection of volume fraction f  based on 
Equation (11), different methods have been developed 
such as SLIC, Hirt-Nichols and Youngs’ PLIC. The 
reported literature on the simulation of free-surface 
flows reveals that Hirt-Nichols method has been used by 
many researchers. In this study, however, we used 
Youngs’ method [29], which is a more accurate 
technique. Assuming the initial distribution of f  to be 
given, velocity and pressure are calculated in each time 
step by the following procedure. The f  advection 
begins by defining an intermediate value of f :  

)(
~ nn fVtff

rr
⋅∇−= δ  (12) 

Then it is completed with a “divergence correction”:  
nn fVtff )(

~1
rr

⋅∇+=+ δ  (13) 

A single set of equations is solved for both phases, 
therefore, density and viscosity of the mixture are 
calculated according to:  

(14) gl ff ρρρ )1( −+=   
(15) gl ff µµµ )1( −+=  

where subscripts l  and g  denote the liquid and gas, 
respectively. New velocity field is calculated according 
to the two-step time projection method as follows. First, 
an intermediate velocity is obtained:  

(16) n
bn

nn
n

n
n

FgVV
t
VV rrrrrrr
rr

ρ
τ

ρδ
11)(

~
++⋅∇+⋅∇−=

−

  
The continuum surface force (CSF) method is used 

to model surface tension as a body force ( bF
r

) that acts 

only on interfacial cells. Pressure Poisson equation is 
then solved to obtain the pressure field:  

t
Vp n

n δρ

rr
rr ~

]1[ 1 ⋅∇
=∇⋅∇ +

 
(17) 

Next, new time velocities are calculated by 
considering the pressure field implicitly:  

1
1 1~

+
+

∇−=
− n

n

n

p
t

VV r
rr

ρδ  
(18) 

In this study, the numerical code for Volume-of-Fluid 
method has been developed to be capable of simulating 
the circular hydraulic jump and the results are validated 
by the experiments and the CHJ theory.  
 
Mesh Study 
The cell size used in this study was set based on a mesh 
refinement study in which the grid size was 
progressively increased until no significant changes 
were observed in the simulation results. The mesh 
resolution was characterized by a parameter called CPR 
defined as the number of cells per radius of the jet. 
Figure 4 shows the simulation of the jump for different 
values of CPR for a given case. According to this 
Figure, since the radius of the jump does not change 
significantly by increasing the CPR value from 15 to 20, 
so the optimum mesh size was found to be 20 cells per 
radius of the jet. This mesh size was used for all 
simulations throughout this paper.  
 

 

 

 

 
Figure 4: The simulation of the circular hydraulic jump for 

different CPR values  
 
5- Results and Discussion  
By using the Volume-of-Fluid method, the circular 
hydraulic jump is simulated and the results are verified 
by the experimental measurements. The location of 
jump formation and also how it occurs is seen in the 
numerical method.  

Figure 5 shows the evolution of CHJ formation for a 
case selected from our experimental tests for which the 
flow rate is smlQ /11= , the radius of the incoming jet 
before impact is mma 8.1= and the fluid is tap water 
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( 3/998 mkg=ρ , sm /10005.1 26−×=υ , mN /073.0=σ ). 
Note that the radius of the jet before impact is calculated 
using the Bernoulli equation by knowing the radius of 
the pipe exit and its height from the target plate, both 
measured experimentally, in order to improve the 
accuracy. The radius of the CHJ was measured (after 
image processing) to be mm85.16 , while the radius of 
the numerically simulated jump was mm95.16 which 
shows a good agreement. The Reynolds No. of the jet in 
the experiments and also the simulations is in the range 
of 4000 < Re < 9000 which makes sure that the flow is 
laminar and the results might be compared with 
Watson's theory.  

 

 

 

 

 

 

 

 

 
Figure 5: The evolution of formation of a circular hydraulic 

jump using VOF method for a given case  
 

For other cases that were tested empirically, also a 
good agreement between the numerical and 
experimental jump radii is seen. Figure 6 shows the 
values of the CHJ radius from the numerical and 
experimental results for different flow rates.  

 
Figure 6: Comparison of jump radius from numerical and 

experimental results for different flow rates 
 
We also compared both the numerical and 

experimental results with those of Modified Watson's 
theory (Equations 5 & 6) shown in Figure 7. It is seen 
that the agreement of these two with the theory is 
satisfactory.  

 

 
Figure 7: comparison of numerical and experimental results 

with those of Watson's theory 
 

6- Conclusion   
In this study, the impingement of a vertical liquid jet on 
a solid horizontal surface which leads to the formation 
of circular hydraulic jump was studied both 
experimentally and numerically by using the method of 
volume-of-fluid. The results show that this numerical 
method is capable of simulation the circular hydraulic 
jump. The numerical results are verified by the 
experimental measurements and the accuracy of the 
results for the values of jump radius is good. The 
results, both empirical and numerical, also show that the 
radius of the circular hydraulic jump increases by 
enhancing the volumetric flow rate. Also, the agreement 
of the numerical and empirical results with Modified 
Watson's theory is satisfactory. Also it is clearly seen 
that the inviscid theory is not adequate for predicting the 
radius of the jump.  

 
7- Nomenclature  
a  Jet Radius  
Bo  Bond Number 

∞hd ,  Downstream Height  
f  Volume of Fluid Fraction 

bF
r

 Body Force  
g  Gravitational Acceleration  
p  Pressure  
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Q  Volumetric Flow Rate 
1,, rrR jj  Jump Radius  

vrr ,0  Critical Radius 
Re  Reynolds Number 

0U  Incoming Jet Velocity 
V
r

 Velocity Vector  
t Time  
Greek Letters   
δ  Boundary Layer Thickness 
ξ  Fluid Layer Depth  
υ  Kinematic Viscosity 
ρ  Density 
σ  Surface Tension 
τ  Stress Tensor  
  
8- References  
[1]- Rayleigh, Lord, 1914, “On the Theory of Long 

Waves and Bores”, Proc. R. Soc. Lond. A  90, 324.  
[2]- Birkhoff, G. & Zarantonello, E., 1957, Jets, Wakes 

and Cavities, Academic. 
[3]- Watson, E. J., 1964 “The Radial Spread of a Liquid 

Jet Over a Horizontal Plane”, Journal of Fluid 
Mechanics, 20, 481-499.  

[4]- Olson, R. & Turkdogan, E., 1966, “Radial Spread 
of a Liquid Stream on a horizontal Plate”, Nature, 
211, 813-816.  

[5]- Ishigai, S., Nakanishi, S., Mizuno, M. & Imamura, 
T., 1977, “Heat Transfer of the Impinging Round 
Water Jet in the Interference Zone of Film Flow 
Along the Wall”, Bull. JSME, 20, 85-92.  

[6]- Nakoryakov, V., Pokusaev, B., Troyan E., 1978, 
“Impingement of an Axisymmetric Liquid Jet on a 
Barrier”, International Journal of Heat and Mass 
Transfer, 21, 1175-1184.  

[7]- Bouhadef, M., 1978, “Etalement en Couche Mince 
d’un Jet Liquide Cylindrique Vertical Saur un Plan 
Horizontal”, Z. Anagew. Math. Physics, 29, 157-167.  

[8]- Craik, A., Latham, R., Fawkaes, M., Gibbon, P., 
1981, “The Circular Hydraulic Jump”, Journal of 
Fluid Mechanics, 112, 347-362.  

[9]- Errico, M., 1986, “A Study of the Interaction of 
Liquid Jets with Solid Surfaces”, PhD Thesis, 
University of California, San Diego.  

[10]- Vasista, V., 1989, “Experimental Study of the 
Hydrodynamics of an Impinging Liquid Jet”. B. 
Engineering Thesis, MIT.  

[11]- Liu, X. & Lienhard, J., 1993, “The Hydraulic 
Jump in Circular Jet Impingement and in Other Thin 
Liquid Films”, Experiments in Fluids, 15, 108-116.  

[12]- Ellegaard, C., Hansen, A., Haaning, A., Hansen, 
K., & Bohr, T., 1996, “Experimental Results on 
Flow Separation and Transition in the Circular 
Hydraulic Jump”, Physica Scripta, T67, 105-110.  

[13]- Bush, J. W. M., Aristoff, J. M., 2003, “The 
Influence of Surface Tension on the Circular 
Hydraulic Jumps”, Journal of Fluid Mechanics, 489, 
229-238.  

[14]- Bush, J. W. M., Aristoff, J. M., Hosoi, A., 2006, 
“An Experimental Investigation of the Stability of 
the Circular Hydraulic Jump”, Journal of Fluid 
Mechanics, 558, 33-52.  

[15]- Bowles, R. I., & Smith, F. T., 1992 “The Standing 
Hydraulic Jump: Theory, Computations and 
Comparisons with Experiments”, Journal of Fluid 
Mechanics, 242, 145-168.  

[16]- Higuera, F. G., 1994, “The Hydraulic Jump in a 
Viscous Laminar Flow”, Journal of Fluid 
Mechanics, 274, 69.  

[17]- Bohr, T., Dimon P., Putkaradze, V., 1993, 
“Shallow Water Approach to the Circular Hydraulic 
Jump”, Journal of Fluid Mechanics, 254, 635-648.  

[18]- Bohr, T., Putkaradze, V., Watanabe, S., 1997, 
“Averaging Theory for the Structure of Hydraulic 
Jumps and Separation in Laminar Free Surface 
Flows”, Phys. Rev. Lett, 79, 1038-1042.  

[19]- Watanabe, S., Putkaradze, V., Bohr, T., 2003, 
“Integral Methods for Shallow Free-Surface Flows 
with Separation”, Journal of Fluid Mechanics, 480, 
233-265.  

[20]- Ellegaard, C., Hansen, A., Haaning, A., Hansen, 
K., Marcusson, A., Bohr, T., Lundbek Hansen, J., 
Watanabe, S., 1998, “Creating Corners in Kitchen 
Sinks”, Nature, 392, 767.  

[21]- Ellegaard, C., Hansen, A., Haaning, A., Hansen, 
K., Marcusson, A., Bohr, T., Lundbek Hansen, J., 
Watanabe, S., 1999, “Polygonal Hydraulic Jumps”, 
Nonlinearity, 12, 1-7.  

[22]- Yokoi, K., Xiao, F., 1999, “A Numerical Study of 
the Transition in the Circular Hydraulic Jumps”, 
Physics. Letters, A 257, 153-157.  

[23]- Yokoi, K., Xiao, F., 2002, “Mechanism of 
Structure Formation in Circular Hydraulic Jumps: 
Numerical Studies of Strongly Deformed Free-
Surface Shallow Flows”, Physica, D 161, 202-219.  

[24]- Brechet, Y., Neda, Z., 1999, “On the Circular 
Hydraulic Jump”, American Journal of Physics, 67 
(8), 723-731.  

[25]- Avedisian, C., Zhao, Z., 2000, “The Circular 
Hydraulic Jump in Low Gravity”, Proc. R. Soc. 
Lond. A., 456, 2127-2151.  

[26]- Rao, A., Arakeri, J., 2001, “Wave Structure in the 
Radial Film Flow with a Circular Hydraulic Jump”, 
Experiments in Fluids, 31, 542-549.  

[27]- Ferreira, V., Tome, M., Mangiavacchi, N., 
Castelo, A., Cuminato, J., Fortuna, A., McKee S., 
2002, “High-order Upwinding and the Hydraulic 
Jump”, International Journal for Numerical 
Methods in Fluids, 39, 549-583.  

[28]- Gradeck, M., Kouachi, A., Dani, A., Arnoult, D., 
Borean, J., 2006, “Experimental and Numerical 
Study of the Hydraulic Jump of an Impinging Jet on 
a Moving Surface”, Experimental Thermal and 
Fluid Science, 30, 193-201.  

[29]- Youngs D. L., “Time Dependent Multi material 
Flow with Large Fluid Distortion” Numerical 
Methods for Fluid Dynamics, N.Y., 273-285, 1982.  

 
 


	ISME2010-3537
	Experimental and Numerical Investigation of Circular Hydraulic Jump
	Ali Reza Teymourtash
	Mohammad Khavari
	Mohammad P-Fard
	In this study, the circular hydraulic jump (CHJ) isinvestigated experimentally by using the setupconstructed in the Fluid Mechanics Laboratory. AlsoVOF numerical method based on Youngs’ algorithm isused to simulate the formation of the circular hydraulicjump. The results show that the numerical model iscapable of simulating the jump formation and thenumerical results are verified by the experimentalobservations. The both results indicate that enhancingthe volumetric flow rate will increase the radius of thejump. Also, the agreement of both numerical andexperimental results with the CHJ theory is satisfactory.
	Circular Hydraulic Jump, ExperimentalSetup, Numerical Simulation, Volume-of-Fluid Method.

