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Abstract: Several algorithms of different order and complexity are available for particle simulations. In this study, 
the actual results of measurements of self heating times as a measure of accuracy of a single species one dimensional 
electrostatic simulation of thermal plasmas are presented using zero order weightings (NGP), linear weighting 

(CIC), and quadratic spline (QS) weighting. Optimal range of parameters is found to be along  for 

zero order weightings and  for linear and quadratic spline weighting. Considerable increase in self 

heating time is achieved through truncation in k-space. The results are useful in the optimum choice of simulation 
algorithm and indicate that using a higher order simulation algorithm is highly recommended, especially when 
k-space truncation is used. [Journal of American Science 2010;6(10):623-628]. (ISSN: 1545-1003).  

/ 1tv t x   .5

.5/ 0tv t x  

 
Key words: Plasma simulation, self heating times, choice of simulation algorithm, NGP, CIC, QS 
 
 
Nomenclature 

eT
T

=electron temperature 

i


=ion temperature 
=Boltzman's constant 

em
m

=electron mass 

i =ion mass 

p =plasma frequency 

D =Debye length 
x =simulation grid size 
t =simulation time step 

0n =particle density 

DN =number of particles in a Debye length 

CN =number of particles in a grid spacing 

h =self-heating time 

t

k
v =electron thermal temperature 

max

k
=maximum allowable mode 

last =last mode kept 
 
1. Introduction 

The choice of which algorithm to use in particle 
simulations involving many particles is highly 
important since it determines both the computational 
expense and the accuracy involved since each algorithm 
naturally introduces some errors due to discretization of 
both time and space. 

Particle simulations have been carried out to study 
the behavior of electron beams in vacuum tubes and 

have later developed into the simulations of both 
electrostatic and electromagnetic plasmas. 

Linear interpolation or other higher order 
interpolation schemes are almost always used in 
particle-in-cell simulation because of their lower noise 
characteristics and accuracy relative to the 
nearest-grid-point method. The higher order 
interpolation schemes are chosen because of their 
optimal performance, balancing a smaller number of 
particles against more computer operations per particle 
per time step. However, this is not always the case. 
Parker (2002) presented large-scale gyrokinetic particle 
simulations, where sometimes nearest-grid-point 
interpolation is used with results virtually identical to 
those of linear interpolation using the same number of 
particles. He presented a comparison and analysis of 
nearest-grid-point and linear interpolation schemes 
showing why nearest-grid-point interpolation can be 
optimal.  

Li et al. (2009) proposed improved particle-in-cell 
(PIC) algorithms including volume weighting 
cloud-in-cell model, geometry profile considered 
explosive electron emission model and divergence error 
diffused perfectly matched layer boundary in order to 
increase the precision of the algorithm and decreased 
the numerical noise. Their model resulted in the 
development of a user-friendly, 2.5-dimensional PIC 
code called UNIPIC to simulate high power microwave 
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source devices and used for their geometry optimization 
in x-y, z-r and r-φ coordinate systems. Results of 
simulation of a relativistic magnetron, magnetically 
insulated line oscillator, virtual cathode oscillator have 
all shown good physics image and beam-wave 
interaction characteristics. 

In the electrostatic simulations, the model consists 
of charged moving particles experiencing both the force 
due to themselves and due to the externally applied 
fields. Maxwell's equations and Newton's Lorentz 
equations are both applied to follow the motion of these 
particles. Simulations are done both in discrete space 
and time. Thus, the models used affect the accuracy and 
stability of the simulations. The simplest model used is 
the zero order particle and field weighting called 
nearest-gid-point (NGP). A better weighting would be 
first order weighting that smoothes the density and field 
fluctuations at the expense of accessing two grid points 
for each particle twice each step. This is called 
cloud-in-cell (CIC). A higher order weighting is 
quadratic spline (QS) that further rounds off the 
roughness of the particle shape. 

The non-physical self heating times of a one 
dimensional electrostatic simulation of thermal plasma 
are presented using zero order weigthing or the 
nearest-grid-point (NGP), linear weighting cloud-in-cell 
(CIC-PIC), and quadratic spline weighting (QS) in a 
momentum conserving code called ES1 that was written 
around 1972 (Birdsall and Langdon, 2005). It is 
noteworthy that even energy conserving codes show 
self-heating for . In such codes, energy is 
conserved only in the limit of zero for . ES1 is a 
"particle-in-cell" simulation of the Vlasov Eq. for 
"1-Dimensional" (in space, plus the corresponding 
velocity dimension) periodic problems. One may use 
ES1 to develop insight into plasma behavior and the 
properties of the Vlasov equation, including surprising 
nonlinear results. ES1 tracks several thousand 
individual particles in phase space. Thus, it effectively 
solves a Klimontovich-Dupree Equation which in the 
limit of a very large number of particles should 
converge to the equivalent problem of solving the 
Vlasov Eq. for a smooth f(x,v,t). 

0t 

t

It has been found that the temperature of thermal 
plasmas increases linearly with time. Self heating time 

h is defined as the time taken for the thermal energy 
( ) of the system to double in value. A one 
dimensional electrostatic plasma model consisting of a 

mobile electron species and immobile neutralizing ion 
background was used in this study. For this system, this 
is the time in which the average kinetic energy of an 
electron increases by 

2r vT o

0.5 T . This increase in energy is 
numerical in origin and of a stochastic nature. It arises 
due to the fluctuations in the force due to the presence 
of finite grids in space and time. Therefore, the self 
heating time strongly depends on  and t x . A 
Maxwellian velocity loader with first and second 
moment correction was used (Gitomer 1971). 

Hockney (1971) empirically obtained the 
self-heating times for a two dimensional plasma with 
ions and electrons using , e iT T / 6m m 4i e   
with further refinements by Hockney et al. (1974). 

Quadratic spline weightings were added to the 
scope in this study and our results indicate that self 
heating times are longest for  for NGP 
and  for CIC and QS.  
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2. Choice of p  in the determination of self 
heating time h  

Results of simulations carried out with ES1 for the 
typical growth in time of the thermal energy indicate 
that the energy increases linearly with time for 

. This implies a random process. Therefore, 
this study will be restricted to this range of values of 

p

0.6
p

t  

t  .The growth observed in thermal energy for larger 
values of 

p
t   is like with . This implies 

some other form of growth as yet unexplained. The 
same change in growth pattern was observed for the 
thermal energy for  using both CIC-PIC 
and QS weightings. Thus, 

nt

p
t  

1n

0.6

p h
   was determined from 

similar histories with unity slope. In obtaining h , the 
zero in time and the initial thermal energies were 
assigned to the beginning of growth linear in time.  
 
3. Dependence of h on  

0 0

 The results of simulations for self-heating times 
are shown in Fig. 1 in units of electron plasma 
frequency 

, ( )
D D

n n x   

p h
   vs. 

0 DDN n   and 

0 D
)x(nC DN N   

CN
where 

0
is varying. Here 

denotes the number of particles in a grid,  spacing, 
n

DN
n

denotes the number of particles in a Debye length, 

0  is the particle density, x is the simulation grid 
size and D is the Debye length. 
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Fig. 1 Self heating times vs 
0 0

 for NGP, 
CIC showing linear dependence 

0
, ( )

D
n n x   

Fig. 2 shows the results of simulations for 
self-heating times plotted as electron plasma frequency 

p h   vs. C DN N
/

D


for two different ratios of 
 and  for NGP. Similar 

results were observed for CIC. 
0.5 /

D
x 2.0x 

Fig. 2 Self heating times vs C DN N for 
different ratios of /

D
x 

p h

indicating a linear 
dependence of   on for fixed CN N D

/
D

x  for NGP 
 

4. Dependence of /
D

x   and optimum choice of 
 /tv t x 

The self heating times plotted as electron plasma 

frequency p h   divided by C DN N vs. 
/

D
x  are shown in Fig. 3, 4 and 5 for different values 

of p t  . The dashed line drawn through the different 
graphs indicates for NGP and 

t  for CIC and QS. The longest heating 
times occur at about these values of . 
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Fig 3. Self heating times divided by CN N vs. 
/

D
x  for several values of p t  for NGP 

 

Fig 4 Self heating times divided by C DN N vs. 
/

D
x  for several values of for CIC 

p
t 
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Fig 5 Self heating times divided by C DN N vs. 
/

D
x  for several values of p t  for QS 

 
5. Comparison of results and the gain of going to a 
higher order plasma simulation algorithm 

As a comparison of the different algorithms studied, 
ratios of self-heating times of quadratic-spline (QS) to 
nearest-grid-point (NGP) and cloud-in-cell (CIC) to 
nearest-grid-point (NGP)  are plotted in Figs. 6, 7 and 
8 for 0.1,0.2,0.3p t   , respectively. 

Fig. 6 Ratios of self-heating times vs. /
D

x  for 
0.1tp    

Fig. 7 Ratios of self-heating times vs /
D

x  for 
0.2tp    

Fig. 8 Ratios of self-heating times vs /
D

x  for 
0.3p t    

 
These figures indicate that CIC self heating times 

are as much as 70 times longer than NGP, and that the 
self heating times of QS is as much as 650 times longer 
than NGP. Such increases in heating times come at the 
expense of much longer computational times. Actual 
measurement of the cost of running the plasma 
simulations per time step on a computer at the Lawrence 
Livermore Laboratory show that T=5, 11.6 and 24 
microseconds/particle/time step for NGP, CIC and QS, 
respectively. Hence, we need a measure of accounting 
for this cost. Therefore, the gain of using a higher order 
weighting scheme for the simulations can be defined as 
follows: 
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g through timal p e willGoin the op ath, w  get gains as 
n in Table te that ns of g higher 

r weighting oing fr GP to r going 
om CIC to QS are roughly one order of magnitude, 

muc an the gains in the self heating times 

show  1. No the gai  usin
orde s, i.e. g om N CIC o
fr

h less th h . 
 
T e 1 –A comparison of gains in going to a higher 
order simulation algorithm indicating ratios of increase 
in self-heating times or reduced error in energy over 
increase in cost determined on a computer at the 
Lawrence Livermore Laboratory 

p

abl

t   CIC/NGP 

Gain 

QS/NGP 

Gain 

QS/CIC 

Gain 

0. 1 1 11.9 72.9 6.
0. 5 2 20.8 135.4 6.
0. 0 3 30.4 91.6 3.
 

6. I
  thermal 
plasm creased by 
sm oothing 

here 
ll the modes beyond are dropped as shown in Fig. 

Fig 9. Smoothing factor used in k-space truncation 
 
Fig. 10 shows the self-heating times plotted as electron 
plasma frequency 

 
ncrease in gain due to k-space smoothing 

The self heating times of one dimensional
a simulations can be considerably in

oothing the charge density in k-space. The sm
factor used was simple Fourier space truncation, w
a lastk
9. 
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Fig. 10 Self-heating times plotted as electron plasma 
requef ncy p h   vs. 

max
/

last
k k for NGP, CIC and 

an for cloud-in-cell, wh
 self heating times are one 

increa
space 

max

QS. 

ile 
order of 

 
7. Conclusion 
 The self heating times of one dimensional 
electrostatic plasma simulation were found to be the 
longest for / 1.5tv t x    for NGP and 

/ 0.5tv t x    for CIC and QS. Roughly speaking, 
the quadratic spline self heating times are one order of 

agnitude longer thm
cloud-in-cell
magnitude longer than the nearest-grid-point algorithm, 
considering both the gain in heating times and the 

sed computational cost. Smoothing by Fourier 
truncation considerably increases the self-heating 

times and this increase is roughly proportional to 
1( / )n

last
k k   where n is the order of the weighting 

e, i.e. n=0 for NGP, n=1 for CIC and n=2 for QS. 
ore, using a higher order algorithm is highly 
mended, especially when k-space truncation is 

schem
Theref
recom
used. 
 
 

increase in self heating
Gain 

time

increase i r sim imen compute ulation t
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