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A Generalized HeŒron-Phillips Model for
Multi-Machine Power Systems with Voltage and

Frequency Dependent Loads
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MAJID OLOOMI BUYGI

Department of Electrical Engineering
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Mashhad, Iran

In this paper the multi-machine HeŒron-Phillips model is generalized to han-
dle multi-machine power systems with frequency and vo ltage-dependent loads.
A systematic method for extracting state equations is proposed which pre-
serves struc ture and is able to account for in�nite bus directly. T he generalized
model’s block diagram is similar to that of HeŒron-Phillips and is suitable for
generalizing dynamic studies of networks with impedance loads to networks
with frequency- and voltage -dependent loads. Two applications of this model
are presented: (1) studying eŒects of load model parameters on dynamic sta-
bility of a �ve-bus network, and ( 2) designing a PSS for a one-machine in�nite
bus with frequency- and vo ltage-dependent local load and comparing it with a
PSS designed based on impedance load.

1 Introduction

In 1952, HeŒron and Phillips [1] presented a simpli�ed linear model for a syn-
chronous machine connected to an in�nite bus with a local impedance load. There-
after, this model has been used extensively in power system dynamic analysis. The
small perturbation stability characteristic of a single machine supplying an in�-
nite bus was explored by means of frequency response analysis [2] by de Mello
and Concordia. De Mello and Laskowski used this model to �nd the system con-
�gurations and loading conditions that produce negative damping [3]. This model
was later generalized for multi-machine power systems [4] and was widely used to
study means of increasing damping and coordinating PSS’s via the supplementary
excitation control [4–10].

In all of the above investigations, loads were considered as impedances. In
reality, loads are voltage- and frequency-dependent. Many mathematical represen-
tations, such as constant impedance, constant current, constant power, polynomial,
exponential, EPRI LOADSYN, and EPRI ETMSP, were proposed for load model-
ing [11–14]. Brucoli et al. [15] proposed a new procedure for analyzing the eŒects of
static load modeling on the voltage stability limits. They used a static frequency–
dependent load for this purpose. Kao et al. [16] proposed that using a composite
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390 Shanechi and Buygi

load model (static and dynamic) provides a more accurate representation than other
models. A bibliography on load models for power �ow and dynamic performance
was presented in [17]. Two kinds of dynamic load model, including a single-motor
model and a two-motor model, was developed for the stability study of Taiwan
power system by Kao et al. [18]. Multiple load types were recommended for tran-
sient stability, long-term dynamics, and small perturbation stability in [19]. The
interaction between the load and the power system was explored in terms of load
and system transfer function by Hiskens and Milanovic [20]. Khodabakhchian and
Vuong [21] developed an EMTP model for a mixed residential-commercial load,
which is valid for large voltage variations; they established guidelines for modeling
this type of load in dynamic studies such as �rst swing, transient, and voltage stabil-
ity. A simple model for air conditioner load for power system studies was developed
by Tomiyama et al. [22]. A simpli�ed linear state space model for a multi-machine
power system with frequency- and voltage-dependent loads has been developed by
Bhatti and Hill [23], wherein resistance and parallel admittance of transmission lines
have been ignored. Their proposed block diagram is not similar to HeŒron-Phillips’s
block diagram. They have assumed that each bus has a frequency-dependent load,
hence all bus voltage angles are considered as state variables. In practice, many
buses do not have loads or their loads are not frequency dependent, so their voltage
angles are not state variables.

In this paper a new systematic approach for modeling power system networks
with frequency and voltage-dependent loads is presented. This approach assumes
that each generator terminal bus and also each purely load bus may or may not
have frequency- and voltage-dependent loads. Power balance is used at each bus for
system modeling.

In modeling power systems with in�nite bus, usually the in�nite bus is consid-
ered as a large generator. This increases the dimensions of the matrices used in the
calculations of the linear model. A direct method to account for the in�nite bus is
developed and used in this paper which overcomes this shortcoming.

Basic assumptions for system modeling are explained in Section 2. State equa-
tions are derived in Subsections 2.1 and 2.2. In Subsection 2.3, generalized HeŒron-
Phillips model coe� cients and its block diagram are derived. A direct method to
account for in�nite bus is proposed in Subsection 2.4. The eŒects of frequency and
voltage dependence of the load on the dynamic behaviour of a �ve-bus example
system is explored in Subsection 3.1. In Subsection 3.2 a PSS is designed for one
machine in�nite bus system with frequency- and voltage-dependent local load and
is compared with the PSS designed based on impedance load.

2 System Modeling

In an n bus power system, it is assumed that the power system consists of ng
generator terminal buses (GTB) and n1 purely load buses (PLB). Each GTB or
PLB may have frequency-dependent loads (FL). Assuming:

ngf = number of GTBs with FL (bus type no. 1)
ngn = number of GTBs without FL (bus type no. 2)
nlf = number of PLBs with FL (bus type no. 3)
nln = number of PLBs without FL (bus type no. 4)
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A Generalized HeŒron-Phillips Model 391

Bus type nos. 1, 2, 3, and 4 are numbered in sequence. Each load is modeled
with a general function of voltage and frequency:

Pdi = f p
i (!i , vi ),

Q di = f q
i (!i , vi ),

(1)

where Pdi , Q di ,!i , and vi are active load, reactive load, frequency, and voltage of
the ith bus in p.u. Figure 1 shows the phasor diagram of the ith GTB and jth PLB
in transient state with a common synchronously rotating reference frame. From this
�gure, it is clear that

Çµk =!o!k , (2)

where µk is the voltage angle of kth bus in radian and !o is the base angular
frequency in rad/ sec. “Simpli�ed dynamic model” is used for each generator with
four state variables D ±, D !, D E ¢ , D E f d [1], and each frequency-dependent load
is modeled with a state variable D µ [23]. Power �ow equations (PFE) are used for
extracting state equations of new state variables ( D µ). PFEs for the ith bus are [24]

P i = Pg i P di =
nX

k =1

vivk yik cos(µk µi + °ik ),

Q i = Q g i Q di =
nX

k =1

vivk yik sin(µk µi + °ik ),

i = 1, . . . , n, (3)

where Pg i and Q g i are active and reactive power generation, and P i and Q i are
the active and reactive power injections at the ith bus, respectively. The dynamic
equations ( ÇX = A X + B U , Y = C X + D U ) for power systems with voltage- and
frequency-dependent loads are derived in Section 2. In Subections 2.1 and 2.2, the
new state equations are derived by linearizing (3) and omitting nonstate variables.
Matrices A and B can be derived by adding the new state equations to simpli�ed
dynamic model. In Subsection 2.3, the outputs D P g i , D vi , and D E i are written
versus state variables, and matrices C and D are derived.

Figure 1. Phasor diagram of ith and jth buses.
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392 Shanechi and Buygi

2.1 PFEs for PLBs

At PLBs, power generation is zero (Pg i = 0, Q g i = 0), therefore, for the ith PLB,
PFEs are

nX

k =1

vivk yik cos(µk µi + °ik ) = f p
i ( Çµi , vi )

nX

k =1

vivk yik sin(µk µi + °ik ) = f q
i ( Çµi , vi ), i = ng + 1, . . . , n . (4)

Linearizing equation (4) yields

"
M 1l .g N 1l .g N 1l . l

m 2l .g N 2l .g N 2l . l

# 2
4

D V g

D µg

D µl

3
5 =

"
M 1l . l T 1l . l

M 2l . l T 2l . l

# "
D V l

D Çµl

#
, (5)

where
D V g = [D v1, × × × , D vn g ]T , D µl = [D µn g+ 1, × × × , D µn ]T ,

D µg = [D µ1, × × × , D µn g ]T , D Çµl = [D Çµn g+ 1, × × × D Çµn ]T ,

D V l = [D vn g+ 1, × × × , D vn ]T ,

and the elements of the submatrices can be easily computed by linearizing (4)
[25]. In this paper, letters M , N , R , S , and T are used to represent the matrices
multiplying the vectors D V , D µ, D ±, D E ¢ , and D Çµ, respectively. Active and reactive
PFEs are distinguished by numbers 1 and 2, respectively. Each submatrix has two
subscripts: the left subscript denotes the bus type of the PFE and the right subscript
denotes the bus type of its multiplier vector. The subscript of each vector denotes
the bus type of its elements. Subscripts g, l, gf, gn, lf, ln denote GTBs, PLBs, bus
type nos. 1, 2, 3, and 4, respectively.

If all PLBs have active or reactive FLs (n1 = nlf , nln = 0), the variables D vi and
D Çµj will be independent for i = ng + 1, . . . , n, j = ng + 1, . . . , n, then the right-hand
side matrix of (5) is invertible, and D V l f , D Çµl f can be calculated in terms of other
variables. In case some PLBs do not have active and reactive FL (nln /= 0), column
k of T 1l .l and T 2l . l are zero for k = ng + nlf + 1, . . . , n, and the right-hand side
matrix of (5) is not invertible. In this case, for calculating D V l f and D Çµl f , D V ln

and D µln must be calculated from PFEs of PLBs without FL in terms of other
variables and substituted into PFEs of PLBs with FL. Partitioning (5) into PFEs
of PLBs with FL and PFEs of PLBs without FL yields

"
M 1l f .g N 1l f .g N 1l f . l f M 1l f . l n N 1l f . ln

M 2l f .g N 2l f .g N 2l f . l f M 2l f . l n N 2l f . ln

#

2
66664

D V g

D µg

D µl f

D V ln

D µl n

3
77775

=

"
M 1l f . l f T 1l f . l f

M 2l f . l f T 2l f . l f

# "
D V l f

D Çµl f

#
, (6)

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
F
e
r
d
o
w
s
i
 
U
n
i
v
e
r
s
i
t
y
 
o
f
 
M
a
s
h
h
a
d
]
 
A
t
:
 
0
6
:
2
1
 
2
9
 
N
o
v
e
m
b
e
r
 
2
0
1
0



A Generalized HeŒron-Phillips Model 393

"
M 1l n .g N 1l n .g M 1l n . l f N 1l n . l f

M 2l n .g N 2ln .g M 2l n . l f N 2l n . l f

#
2
664

D V g

D µg

D V l f

D µl f

3
775

=
"

M 1l n .l n N 1ln . ln

M 2l n .l n N 2ln . ln

# "
D V l n

D µln

#
. (7)

Computing D V ln and D µln from (7), substituting them into (6) and computing
D V l f and D Çµl f , and �nally computing D V ln and D µln in terms of D V g , D µg , D µl f

by substituting D V l f from the last equation yields

"
D V l f

D Çµl f

#
=

"
M ¢ 1l f .g N ¢ 1l f .g N ¢ 1l f .l f

M ¢ 2l f .g N ¢ 2l f .g N ¢ 2l f .l f

#2
4

D V g

D µg

D µl f

3
5 , (8)

"
D V l n

D µl n

#
=

"
M ¢ 1l n .g N ¢ 1ln .g N ¢ 1l n . l f

M ¢ 2l n .g N ¢ 2ln .g N ¢ 2l n . l f

#2
4

D V g

D µg

D µl f

3
5 , (9)

where the above submatrices can be easily computed by linear algebra.

2.2 PFE for GTBs

At GTBs, power generation is given by

P g i =
viE ¢i
x ¢di

sin(±i µi ) +
v2

i

2

³
1

x qi

1
x ¢di

´
sin 2(±i µi ),

Q g i =
viE ¢i cos(±i µi) v 2

i

x ¢di

v 2
i

³
1

x qi

1
x ¢di

´
sin2(±i µi );

(10)

substituting (10) and (1) in (3), linearizing, and regrouping yields

"
R 1g .g S 1g .g M 1g . l N 1g .g N 1g . l

R 2g .g S 2g .g M 2g . l N 2g .g N 2g . l

#

2
66664

D E ¢g
D ±g

D V l

D µg

D µl

3
77775

=

"
M 1g .g T 1g .g

M 2g .g T 2g .g

# "
D V g

D Çµg

#
,

(11)
where

D E ¢g = [D E ¢1, . . . , D E ¢n g ]T , D ±g = [D ±1, . . . , D ±n g ]T ,

D Çµg = [D Çµ1, . . . , D Çµn g ]T ,

and the elements of the submatrices can be easily computed by linearizing (10) [25].
Substituting for D V l f from (8) and for D V ln and D µln from (9) into (11) yields

"
R 1g .g S 1g .g N ¢ 1g .g N ¢ 1g . l f

R 2g .g S 2g .g N ¢ 2g .g N ¢ 2g . l f

#
2
664

D E ¢g
D ±g

D µg

D µl f

3
775 =

"
M ¢ 1g .g T 1g .g

M ¢ 2g .g T 2g .g

# "
D V g

D Çµg

#
, (12)
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394 Shanechi and Buygi

where the above submetrics can be easily computed by linear algebra. If all GTBs
have active or reactive frequency-dependent loads (ng = ngf , ngn = 0), the right-
hand side matrix of (12) is invertible, and D V g f , D Çµg f can be calculated in terms
of other variables. In case some GTBs do not have active and reactive frequency-
dependent loads (nln /= 0), D V g n and D µgn are calculated from PFEs of GTBs
without FL in terms of other variables and substituted into PFEs of GTBs with
FL. Partitioning (12) yields

"
R 1g f .g S 1g f .g N ¢ 1g f .g f M ¢ 1g f .gn N ¢ 1g f .gn N ¢ 1g f . l f

R 2g f .g S 2g f .g N ¢ 2g f .g f M ¢ 2g f .gn N ¢ 2g f .gn N ¢ 2g f . l f

#

2
6666664

D E ¢g
D ±g

D µg f

D V gn

D µg n

D µl f

3
7777775

=
"

M ¢ 1g f .g f T 1g f .g f

M ¢ 2g f .g f T 2g f .g f

# "
D V g f

D Çµg f

#
, (13)

"
R 1gn .g S 1g n .g M ¢ 1gn .g f N ¢ 1gn .g f N ¢ 1gn . l f

R 2gn .g S 2g n .g M ¢ 2gn .g f N ¢ 2gn .g f N ¢ 2gn . l f

#

2
66664

D E ¢g
D ±g

D V g f

D µg f

D µl f

3
77775

=
"

M ¢ 1gn .gn N ¢ 1gn .gn

M ¢ 2gn .gn N ¢ 2gn .gn

# "
D V gn

D µg n

#
. (14)

Computing D V gn and D µg n , D V g f and D Çµg f from (13) and (14) in terms of D E ¢g ,
D ±g , D µg f , D µl f yields

"
D V g f

D Çµg f

#
=

"
R ¢ ¢ 1g f .g S ¢ ¢ 1g f .g N ¢ ¢ 1g f .g f N ¢ ¢ 1g f . l f

R ¢ ¢ 2g f .g S ¢ ¢ 2g f .g N ¢ ¢ 2g f .g f N ¢ ¢ 2g f . l f

#
2
664

D E ¢g
D ±g

D µg f

D µl f

3
775 , (15)

"
D V gn

D µgn

#
=

"
R ¢ ¢ 1gn .g S ¢ ¢ 1gn .g N ¢ ¢ 1g n .g f N ¢ ¢ 1gn . l f

R ¢ ¢ 2gn .g S ¢ ¢ 2gn .g N ¢ ¢ 2g n .g f N ¢ ¢ 2gn . l f

#
2
664

D E ¢g
D ±g

D µg f

D µl f

3
775 , (16)

where the above submetrics can be easily computed by linear algebra. Substituting
for D V g f , D V gn , D µgn from (15), and (16) into (8), yields

D Çµl f = [R ¢ ¢ 2l f .g S ¢ ¢ 2l f .g N ¢ ¢ 2l f .g f N ¢ ¢ 2l f . l f ]

2
664

D E ¢g
D ±g

D µg f

D µl f

3
775 , (17)

where the above submetrics can be easily computed by linear algebra. The new
state equations are given in (15) and (17).
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A Generalized HeŒron-Phillips Model 395

2.3 Coe� cients Calculation

In power system with FLs, state variables are [D ±g , D !g , D E ¢g , D E f d , D µg f , D µl f ].
Writing D Pg i , D vi, and D E i as a linear combination of these state variables:

D P g i =
n gX

m =1

(k1)im .D ±m +
n gX

m =1

(k 2)im .D E ¢m +
n g fX

m =1

(k ¢ 1)im .D µm

+
n lfX

m =1

(k ¢ ¢ 1)im .D µm + n g , (18)

D E i =
n gX

m =1

(k4)im .D ±m +
n gX

m =1

1
(k3)im

.D E ¢m +
n g fX

m =1

(k ¢ 4)im .D µm

+
n lfX

m =1

(k ¢ ¢ 4)im .D µm + n g , (19)

D vi =
n gX

m =1

(k5)im .D ±m +
n gX

m =1

(k6)im .D E ¢m +
n g fX

m =1

(k ¢ 5)im .D µm

+
n lfX

m =1

(k ¢ ¢ 5)im .D µm + n g , (20)

From (15), (17), (18), (19), (20), and simpli�ed dynamic model, the block diagram
of Figure 2 will be derived. System matrices A , B , C , and D can be easily derived
from Figure 2. What remains is calculating coe� cients K . Linearizing (10) yields

D P g = [R p g .g S p g .g M p g .g N p g .g ]

2
664

D E ¢g
D ±g

D V g

D µg

3
775 . (21)

The elements of the submatrices are easily computable. Substituting for D V g and
D µgn from (15) and (16) in (21) yields

D P g = [K 2 K 1 K ¢ 1 K ¢ ¢ 1]

2
664

D E ¢ ¢g
D ±g

D µg f

D µl f

3
775 , (22)

where
K 2 = R p g .g + M p g .g .R ¢ ¢ 1g .g + N p g .gn .R ¢ ¢ 2gn .g ,

K 1 = S p g .g + M p g .g .S ¢ ¢ 1g .g + N p g .gn .S ¢ ¢ 2gn .g ,

K ¢ 1 = N p g .g f + M pg .g .N ¢ ¢ 1g .g f + N p g .gn .N ¢ ¢ 2gn .g f ,

K ¢ ¢ 1 = M p g .g .N ¢ ¢ 1g .l f + N p g .gn .N ¢ ¢ 2gn . l f .

(23)

From the phasor diagram of Figure 1:

E i =
x di

x ¢di

E ¢i +
³

1
x di

x ¢di

´
vi cos(±i µi ) . (24)
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396 Shanechi and Buygi

Figure 2. Block diagram of multi-machine power systems with frequency depen-
dent loads.

Linearizing (24) and substituting for D vi from (15) and (16), and D µi (for i > ngf )
from (16) yields, for i £ ngf :

(k3)ij = L 3i .(r ¢ ¢ 1g f .g )ij , i /= j , (k3)ii = [L 3i .(r ¢ ¢ 1g f .g )ii + L 1i] 1,

(k4)ij = L 3i .(s ¢ ¢ 1g f .g )ij , i /= j , (k4)ii = L 3i .(s ¢ ¢ 1g f .g )ii + L 2i],

(k ¢ 4)ij = L 3i .(n ¢ ¢ 1g f .g f )ij , i /= j , (k ¢ 4)ii = L 3i .(n ¢ ¢ 1g f .g f )ii L 2i ,

(k ¢ ¢ 4)ij = L 3i .(n ¢ ¢ 1g f . l f )ij n g ;

(25)

and for i > ngf :

(k3)ij = [L 3i .(r ¢ ¢ 1g n .g )i n g f j L 2i .(r ¢ ¢ 2g n .g )i n g f j ] 1, i /= j ,

(k3)ii = [L 3i .(r ¢ ¢ 1g n .g )i n g f i L 2i .(r ¢ ¢ 2g n .g )i n g f i + L 1i] 1,

(k4)ij = L 3i .(s ¢ ¢ 1g n .g )i n g f j L 2i .(s ¢ ¢ 2g n .g )i n g f j , i /= j ,

(k4)ii = L 3i .(s ¢ ¢ 1g n .g )i n g f i L 2i .(s ¢ ¢ 2g n .g )i n g f i + L 2i ,

(k ¢ 4)ij = L 3i .(n ¢ ¢ 1g n .g f )i n g f j L 2i .(n ¢ ¢ 2g n .g f )i n g f j ,

(k ¢ ¢ 4)ij = L 3i .(n ¢ ¢ 1g n . l f )i n g f j n g
L 2i .(n ¢ ¢ 2g n . l f )i n g f j n g

,

(26)

where

L 1i =

³
x di

x ¢di

´
, L 2i =

³
x di

x ¢di

1

´
v o

i sin(±o
i µo

i ), L 3i =

³
1

x di

x ¢di

´
cos(±o

i µo
i ) .

Combining (15) and (16) yields

D V g = [R ¢ ¢ 1g .g S ¢ ¢ 1g .g N ¢ ¢ 1g .g f N ¢ ¢ 1g .l f ]

2
664

D E ¢g
D ±g

D µg f

D µl f

3
775 .
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Then

K 5 = S ¢ ¢ 1g .g , K 6 = R ¢ ¢ 1g .g , K ¢ 5 = N ¢ ¢ 1g ,g f , K ¢ ¢ 5 = N ¢ ¢ 1g . l f . (27)

2.4 Accounting For In�nite Bus

When bus no. k is an in�nite bus, the variables D E ¢k , D vk , D ±k , D µk , D Çµk and
their derivations are zero; therefore, row k of vectors D E ¢g , D ±g , D V g , D µg , D Çµg ,
column k of submatrices M il .g , N il .g , and row and column k of submatrices R ig .g ,
S ig .g , M ig .g , N ig .g , T ig .g for i = 1, 2 in (5) and (11) are omitted.

3 Applications

The proposed model is suitable for generalizing dynamic studies of networks with
impedance loads to networks with frequency- and voltage-dependent loads. It can
be used for designing PSS, coordinating PSSs, determining optimal place for PSSs,
and determining the eŒects of loads on dynamic stability, in a power system with
frequency- and voltage-dependent loads.

3.1 EŒects of Load M odel Parameters on Dynamic Stability

The �ve-bus study system is shown in Figure 3, and its parameters and operating
point are given in Appendix A. The load at bus No. 4 will have one of the following
models:

1. EPRI LOADSYN static load model [12]:

pd4 = f p (v4,!4) = k pvk pv
4 [1 + kp!(! 4 1)],

qd4 = f q (v4,!4) = kq vk qv
4 [1 + kq!(!4 1)].

(28)

2. Exponential load model [11]:

pd4 = f p (v4,!4) = kp vk pv
4 !

k p!

4 ,

qd4 = f q(v4,!4) = kq vk qv
4 !

k q !

4 .
(29)

When the load parameters change, the magnitude of active and reactive loads will
change. The magnitudes of loads, as well as their power factor, will, in turn, aŒect
the location of eigenvalues. To show only the eŒects of load model parameters on
the locations of critical eigenvalues, magnitude and power factor of loads are kept
constant by adjusting the coe� cients kp and kq, as the parameters kpv , kp!, kqv, or

Figure 3. Five-bus study system.
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Table 1
Characteristics of loads of bus no. 4 for diŒerent cases

Case Load model kv k! ! Fig.

1 L. SYN 2 Variable 0.9 4
2 Exp. 2 Variable 0.9 5
3 L. SYN and Exp. Variable 1 1 6

kq! change. The locus of dominant eigenvalues were drawn for the cases of Table 1
in Figures 4–6 (in all cases, kpv = kqv = kv , kp! = kq! = k!).

All elements of all submatrices in (5) and (11), except elements of T 1l . l , T 2l . l ,
M 1l . l , and M 2l . l remain constant as k! or kv change. Therefore, locations of eigen-
values depend on these elements. These matrices are 1 by 1 in this example. For
LOADSYN model:

t1l l =
pd4

!b

k!

1 + k!(!4 1)
, t2l l =

qd4

!b

k!

1 + k!(!4 1)
,

m1l l = C 1 + pd4
kv

v4
, C 1 = ct e, m1l l = C 2 + pd4

kv

v4
, C 2 = ct e;

(30)

and for exponential model:

t1l l =
pd4

!b

k!

!4
, t2l l =

qd4

!b

k!

!4
,

m1l l = C 1 + pd4
kv

v4
, C1 = ct e, m2l l = C 2 + qd4

kv

v4
, C 2 = ct e.

(31)

Equations (30) and (31) and Figures 4 and 5 show that in cases 1 and 2,
m1l l and m2l l remain constant, t1l l and t2l l decrease, and critical eigenvalues move
toward the left of imaginary axis as k! increases; hence, the location of eigenvalues
depend only on the values of t1l l and t2l l .

Equations (30) and (31) also show that the rate of decrease of t1l l and t2l l , as
k! increases, will be increased (decreased) in lower (higher) frequencies. Hence, the

Figure 4. Root locus for case 1 k! changes from 0 to 10.2.
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A Generalized HeŒron-Phillips Model 399

Figure 5. Root locus for case 2 k! changes from 0 to 500.

speed of movement of eigenvalues will be increased (decreased) in lower (higher)
frequencies. Frequency dependence of LOADSYN model is more than exponential
model, therefore the speed of eigenvalue movement of LOADSYN model is more
than exponential model for ! < 1 (as shown in Figures 4 and 5) and less than
exponential model for ! > 1.

Figures 4 and 5 show that the damping of critical eigenvalues will be increased
if k! increases a small value, although it will be deceased if k! increases greatly.
They also show that one eigenvalue moves toward the right of imaginary axis and
may make the system unstable if k! increases greatly.

When k! equals zero, load is not frequency dependent, and there are only 12
eigenvalues. If k! = + 0(k! = 0), an eigenvalue will be added at minus in�nity
(plus in�nity) and move toward the imaginary axis as k! increases (decreases).
Equations (30) and (31) and Figure 6 show that in case 3, t1l l and t2l l remain
constant, m1l l and m2l l increase, and critical eigenvalues move toward the left of
imaginary axis as kv increases, therefore the locations of critical eigenvalues depend
only on the values of m1l l and m2l l .

The in�nite bus was modeled using two methods, directly and through a large
generator; the cpu time that is needed for calculating K coe� cients in the �rst
method is 1.5 times less than the second method in this example. The de�ned K
coe� cients are given for a speci�ed operating point in appendix B.

Figure 6. Root locus for case 3 kv change from 100 to 100.
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400 Shanechi and Buygi

3.2 Designing PSS

For a one-machine in�nite bus with frequency- and voltage-dependent local load,
parameters and operating point are given in Appendix C. If the load is considered
as an impedance load, then

K1 K2 K3 K4 K5 K6

1.6494 2.0267 0.3227 1.3051 0.0105 0.6636

If the desired damping ratio is » = 0.3, designing PSS based on complex fre-
quency yields (Gpss(s) = Kc(1 + T1s)=(1 + T 2s)):

Mechanical Phase lag of
mode electrical loop T2 T1 Kc

0 .1730 + 9 .8872i 38.5899 0.1000 0.7979 2.5042

Now, for a LOADSYN model for the local load with kpv = 0.1, kp! = 2.6, kqv =
0 .6 and kq! = 1.6, which are typical parameters of an industrial load [14], kp and
kq are chosen such that active and reactive loads are equal to active and reactive
loads at operating point. Then

K1 K2 K3 K4 K5 K6 K ¢ 1 K ¢ 4 K ¢ 5 N¢ ¢ 2 S¢ ¢ 2 R ¢ ¢ 2

4.19 2.829 0.264 3.627 0.034 0.658 4.226 3.864 0.074 1011 610 358

Designing PSS for power systems with voltage- and frequency-dependent load
is completely similar to designing PSS for power systems with impedance load

Figure 7. Electrical loop for frequency dependent load machine.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
F
e
r
d
o
w
s
i
 
U
n
i
v
e
r
s
i
t
y
 
o
f
 
M
a
s
h
h
a
d
]
 
A
t
:
 
0
6
:
2
1
 
2
9
 
N
o
v
e
m
b
e
r
 
2
0
1
0



A Generalized HeŒron-Phillips Model 401

Figure 8. Rotor angle deviation.

except the electrical loop in this case is as in Figure 7. If the desired damping
ratio is » = 0 .3, designing PSS based on complex frequency yields (Gpss(s) =
Kc(1 + T1s)=(1 + T 2s)):

Mechanical Phase lag of T2 T1 Kc
mode electrical loop T2 T1 Kc

0 .1889 + 9 .9527i 37.8784 0.1000 0.7353 4.1481

To compare the eŒects of above PSSs, a step D Pm = 0.3 is applied. Ro-
tor angle deviation for system without PSS, system with PSS designed based on
impedance load (LPSS), and system with PSS designed based on frequency- and
voltage-dependent load (FPSS) is shown in Figure 8. This �gure shows that the
performance of FPSS is quite better than LPSS.

4 Conclusion

A systematic method for driving the state equations of linear state space models
for multi-machine power systems with voltage- and frequency-dependent loads was
proposed. The state variables are the same as those of the HeŒron-Phillips model
for multi-machine power systems with impedance load plus the voltage angles of
buses with frequency-dependent loads. The resulting block diagram is very similar
to HeŒron-Phillips model and is suitable for generalizing dynamic studies of net-
works with impedance loads to networks with frequency-dependent loads. It can
be used for designing PSS, coordinating PSSs, determining an optimal place for
PSSs, and determining the eŒects of loads on dynamic stability in a power sys-
tem with frequency- and voltage-dependent loads. A simple method to account
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402 Shanechi and Buygi

for in�nite bus was proposed. As an example, the eŒects of load model param-
eters on locus of critical eigenvalues for a �ve-bus network were studied. A PSS
was designed for a one-machine in�nite bus with frequency- and voltage-dependent
local load. Comparison shows that the performance of the PSS design based on
frequency-dependent load is quite better than PSS design based on impedance
load.
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Appendix A: Five Buses Example Data

Machine data

External
Gen. Rating Inertia Damping Xd = Xq X ¢ d reactance TA
no. (MVA ) H(sec) (pu) (pu) (pu) (pu) (sec) KA

1 166.6 4.3 0 1.164 0.146 0.0194 0.02 153.3
2 166.6 4.3 0 1.029 0.126 0.0194 0.05 287.4
3 325 10.35 0 0.625 0.084 0.0327 0.02 324

Inf. B. — 1000 — 0.0001 0.00001 0.067 — —

Operating condition

Bus Pg Qg Pl Ql V µ

no. (MW ) (MVAR) (MW ) (MVAR) (pu) (deg)

1 90 27.55 0 0 1.02 10.66
2 90 27.55 0 0 1.02 10.66
3 175 20.51 0 0 1.02 12.86
4 0 0 100 20 1.015 9.69
5 2000 300 2255 300.6 1 0
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Appendix B: Example Coe� cients for Application 1

The de�ned coe� cients for above operating point and k! = 1, kv = 2,! = 1 are as
follows:

K1 1.2880e 01 1.4909e 01 3.4988e 01
3.1382e+00 8.4080e 02 4.8249e 02 K ¢ 1
7.8430e 02 3.2705e+ 00 5.7694e 02 3.0327e+ 00
7.2048e 02 9.2361e 02 5.4036e+ 00 3.1665e+ 00

K 2 5.2687e+ 00
3.5659e+ 00 3.0156e 01 2.9305e 01 K ¢ 4
2.9704e 01 3.7830e+ 00 3.5043e 01 3.3929e+ 00
2.7286e 01 3.3126e 01 5.9500e+ 00 3.2299e+ 00

K3 3.0667e+ 00
1.5519e 01 1.1577e+ 00 1.1914e+ 00 K ¢ 5
1.3244e+ 00 1.5638e 01 1.1226e+ 00 1.2728e 01
2.1100e+ 00 1.7380e+ 00 1.9697e 01 1.3199e 01

K4 1.5468e 01
3.6951e+ 00 2.4081e 01 1.3819e 01 R ¢ ¢ 2 lf.gn
1.9935e 01 3.4944e+ 00 1.4665e 01 8.8006e+ 02 8.8480e+ 02 1.762e+ 03
1.2513e 01 1.6041e 01 3.3010e+ 00 S¢ ¢ 2 lf.gn

K5 1.0604e+ 03 1.0820e+ 03 1.9487e+ 03
6.9568e 02 4.5997e 02 2.6395e 02

N ¢ ¢ 2 lf.lf
3.5216e 02 8.5279e 02 2.5906e 02
3.2426e 02 4.1568e 02 9.3952e 02

K6
9.7829e+ 03

2.2898e 01 1.6497e 01 1.6031e 01
1.3337e 01 2.7291e 01 1.5734e 01

Appendix C: Parameters and Operating Point of Application 2

Gen.: M = 6 sec, D = 0, T ’do = 2 sec, r = 0, xd = 1.15 pu, x ’d =0.15 pu,
xq = 0.6 pu.

Exc.: KA = 40, TA = 0.02 sec.
Line: Rl = 0, xl = 0.4 pu, Gl = 0, Bl = 0.
Operating point: Pg = 1.5 pu, Qg = 0.8208 pu, Pd = 1 pu, Qd = 0.5 pu,

Vinf. = 1.
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