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Abstract- In this paper, optimal drug schedule for patients in 
progressive cancer phase who take the drug through infusion 
pump is obtained. An objective of control is reducing tumor cell 

numbers effectively while minimizing total amount of drug 
regimen. This is done because of the known serious side effects 
and major damages resulting from chemotherapy. 

Chemotherapy brings about weakness of the patient's immune 

system which is one of the most dangerous side effects. The 
optimal control problem is to design an effective drug-schedule to 
reduce the size of the tumors in a time-optimal fashion. To 
achieve this goal, a reinforcement learning (RL), which is one of 

the best unsupervised machine learning algorithms, is proposed 
for control. Because RL has no need of environment model, i.e. it 
is model-free; it has absorbed interests during the recent year, 
especially in medical applications. Performance evaluation of the 

proposed algorithm has been performed by simulating on the 
mathematical model of tumor cells interacting with immune 
system. Simulation results show that a burst of treatment at the 
beginning is the best way to battle the tumor and constant 

decreasing the dosage of drug let the immune system to be 
reconstructed. 

K�words---drug regimen, immun system, optimal control, 

reinforcement learning. 

I. INTRODUCTION 

During recent years, diagnosis and treatment of cancer has 
become one of the favorite topics among the academic 
associations. Cancer is the uncontrolled growth of cells which 
occurs when certain cells keep dividing and forming more cells 
without the ability to stop this process [1]. Cancers are capable 
of spreading throughout the body by two mechanisms: invasion 
and metastasis. Invasion refers to the direct migration and 
penetration by cancer cells into neighboring tissues. Metastasis 
refers to the ability of cancer cells to penetrate into lymphatic 
and blood vessels, circulate through the bloodstream, and then 
invade normal tissues elsewhere in the body [2]. Cancer is 
thought to be caused by the interaction between genetic 
susceptibility and environmental toxins [1]. Even though there 
are a number of treatment options for cancer patients such as 
surgery, chemotherapy, immunotherapy, and radiotherapy, the 
life expectancy for the cancer patient will be diminished due to 
the disease and quite possibly the treatments as well. These 
treatment rules cannot in general provide a cure for cancer but 
may bring about remission that can later relapse. The effects of 
these treatments can vary from cancer to cancer and individual 

to individual, which further complicates the situation for 
effective eradication of cancer in any given patient [3]. 

Chemotherapy, in its most general sense, refers to treatment 
of disease by chemicals that kill cells, specifically those of 
micro-organisms or cancer. In popular usage, it will usually 
refer to antineoplastic drugs used to treat cancer or the 
combination of these drugs into a standardized treatment 
regimen. Chemotherapy types are categorized by the time 
applying which can be before, after, or instead of surgery or 
radiotherapy. Chemotherapy can be used before an operation 
(this is known as neo-adjuvant or primary chemotherapy) to 
shrink a cancer that is too large - or too attached to surrounding 
healthy tissue - to be removed easily during an operation. This 
can make removing the cancer easier during a later operation. 
Chemotherapy can be given after an operation (this is known as 
adjuvant chemotherapy) when all the visible cancer has been 
removed but there is a risk that some cancer cells, which are 
too small to be seen, may have been left behind. The aim is to 
destroy these cancer cells. Chemotherapy may also be given if 
a cancer cannot be completely removed during an operation. In 
this situation chemotherapy may not be able to cure the cancer 
but may shrink it and so reduce symptoms [4]. 

An important problem in chemotherapy is to design drug 
dosage regimens such that at the end of a treatment, the tumor 
burden is minimized. The importance is because virtually all 
chemotherapeutic regimens can cause depression of the 
immune system, often by paralyzing the bone marrow and 
leading to a decrease of white blood cells, red blood cells and 
platelets. The other side effects that may occur are Pain, 
Nausea and vomiting, Diarrhea or constipation, Anemia, 
Malnutrition ,Hair loss ,Memory loss . A proper dosage 
regimen has to balance the benefits of the treatment against the, 
often serious, toxic side effects. At present, treatments are 
developed and evaluated through empirical clinical trials. This 
process has led to a large number of patients being treated in 
sub-optimal ways. 

This optimal control problem has solved using classical 
mathematical model-based methods. During the recent years, 
application of artificial intelligence approaches has been 
increased. Martin [5] used non-linear programming techniques. 
The results were improved by Bojkov et al. [6], who used an 
intuitive approach coupled with direct search procedure 
proposed in [7]. Direct search procedure combined with 
random numbers and contraction search region techniques was 
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used in [8]. Artificial intelligence methods were used by Tan et 
al. [9] who applied distributed evolutionary computing 
methods. In [10], Authors applied adaptive Neural Networks to 
solve the problem. While real modeling of such a complex 
human mechanism is very difficult, the model-free control 
approaches outperform other schemes. The intention of this 
paper is to introduce a model-free based Reinforcement 
Learning (RL) control approach, based on agent-environment 
interaction feedbacks, to optimizing chemotherapy drug 
dosage. 

The rest of the paper is organized as follows. Section II 
discusses the mathematical issues of the compartment model. 
In Section III basic concepts of reinforcement learning will be 
outlined. Section IV discusses the control strategy. Section V 
illustrates the results of the work. Section VI concludes the 
paper by admiring the model-free feature of the algorithm. 

II. MATHEMATICAL MODEL 

In this section, we are going to derive the mathematical 
model for simulation of environment and the. The general form 
for the evolution of a cell population, N(t), in absence of 
treatment with general growth rate [(N(t), t) per cell is given 
by: 

d:;t) = N(t). [(N(t), t) (1) 

The per cell growth rate function, [ ,  represents the net 
growth. The following three forms for the growth rate in (l) 
are typically used: 

{ C1 , Exponential growth 

[(p, t) = C2 ( 1 -i) , Logistic growth 

C3 log (�) , Gompertz growth 

(2) 

Where in (2), K and Ci , are POSItIve constants that 
represent the leading order exponential growth and the carrying 
capacity, respectively. 

In developing treatments models the role of 
pharmacokinetics, the way in which the drugs interact with the 
human body, is paramount. The present investigation assumes 
that the drug administrations and the effects of chemotherapy 
are instantaneous. These assumptions, although not realistic, 
are somewhat justified because the model time scale used (one 
day) is relatively large enough for the majority of effects of 
treatment to be affected in one time unit. Gyllenberg [11] 
proposed a mathematical model for the growth of solid tumors 
which employs quiescence as a mechanism to explain 
characteristic Gompertz-type growth curves. The model 
distinguishes between two types of cells within the tumor, 
proliferating and quiescent. 

dePillis develop and analyze a mathematical model, in the 
form of a system of ordinary differential equations (ODEs), 
governing cancer growth on a cell population level with 
combination immune, vaccine, and chemotherapy treatments 
[12]. 

The following nonlinear model which is similar and a bit 
different to one used by Pillis is implemented in this paper: 

dT dt = aT(l - bT) - c1NT - KTMT 

dN T 
- = a1 - [N + g-N -pNT - KNNM dt h+T 
de 
- = a2 - pC - KcMC dt 
dM dt = -yM + VM(t) 

(3) 

(4) 

(5) 

(6) 

T(t) is tumor cell population, N(t) is total Natural Killers 
cell population, C(t) is number of circulating lymphocytes (or 
white blood cells), and M(t) is chemotherapy drug 
concentration in the bloodstream. 

There are three differences between this model and the 
DePillis's one [12]. First, instead of normal cell population 
which was a criteria for patient's health, we choose natural 
killers cell population, N(t), whithout loss of generality. 
Second, for simplifying analyze in RL algorithm, we 
approximate exponential term of -KT(1- e-

M
)T with 

-KTMT. third, we consider the effects of natural killers on 
equation (3), in the term -c1NT, and also the natural activation 
of immune system in presence of tumor growth which was 

shown by g...I...- N in equation (4). h+T 

Tumor growth is assumed to be logistic, based on data 
gathered from immunodeficient mice [13]. We assume that 
circulating lymphocytes are generated at a constant rate, and 
that each cell has a natural lifespan. This gives us the term 
a2 -pC in equation (5). Chemotherapy drug, after injection, 
will be eliminated from the body over time at a rate 
proportional to its concentration, giving an exponential 
decay -yM. VM(t) is the external source of drug which is 
injected by infusion pump and indeed it is the only term that 
can be under our control. Constant system parameters which 
are listed in Table 1 have been extracted from several 
references within the [14]. 

TABLE 1. 

Parameter 

a 
b 
c1 
f-
.w 
h 

K -,-KN 
KT 
p 

a 

a2 

p 
y 

CONSTANT SYSTEM PARAMETERS 

Value 

4.31 x 10 2_ 
1.02 x 10 14_ 
3.41 x 10 10_ 
4.12 x 10 2_ 
1.S x 10 2_ 
2.02 x 10C 
6.00 x 10 C 
8.00 x 10 1_ 
2.00 x 10 1C 

1.2 x 104-
7.50 x 108-

1.20 x 10 2_ 
9.00 x 10 1_ 

Unit 

day' 1 
cells 1 

day' 1.cells 1_ 
day' 1_ 
day' 1_ 
cells2-
day C 
day' 1_ 

day' 1. cells 1_ 
cell. day' C 
cell. day' C 

day' 1_ 
day' 1_ 
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III. REINFORCEMENT LEARNING 

Reinforcement Learning is the problem faced by an agent 
that must learn behavior through trial-and-error interactions 
with a dynamic environment which may has dynamic model or 
may not. In the standard reinforcement learning model, an 
agent is connected to its environment via perception and action, 
as depicted in Fig 1. 

state 
s, 

.------__ · 1 r Agent ]r----, 
reward 
r, 

I �+I ( 1 -!.l'+' -l Environment 
J
i--oIIl--� 

action 
a, 

Figure I. standard reinforcement learning structure. 

Reinforcement learning techniques rely on feedback from 
the environment in order to learn. Feedback takes the form of a 
numerical reward signal, and guides the agent in developing its 
policy. The reinforcement learning agent's sole objective is to 
maximize the total reward it receives in the long run. The 
environment is usually modeled as an MDP, which is defined 
by a set of states, actions, transition probabilities, and expected 
values. Each action has a probability of being the selected 
action, defined by policy table which is extracted from a value 
function. The value of a state is the total amount of reward an 
agent can expect to accumulate over the future, starting from 
the state, so the value function indicates what is good in long 
run. A greedy action is an action that has the greatest value. In 
order to learn, the agent must balance exploration and 
exploitation of the environment. During exploration, the agent 
tries non-greedy actions in hopes of improving its estimates of 
their values. 

Value functions allow agent to compute how "good" it is to 
be in a given state. VnCS) is called the state-value function, and 
allows the agent to compute the expected reward of being in 
state s, and following policy n. QnCS, a) is called the action­
value function, and allows the agent to compute the expected 
reward of being in state s, taking action a, and thereafter 
following policy n. An optimal policy consists of the actions 
that lead to the greatest reward over time. The optimal state­
value function is denoted by V;CS), and the optimal action­
value function is denoted by Q;CS, a) [15]. 

In action-value methods the true (actual) value of action a 
is denoted by Q*Ca), and the estimated value at the tth play by 
QtCa). Also the true value of an action is the mean reward 
received when that action is selected. In control problems, the 
main idea of one popular approach is simply to learn action 
values, QtCS, a), rather than state values, VtCs). 

IV. CONTROL STRATEGY 

The Dynamic Programming (DP) is one of the most 
applicable reinforcement learning methods with great 
computational expense in which the environment model is 
assumed to be perfect. Because of this limitations it is not very 
suitable for biomedical applications. Temporal Difference (TD) 
methods have an advantage over DP methods in that they do 
not require a model of the environment and also they are 

naturally implemented in an online, fully incremental fashion. 
As a consequence, TD approaches have a merit of being used 
on medical cases. We proposed The following Temporal 
Difference RL-based approach for solving the optimal control 
of chemotherapy drug dosage regimen. 

Initialize Q(s,a) arbitrarily 

Repeat (for each episode): 

Initialize S 

Repeat (for each step of episode): 

Choose a from s using policy derived from Q (e-greedy) 

Take action a, observe r ,  and S(new) 

QK+1 = QK + a[rK+1 - QK] 
Set S(new) to S 

Until S is terminal 

Complete control procedure flowchart is illustrated in Fig.2. 

for IearuiDg ilontioD limes 

Select ODO lmoD ICCOnliDg 10 CUrreDl polity wilh £ - greedy 

Apply selected ImOD 10 EDviroDlDeDI of Tumor lDd 
capture Iho Dew values of T,N,C,M 

LnlullO Ihe RLW ARD sigDa) of IrausitioD 

I------� NO 

Figure 2. Complete control procedure flowchart. 
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In this work, two dimensional states are considered with 
respect to T, M. All the state variables are normalized to their 
initial values, and the whole interval of T, M-[O, 1]- is divided 
into 11 equal intervals in which each has a 0.1 length. So the 
total number of the states is more than 120. Decoding of state 
number is performed by structure in Fig.3. 

ValueofT �E>-
L-__ -' DECODER State Number 
,--v_al _u _e _Of _M--....J1 • 

Figure 3. Decoding Structure 

While action-value is implemented in this work, Policy 
table should be updated during the learning steps in each 
episode. The following formula is proposed for decoding sub­
system: 

State Number = 10 x [T x 10] + [M x 10] + 1 (7) 

The numerical reward signal is defined as log (Told/Tnew) 
which guide agent through learning the optimal drug dosage 
schedule. The main feature of this logarithmic signal is that it 
will be positive if the tumor cells decrease after drug 
implementation and will be negative if they increase. Actions 
are divided into discrete normalized drug dosage {OJ, . . .  , I} 
and also a constant rate decremental function, which both are 
the input of dynamic system, V M' 

V. SIMULATION RESULTS 

Dynamic model equations (3) - (6) has been discretized 
with sampling time of T=l [16,17]. In simulation we assume € = 0.01 , a = 0.6 in algorithm. 

The Terminal state is defined on when the number of 
Tumor cell population fall under the specific threshold. The 
learning loop has been iterated 200 times. The drug schedule 
and tumor cell population during the treatment was obtained as 
Fig. 4 and Fig.5 . Numerical results of natural killer cells and 
circulating lymphocytes are shown in Fig.6 and Fig.7. 

Tumor cells population 

Figure 4. tumor cell population during the treatment. 

Input Drug Dosage 

Figure 5. drug schedule during the treatment. 

The control demonstrates that a burst of treatment at the 
beginning is the best way to fight the tumor. Drug 
concentration in bloodstream during the treatment is shown in 
Fig.8. 

Natural Killers population 

Figure 6. Natural killer cells during the treatment. 

circulating lymphocytes (or white blood cells). 

10 20 30 40 50 60 70 80 90 100 

Figure 7. Circulating lymphocytes during the treatment 
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Chemotherapy drug concentration in the bloodstream. 

Figure 8. drug concentration in bloodstream during the treatment. 

Since the numbers of immune system cells are never gone 
under 10% of their initial stages, we don't need to consider 
them in states. The constant decreasing scheme of drug dosage 
helps natural killer cells and circulating lymphocytes to 
reconstruct themselves. Although the population of tumor cell 
is much less than the amount which can be detectable clinically 
(8xl02cells), the number of cells has not been reached zero 
yet. So if the treatment is cut in specific terminal times, the 
tumor cells begin to grow again. Clinically, this means that the 
specific and low dosage of drug should be prescribed to the 
whole life of patient. 

VI. CONCLUSION 

In this paper, optimal control of chemotherapy drug dosage 
for patients with progressive cancer has been studied. Although 
the dynamic model of ordinary differential equations was 
implemented for the simulation of dynamic environment and 
reward signal, showing the ability of RL algorithms in solving 
optimal control problems was the main purpose. Furthermore, 
as it was cleared, there isn't any relation between the usage of 
model and the learning algorithm. Generally, The RL algorithm 
need not the dynamic model of the system and indeed, this 
powerful feature can be applied to model-free environments. 
The flexibility and relative simplicity of this technique can lead 
to improved therapy for individuals, whose unique 
characteristics can be taken into account when establishing 
treatment protocols. 

Another possible direction of work can be an extraction of 
optimal strategies directly from clinical data without relying on 
the identification of any accurate mathematical models, unlike 

approaches based on adaptive design. Tremendous potential of 
reinforcement learning can better be realized when it is applied 
to the problems in which even the relationship between actions 
and outcomes is not fully known. 
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