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Collective coordinate variable for soliton-potential system
in sine-Gordon model
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A collective coordinate variable for adding a space dependent potential to the sine-
Gordon model is presented. Interaction of solitons with a delta function potential
barrier and also a delta function potential well is investigated. A majority of the
interactive characters are derived analytically. We find that the behavior of a solitonic
solution is similar to a point particle which is moved under the influence of a com-
plicated effective potential. The effective potential is a function of the initial field
conditions and parameters of added potential. C© 2010 American Institute of Physics.
[doi:10.1063/1.3511337]

I. INTRODUCTION

Solitons are important models in most branches of science. They are stable against dispersive
effects and propagate in a manner similar to classical pointlike particles.

Topological solitons play an important role in the nonperturbative aspects of quantum field
theory. They are widely used as models of particles which are generated as nontrivial solutions of
nonlinear field theories. Skyrmions are solitons which are used as a model of hadrons. Solitons
also widely appear in models of condensed matter, such as Josephson junction, fluxon, spin chain
dynamics, etc. Describing active regions of DNA is an example of a soliton application.1–3

A sine-Gordon equation is a very famous soliton model with well-known topological solu-
tions. This model widely appears in nonlinear problems. Some of the above-mentioned models are
examples of sine-Gordon applications.

Recently, there has been an increasing interest in the scattering of solitons from defects or
impurities, which generally come from medium properties. The motivations come from both the
theoretical and the application aspects of physics. The effects of medium disorders and impurities
can be added to the equation of motion as perturbative terms.4, 5 These effects can also be gen-
erated by making some parameters of the equation of motion to a function of space or time.6, 7

There still exists another interesting method which is mainly suitable for working with topological
solitons.8, 9 In this method, one can add such effects to the Lagrangian of the system by introducing
a suitable nontrivial metric for the background spacetime without losing the topological boundary
conditions.

The main investigation of the interaction of defective solitons uses numerical analysis and
numerical simulations. Some analytical models presented are constructed using suitable collective
coordinate systems. Analytical models for the sine-Gordon and φ4 field theories are presented based
on the method of adding the defects through the background spacetime metric.10, 11 They predict
most of the “soliton–potential” behaviors with very good precision. This method can be used for
objects where the equation of motion results from a Lorentz invariant action, such as a sine-Gordon
model, φ4 theory, C P N model, Skyrme model, Faddeev–Hopf equation, chiral quark–soliton model,
Gross–Neveu model, nonlinear Klein–Gordon models, etc.
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In this paper, a simple collective coordinate system is presented. This system is constructed
based on the method of adding the defects by making some parameters of Lagrangian to be function
of space. This method can be used for other nonlinear field theories where the equations of motion
are not Lorentz invariant, also used for Lorentz invariant field theories.

A new collective coordinate system for solitons of the sine-Gordon field theory will be presented
in Sec. II. Results of this model are discussed and also they are compared with the results of Ref. 10
in Sec. III. Some conclusion and remarks will be presented in Sec. IV.

II. COLLECTIVE COORDINATE VARIABLE

A sine-Gordon model in (1 + 1) dimensions, μ = 0,1, is defined by

L = 1

2
∂μφ∂μφ − λ(x)(1 − cos φ), (1)

where λ(x) = λ0 + V (x). V (x) is a potential parameter and carries the effects of the external
potential. Potential V (x) is a localized function which is nonzero only in a certain region of space.

The equation of motion for the Lagrangian (1) is

∂μ∂μφ + λ(x) sin(φ) = 0. (2)

This equation does not have an analytical solution with a general function for V (x). If we take
V (x) = 0, we have the usual sine-Gordon equation with the following one soliton solution:

φ(x,X (t)) = 4 tan−1

(
exp

(√
λ0

x − X (t)√
1 − Ẋ2

))
, (3)

where X (t) = x0 − Ẋ t . x0 and Ẋ are the initial position of the soliton and its velocity. In the following
calculations λ0 has been set to λ0 = 1.

The derivation of the collective action for the motion of the vortex centers starts with the elegant
idea of Manton.12 A collective action can be constructed by substituting the collective vortex ansatz
for the field configuration with vortices at Xi (t), i = 1, . . . ,N , into the effective field theory action
and reduce the action to a function of the collective coordinates, L [Xi (t)] = ∫

L(ψ(x, t, Xi (t)) dx
(Ref. 13).

The center of the soliton can be considered a particle if we look at this as a collective coordinate
variable. The collective coordinate can be related to the potential by using the suitable function V (x)
in Eq. (2). As a result, the model is able to give us an analytic description for the evolution of the
soliton center during the soliton–potential interaction. By inserting the solution (3) in the Lagrangian
(1) with adiabatic approximation,4, 5 we have

L = 2(Ẋ2 − 1)sech2 (x − X (t)) − 2λ(x)sech2 (x − X (t)) , (4)

where X (t) remains as a collective coordinate if we integrate (4) over the variable x . If we take the
potential V (x) = εδ(x), the effective action becomes

L = 4Ẋ2 − 8 − 2εsech2(x − X ). (5)

The equation of motion for the variable X (t) is derived from (5)

8Ẍ − 4εsech2(X ) tanh(X ) = 0. (6)

The above equation shows that the peak of the soliton moves under the influence of a complicated
force which is a function of soliton position, soliton velocity, and characters of external potential
V (x). If ε > 0, we have a barrier and ε < 0 creates a potential well. Equation (6) has an exact
solution as follows:

Ẋ2 = 1

2
εsech2(X0) + Ẋ2

0 − 1

2
εsech2(X ), (7)

where X0 and Ẋ0 are the initial position of the soliton and its initial velocity, respectively.
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FIG. 1. Energy of a static soliton as a function of its distance from the potential V (x) = εδ(x) with ε = 0.5.

Hamiltonian density can be obtained from the Lagrangian (4) as follows:

H = 2(Ẋ2 + 1)sech2(x − X (t)) + 2λ(x)sech2(x − X (t)). (8)

Collective energy density can be calculated with the integration of (4) over the variable x. Energy of
the soliton in the presence of the potential V (x) = εδ(x) becomes

E = 4Ẋ2 + 8 + 2εsech2 X. (9)

It is the energy of a particle with the mass of m = 8 and velocity Ẋ which is moved under the
influence of external effective potential. Figure 1 presents the energy of a static soliton as a function
of its position under the influence of the potential V (x) = εδ(x) with ε = 0.5. Because of the
extended nature of the soliton, the effective potential is not an exact delta function.

By substituting Ẋ from (7) into (9), we show that the energy is a function of the initial conditions
of the soliton X0 and Ẋ0 only. Therefore, the energy of the system is conserved.

Some features of soliton–potential dynamics which can be investigated analytically using
Eqs. (7) and (9), which are discussed in Sec. III.

III. SOLITON–POTENTIAL DYNAMICS

A soliton–barrier system is modeled with ε > 0 in Eq. (7) or Eq. (9). Consider a soliton which
is placed far away from the potential (namely at infinity), with initial velocity Ẋ0. It moves toward
the barrier and interacts with it. There exists two different kinds of trajectories for the soliton after
the interaction with the barrier, depending on its initial velocity and which are separated by a critical
velocity uc. In low velocities, the soliton reflects back and reaches its initial place with final velocity
u f ≈ −Ẋ0. A soliton with an initial velocity Ẋ0 > uc has enough energy for climbing the barrier
and passing over the potential. At the velocities Ẋ0 ≈ uc the soliton interacts with the potential
slowly and spends more time near the barrier, but this situation is not a bound state. The presented
model predicts all of the above features.

Energy of a soliton in the origin is calculated from (9) as E(X = 0) = 4Ẋ2 + 8 + 2ε. The
minimum value of the energy for a soliton in this situation is Emin(X = 0) = 8 + 2ε. On the
other hand, a soliton which comes from infinity with an initial velocity Ẋ0 has the energy of
E(X0 = ∞) = 4Ẋ2

0 + 8. It is clear that it can pass though the barrier if E(X0 = ∞) ≥ Emin(X = 0).
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FIG. 2. Critical velocity as a function of initial position predicted in Ref. 10 (dashed line) and our presented model in
Eq. (11) (solid line).

Therefore, we have

uc(X0 = ∞) =
√

ε

2
. (10)

Now consider a soliton which is placed at the initial position X0 < 0 (which is not necessarily
infinity) with initial velocity Ẋ0. Equation (7) shows that the soliton reaches −∞(+∞) with final

speed Ẋ (∞) =
√

Ẋ2
0 + 1

2εsech2 (X0) if its initial velocity is less (more) than the critical velocity

uc(X0). The critical velocity in this situation is not
√

ε
2 . This soliton has the critical initial velocity

if its initial energy becomes equal to the energy of the static soliton at the top of the barrier X = 0.
In this situation the critical velocity is

uc(X0) =
√

ε

2
(1 − sech2(X0)). (11)

All presented models predict same critical velocity for a soliton at infinity. But critical velocity
of a soliton at the initial position X0 is model dependent. For example, the following expression has
been calculated in Ref. 10:

uc(X0) =
√

ε

2

cosh2 X0 − 1

cosh2 X0 + 3ε
4

. (12)

The critical velocity of Ref. 10 (Eq. (12)) is compared with (11) in Fig. 2 with ε = 0.5. The results
of both models are the same at X0 = ∞ and X0 = 0. But the transient behavior of the two models
between these limits is different. It is clear that we cannot fit one of the models on the other by
choosing an effective potential.

There exists a return point if the soliton initial velocity is less than the critical velocity. This
point can be found by comparing the soliton energy at its initial position and the point at which its
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FIG. 3. Escape velocity as a function of initial position predicted in Ref. 10, Eq. (15) (dashed line) and our calculation in
Eq. (14) (solid line).

velocity becomes zero. Therefore, we have

1

cosh2 Xstop
= 2

ε
Ẋ2

0 + 1

cosh2 X0
. (13)

Equation (13) clearly shows a linear relation between 1
cosh2 Xstop

and 1
cosh2 X0

. There is another linear

relation between 1
cosh2 Xstop

and 1
ε
. Direct simulation and an analytic model of Ref. 10 also confirm

these relations.
A potential well can be constructed with ε < 0. Consider a particle moving toward a frictionless

potential well from infinity. It falls in the well with an increasing velocity and reaches the bottom
of the well with its maximum speed. After that, it will climb the well with decreasing velocity and
finally pass through the well. Its final velocity after the interaction is equal to its initial speed. A
soliton–well system is constructed by changing ε into −ε in the above equations. But the dynamics
of a soliton–well system is very different from what we have seen in a soliton–barrier interaction.
There is no critical velocity for a soliton–well system, but we can define an escape velocity. A soliton
at initial position X0 reaches infinity with a zero final velocity if its initial velocity is

Ẋescape =
√

ε

2
sech2 (X0) . (14)

The predicted value for this Ref. 10 is

Ẋescape =
√

ε

2

1

cosh2 X0 − 3ε
4

. (15)

Figure 3 presents Ẋescape as a function of the initial position of a soliton using (14) and (15). The
predicted function Ẋescape at the center of the potential in the two models is different. But one can
show that we can fit this value by defining an effective potential parameter εeffective ; however, the
transient behavior between the origin and infinity does not fit. Figure 3 also shows that the predicted
escape velocity for infinity in the two models is zero.

Consider a potential well with the depth of ε and a soliton at the initial position X0 which moves
toward the well with initial velocity Ẋ0 smaller than the function Ẋescape. The soliton interacts with
the potential well and reaches a maximum distance Xmax from the center of the potential with a zero
velocity and then comes back toward the well for another interaction. The soliton oscillates around
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FIG. 4. sech2 Xmax as a function of initial position predicted in Ref. 10, Eq. (17) (dashed line) and our calculation in
Eq. (16) (solid line).

the well with amplitude Xmax ,

Xmax = sech−1

√
sech2 X0 − 2

ε
Ẋ2

0. (16)

Maximum distance has been calculated with another model in Ref. 10 as follows:

Xmax = sech−1

√
sech2 X0 − 2

ε
Ẋ2

0

(
1 − 3ε

4
sech2 X0

)
. (17)

Figure 4 presents sech2 Xmax as a function of X0 using (16) and (17) with ε = 0.5 and Ẋ0 = 0.5.
They are very similar to each other and it is possible to fit one of them on the other in the origin by
defining an effective potential parameter εeffective .

Trajectory of a soliton during the interaction with the potential X (t) follows from (7) as

t =
∫ X (t)

X (t=0)

dx√
Ẋ2

0 + ε
2sech

2 X0 − ε
2sech

2 X
(18)

for soliton–barrier (ε > 0) and soliton–well (ε < 0) systems. The metric model prediction following
complicated equation10

t =
∫ X (t)

X (t=0)

dx√(
Ẋ2

0 + 2
3

) cosh2 X( 3ε
4 + cosh2 X0)

cosh2 X0( 3ε
4 + cosh2 X) − 2

3

. (19)

Figure 5 presents a soliton trajectory with respect to time for a soliton with initial velocity Ẋ0 = 0.1
and initial position X = −3 in a potential well of ε = −0.3, plotted using (18) and (19). Trajectory of
the soliton also simulated in numerical integrating of complete Eq. (2). Figure 5 clearly shows a very
good agreement between the presented model, the metric model of Ref. 10, and direct simulation
of equation of motion in low velocities. One can find that proposed model is a little better than the
metric model of Ref. 10.

If the soliton initial velocity is lower than the escape velocity the soliton oscillates around the
well. The period of oscillation can be calculated numerically using Eq. (18). Some simulations have
been done using (18) and also (19) and the results have been compared. The results are different
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FIG. 5. Soliton trajectory as a function of time for a soliton with initial velocity Ẋ0 = 0.1 and X0 = −3 during the
interaction with potential well ε = −0.3 plotted with presented model Eq. (18) (solid line), metric model of Ref. 10
Eq. (19) (dashed line) and direct simulation of Eq. (2) (dash-dotted line).

as shown in Fig. 6. One can adjust period of oscillation by using an effective potential parameter
εeffective . But general behavior of oscillation in two models is not adjustable at all. It is clear because
the presented model comes from a different method which added the potential to the system. The
comparison of the two models shows that the results are acceptable with a very good approximation.

FIG. 6. Soliton trajectory as a function of time for a soliton with initial velocity Ẋ0 = 0.02 and X0 = 0 during the interaction
with potential well ε = −0.3 simulated with presented model (solid line) and metric model of Ref. 10 (dashed line).
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TABLE I. Comparison between results of presented collective coordinate and model of
Ref. 10.

Model Presented model Model of Ref. 10
Usage Actions in the form of L = T − V Only Lorentz invariant actions
Soliton mass Constant (M = 2) Function of X (M = 2 + 3ε

2 cosh2
X

)

Kinetic energy Smaller kinetic energy Greater kinetic energy
Escape velocity Smaller escape velocity Greater escape velocity

Differences between results of proposed collective coordinate approach with the results of
Ref. 10 have been summarized in Table I. Note that the difference between predicted critical
velocity (and also escape velocity) in two models is small (order of ε2).

IV. CONCLUSION AND REMARKS

An analytical model for scattering of sine-Gordon solitons from delta function potential barriers
and also potential wells has been presented. Several features of soliton–potential characters were
calculated using this model. A critical velocity for the soliton during the interaction with a potential
barrier as a function of its initial conditions and the potential characters has been found. The model
predicts specific relations between some functions of initial conditions and other functions of the
final state of the soliton after the interaction. An escape velocity has been derived for the soliton–well
system. The oscillation period of a soliton in a potential well has also been investigated using this
model.

Calculated characters have been compared with the results of another analytical model. All
of the simulations for soliton–barrier and soliton–well systems show the validity of the presented
analytic model. Therefore, we can conclude that the presented collective coordinate method explains
many of the features of the sin-Gordon soliton behavior during the interaction with a potential. But
this model (similar to analytical model10) is not able to explain the fine structure of the islands
of reflecting in a soliton–well system. This phenomenon is a very interesting features of soliton–
potential systems. We expect to find an acceptable explanation for this behavior using a better model
with a suitable collective coordinate method. On the other hand, using this method for investigation
of other nonlinear models in potentials is an interesting subject.
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