


6th Australasian Congress on Applied Mechanics, ACAM 6  
12-15 December 2010, Perth, Australia 

Modeling and optimization of the electron beam welding process using 
statistical approaches 
 
H. Bahrami 1, A. Khajavi 1 and F. Kolahan 2* 

 
1 M. Sc. student, Department of Mechanical Engineering, Ferdowsi University of Mashhad, Iran 
2 Assistant Professor, Department of Mechanical Engineering, Ferdowsi University of Mashhad, Iran 
 
*Corresponding author.  Email: kolahan@um.ac.ir 

Abstract:  In this research, an attempt is made to determine input-output relationships of the Electron 
Beam Welding (EBW) process using regression analysis based on the data collected as per central 
composite design of experiments. The directly measured process characteristics include bead width 
(BW), depth of penetration (BP) and bead reinforcement (BH). Other relevant bead geometry 
parameters may be calculated using these outputs. To model EBW process, several regression 
functions have been fitted to the experimental data in order to establish the relationships between 
EBW process variables and its response characteristics. The best set of models is then selected 
based on the statistical analysis. In the final stage of this research, Simulated Annealing (SA) 
algorithm has been employed to find the best set of process parameter levels in order to obtain 
desired weld bead geometry. Computational results demonstrate that the proposed SA method is 
quite effective and efficient in optimizing process parameter values for any desired weld bead 
geometry in EBW. 

Keywords:  Electron Beam Welding (EBW), Modelling, optimization, Simulated Annealing (SA). 

1 Introduction  
Created in the 1950s, electron beam welding (EBW) has been improved many times during the last 
several decades. In this technique, an extremely high energy density irradiates the workpiece material 
which makes it melt and partly vaporise. This results in a deep and narrow keyhole formation which in 
turn creates deep, narrow and defect-free joints [1]. EBW has become one of the best welding 
technologies to date, displaying superior performance. This technique has little sensitivity to the power 
fluctuations and operational environment and can produce high welding precision. The greatest 
advantage of this technique is its ability to produce welds with very high joining rates. Electron beam 
welding is applicable to weld steel plates as thin as 0.2mm and as thick as 300mm in a single run. 

The fusion zone is generally characterized by weld bead geometry, namely bead width (BW), height 
(BH) and penetration (BP). The shape of the fusion zone depends upon a number of parameters such 
as thermal properties of materials welding speed, accelerating voltage, beam current, etc. Like any 
other welding technique, the quality of joint in EBW is, to the large extends, affected by the process 
parameters settings. Thus, the proper determination of parameter settings is important for the 
successful application of EBW processes. 

Numerous research works exist on the modelling and optimization of process parameters in various 
types of welding processes. Ganjigatti et al. [2] determined input-output relationships of the MIG 
welding process using regression analysis based on the data collected as per full-factorial design of 
experiments.Park and Rhee [3] used neural network and genetic algorithm for Process modeling and 
parameter optimization on the laser welding AA5182 of aluminum alloy with AA5356 filler wire. Datta 
and Kumar [4] used quadratic response surface methodology and Taguchi to modeling and 
optimization of features of bead geometry in submerged arc welding using mixture of fresh flux and 
fused slag. Nagesh and Datta [5] and Dey et al. [6] used regression and Genetic Algorithm for 
modeling and optimization of fillet welded joints for GMAW and EBW processes, respectively. 
Comprehensive surveys in this field can be found in literature [7].  

Nevertheless, most of the proposed models are complicated and highly non linear. In addition, most 
studies have attempted to model the directed measured BH, BW and BP only, regardless of the 
important shape relations of the weld bead. Some important shape relations such as weld 
reinforcement form factor (WRFF) and weld penetration shape factor (WPSF), have significant impact 
on the quality of weld.  



 

 

In the present work, an attempt has been made to model and optimize EBW using the data collected 
by Dey et al. [6] as per central composite design of experiments. In the following section we first derive 
the required formulas to calculated important shape relations based on weld bead geometry. Next, to 
model EBW process based on the experimental data, regression analysis is carried out using various 
mathematical functions. Analysis of variance (ANOVA) is the performed on the developed models to 
identify the best model representing the actual process. Finally a Simulate Annealing procedure is 
proposed and implemented to optimize the process parameters of EBW. 

 2 Shape relations calculations 
Figure 1 shows the simplified weld bead geometry, with its direct and indirect shape characteristics.  

 

 
Figure 1: Simplified weld bead geometry 

The calculation of shape relations, in terms of direct weld bead characteristics, may be carried out as 
follows. With respect to the Figure 1 and assuming the shape of bead cross-section to be a circular 
sector, total bead cross sectional area can be determined using Equations 1-4.   
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In the above formulas Ar is Area of reinforcement, Ap is area of penetration and At is the total bead 
cross sectional area. The shape relations, including weld penetration shape factor (WPSF), weld 
reinforcement form factor (WRFF) and percentage of dilution (%D), are then calculated as follows:   
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In order to achieve optimum welding performance, it is important to properly set the welding 
parameters. The chosen inputs or process parameters, in this study, are as follows: welding speed 
(S), Accelerating voltage (V), Beam current (C). The input factors and their levels of the EBW process 
are shown in Table 1.  

 

 



 

 

Table 1: Input factors and their levels of the EBW process 

Parameter Units Notation Level 1 Level 2 Level 2 

welding speed cm/min (S) 60 80 100 

Accelerating voltage kV (V) 60 75 90 

Beam current mA (C) 7 8 9 
The responses considered are like the following: Weld penetration shape factor (WPSF), Weld 
reinforcement form factor (WRFF), Area of penetration (Ap), Area of reinforcement (Ar), Bead cross 
sectional area (At) and %Dilution (%D). The calculated weld bead geometry is shown in Table 2. The 
aim of the present investigation is to establish relations between the process parameters (inputs) and 
responses (outputs) for Electron Beam Welding process, using regression analysis, where each 
response would have a single regression equation relating it to the process parameters for the whole 
domain of the investigation. And finally, finding the optimum input parameters using SA algorithm. 

Table 2: Calculated weld bead geometry 
SI. No. WPSF WRFF Ar Ap At %D 

1 0.837687 7.02368 0.43681 2.34389 2.7807 84.2915 

2 0.475894 4.29711 0.87093 4.12302 4.99395 82.5603 

3 0.534106 4.82851 0.92023 4.48156 5.4018 82.9643 

4 0.475165 4.32228 1.27173 6.06949 7.34122 82.6768 

5 0.903326 8.06525 0.2795 1.73107 2.01057 86.0985 

6 0.493893 4.78245 0.51509 2.66427 3.17936 83.7989 

. . . . . . . 

. . . . . . . 

. . . . . . . 

47 0.604299 6.556 0.67054 4.23286 4.9034 86.325 

48 0.554934 7.0777 0.35897 2.6705 3.02948 88.1506 

49 0.53367 5.06762 0.60032 3.09616 3.69649 83.7596 

50 0.432749 4.82071 0.4592 2.70809 3.16729 85.5018 

51 0.520797 5.33719 0.52105 2.91894 3.43999 84.8531 

3 The solution procedure – SA algorithm 
For real and large size optimization problems, the traditional optimization methods are often inefficient 
and time consuming. With the advent of computer technology and computational capabilities in the 
last few decades, the applications of heuristic algorithms are widespread. These techniques are 
usually based on the physical or natural phenomena. In 1953, Metropolis proposed a procedure used 
to simulate the cooling of a solid for reaching a new energy state. The annealing process, used in 
metal working, involves heating the metal to a high temperature and then letting it gradually cools 
down to reach a minimum stable energy state. If the metal is cooled too fast, it won't reach the 
minimum energy state. Later Kirkpatrick and his colleagues [8] used this concept to develop a search 
algorithm called Simulated Annealing (SA). Among different heuristic algorithms, SA is one of the most 
powerful optimization methods that simulates the cooling process of a molten metal. The general 
stages of the SA algorithm for the job scheduling on parallel machines are as follows:  

1. BEGIN: Initialize the temperature parameter T 0 and the cooling schedule; r (0 < r < 1) and the 
termination criterion (e.g. number of iterations k = 1… K). Generate and evaluate an initial candidate 
solution (perhaps at random); call this the current solution, c. 

2. Generate a new neighbouring solution, m, by making a small change in the current permutation of 
jobs and evaluate this new solution. 



 

 

3. Accept this new solution as the current solution if:  

3-a) The objective value of new solution, f (m), is better than of the current solution, f (c). 

3-b) The value of acceptance probability function given by (exp (f (m) – f (c)) / T k ) is greater than 
a uniformly generated random number “rand”; where 0 < rand < 1.  

4. Check the termination criterion and update the temperature parameter (i.e., T k = r * T k-1) and 
return to Step 2. 

The main advantages of SA are its flexibility, its fewer tuning parameters, and its ability to escape local 
optima and to approach global optimality. 

The algorithm is quite versatile since it does not rely on any restrictive properties of the mathematical 
formulation of the problem and hence can be adapted to a wide range of problems. In addition, for any 
heuristic optimization procedure, the algorithm parameters should be tuned to enhance its 
performance. Therefore, the ease of tuning a given algorithm is an important feature in selecting a 
proper solution technique. In SA there are only two major tuning parameters - the initial temperature 
and cooling schedule. As a result, SA can easily be "tuned" with minimum trial runs. 
Simulated annealing can avoid local optima by occasionally taking downward steps. That is, a non-
improving neighbor may be accepted as the new current solution. To do so, the initial temperature, T, 
starts out large and is gradually reduced as search progresses (see Step 4). The result is that early in 
the search, the current solution "bounces around" the search landscape with little inhibition against 
moving to the solutions of lower fitness. As the number of iterations increases, the bounces become 
lower in amplitude and worse neighbors are accepted with lower probabilities and only when they are 
not much worse than the current solution. Thus, at the start of SA most worsening moves are 
accepted, but at the end only improving ones are likely to be accepted. This, to a large extend, helps 
the algorithm jump out of local optima. The details of this technique and its various applications are 
well documented in relate literature. 

4 Model Development 
To develop the mathematical models, various linear and curvilinear regression functions have been 
fitted to the experimental data. The best set of models is then chosen based on two criteria, namely; 
correlation coefficient and Analysis of Variance (ANOVA) results, with 95% confidence level. The 
calculated correlation factor for regression functions are shown in Table 3. 

Table 3: The calculated correlation factor for regression functions 

objective function WPSF WRFF Ar Ap At %D 

First order 80.44 78.61 88.49 90.17 90.72 56.66 
Second order 92.57 87.58 96.18 96.07 96.95 61.81 
Third order 93.22 88.88 97.47 96.33 97.21 69.93 

Since third degree of freedom for WPSF, WFRR, Ar, At, Ap and %D has the most correlation factor, 
they will be used for optimization. But first insignificant factors should be removed from equations 
using step backward elimination with 95 percent confidence level. Therefore, the modified regressions 
are as follows: 

WPSF = 7.67 - 1.38 C - 0.0233 S - 0.000303 V2 + 0.0585 C2 + 0.000141 S2 + 0.00474 VC (8) 

WRFF = 110 - 33.9 C - 0.0138 V2 + 2.44 C2 + 0.000600 S2 + 0.271 VC - 0.0101 CS - 0.0276 VC2  

              + 0.00135 CV2          (9) 

Ar = - 26.4 + 0.359 V + 6.85 C - 0.0175 S - 0.401 C2 + 0.000157 S2 - 0.0933 VC - 0.000028 VCS  

        + 0.00548 VC2 + 0.000049 CV2        (10) 

Ap = - 10.5 + 0.0927 V + 3.28 C + 0.000375 S2 - 0.0457 VC - 0.00986 CS + 0.000284 CV2  

         - 0.000003 SV2          (11) 

At = - 12.2 + 0.119 V + 3.72 C + 0.000590 S2 - 0.0491 VC - 0.000555 VS - 0.0120 CS  

        + 0.000303 CV2          (12) 



 

 

%D = 36.6 + 1.41 S + 0.787 C2 + 0.140 VC - 0.0174 VS - 0.176 CS + 0.0023 VCS - 0.0189 VC2   (13) 

Where S, V and C are as follows: welding speed (S), Accelerating voltage (V), Beam current (C) and 
SV, SC... VC2 and VCS are interaction effects of the mentioned parameters. 

5 Optimization 
SA Algorithm is used to optimally determine input parameters levels in order to obtain any desired set 
of outputs. Usually, for high quality joint in EBW the Ar, WRFF and WPSF should be as low as 
possible while Ap and %D should be at their highest possible values. To achieve this, a multi-objective 
fitness function, based on mean square error, is defined as follows: 
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In turn, WPSFd, WFRRd, Ard, Apd and %Dd are the desired values of the process output characteristics 
set by the operator. The algorithm along with its objective function has been coded in Matlab 
software. In our computations, the relative importance (weights) of the output parameters are set to 
unity. In practices, these weights may be set at any relative values as required. SA parameters are as 
follows:  initial temperature: 1000, cooling rate: 0.99, termination criterion: 1000 iterations. The 
convergence curve of the SA is shown in Figure 2. 

 
Figure 2: The convergence curve of the SA algorithm 

The best input parameters to gain optimum results are as follows: S: 60, V: 90, C: 9. Since in all runs, 
which were started from random point, lead to one specific above mentioned answer, the answer is 
the global answer of the process. 
6 Conclusions 
Weld bead geometry is the most important quality measure in all types of welding techniques. To 
achieve a high quality weld, welding parameters should be set in such way that the desired bead 
geometry is obtained. The relationships between bead geometry and welding parameters are quite 
complicated involving many interactions. The main trust of this research was to establish the 
mathematical relationships between input and output parameters and to explore the possibility of 
using SA algorithm in predicting input parameters values in Electron Beam Welding for austenitic 
stainless steel plates. Along this line, using DOE approach and regression analysis, different 
mathematical models were developed to establish the relationships between welding input parameters 
and weld bead geometry. The ANOVA results denote that the curvilinear models are the best 
representative for the actual EBW process. The direct use of these models is to calculate weld bead 
geometry for any given set of process parameters. In this research, these models were put to use as a 
part of prediction procedure for determining process parameters for any desired weld bead geometry. 
To achieve this, a SA technique was developed to minimize an error function consisting of desired and 
calculated weld bead geometry. By minimizing such a function, the process parameters can be 
determined so as the resultant bead geometry has the least deviation from its desired value. 
Computational results indicate that the proposed SA method can efficiently and accurately determine 
welding parameters for a desired bead geometry specification. 
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