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CTV, COMPLEX TRANSIENT AND VOLTAGE

STABILITY: A NEW METHOD FOR

COMPUTING DYNAMIC ATC
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Abstract

This paper presents a fast and accurate dynamic method for

ATC calculations considering transient stability analysis (TSA)

and voltage stability analysis (VSA) termination criteria (CTV

method). This method can be used for contingency screening and

ranking. Estimation of the determinant of Jacobian matrix is

used for assessment of voltage stability. This method is compared

with the following methods: energy difference between SEP (stable

equilibrium point) and UEP (unstable equilibrium point), ts index of

Chiang, and continuation power flow. The TSA method uses Athay’s

PEBS (potential energy boundary surface) and a new method

named POMP. The POMP method follows the Point Of Maximum

Potential energy on post-fault system trajectory. This point is

approximated by Taylor’s expansion of second order. Because this

method does not use any convergent algorithm, it is more reliable

than all existing methods that use UEP. The goals of this method

are assessment of ATC considering VSA and TSA and assessment

of dangerous contingencies. The ideas are demonstrated on 2, 3, 7

(Cigre), 10, 30 (IEEE) and 145 (Iowa State) bus networks.
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1. Introduction

Order 889 mandated each control area to compute ATC
and post them on a communication system called open
access same-time information system (OASIS) [1]. ATC
computing methods can be divided into static and dynamic
methods. Static methods can be further divided into
three categories: OPF (linear and nonlinear optimization),
sensitivity analysis [2], and continuation power flow (CPF)
[3, 4]. In OPF, for each transaction, generations and loads
are increased until allowable transmission power between
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two areas reaches maximum. In CPF, for each transaction,
generations and loads are increased until one line reaches
its MVA limit or other static terminated conditions.

Termination criteria in static methods are: trans-
mission line flow constraints (thermal and static stabil-
ity), diverging DC load flow, diverging AC load flow (in-
cluding voltage collapse), and voltage limit on each bus
(0.95<V i< 1.05).

Simplicity, transparency, flexibility, and rapidity (ve-
locity or celerity) are the advantages of static methods.
Disadvantages and defects of these methods are optimism,
inaccuracy, and not considering all constraints. The dy-
namic method is a transient stability constrained by max-
imum allowable transfer (MAT). This method consists of
screening a large number of contingencies and scrutinizing
the dangerous ones.

TSA constrained by MAT [5] is one of the best dynamic
methods. The existence of stable equilibrium in a post-
disturbance system is only a necessary condition of system
stability [6]. It is also important to ensure that the system
can safely make the transition from the pre- to post-
disturbance operation point. Several methods for dynamic
ATC evaluation are those based on second-kick [7], SMIB,
dot product [8, 9], and bifurcation theory [10].

Termination criteria in dynamic methods are transient
instability, voltage instability (dynamic), and static termi-
nation conditions. Robustness and accuracy are the ad-
vantages of dynamic methods. Disadvantages and defects
are: the “potentially harmful (dangerous)” contingencies
in base case (first stable operating point) and ATC case
(when system reaches terminated criterion) are not neces-
sarily the same; voltage stability and transient stability are
not considered simultaneously; and response is slow.

Stable operating points in base case and ATC case
are different. Therefore, we use contingency ranking in
stressed stable operating point.

In this work, we improve ATC with TSA and VSA
termination criteria. Estimation of the determinant of
Jacobian matrix is used for computing VSA index. This
method is compared with energy difference between SEP
and UEP [11], ts index of Chiang [12], and CPF [3, 4]. TSA
is a very important termination criterion in computing
ATC. PEBS [13], BCU [14], and second kick [7] are the
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most important methods in TSA with energy method. We
use POMP for TSA termination criterion and demonstrate
that this method has a very good performance.

In this paper, energy method uses voltage stability
constraint as upper limit of transient stability, and com-
puted transient stability limit by energy method is used
as initial condition of simulation method. VSA methods
are presented in Section 2, TSA methods in Section 3, and
ATC computing methods are applied to one small system
in Section 4. In Section 5, system equations and structure
preserving energy functions [15] are derived. The main
algorithm is presented in Section 6. In Section 7, ATC
is determined for 2, 3, 7 (Cigre), 10, 30 (IEEE), and 145
(Iowa State) bus networks.

2. VSA Methods

Continuation power flow [3, 4], angular distance between
the SEP and closest UEP in a Euclidean sense [16], energy
difference between the SEP and closest UEP using an en-
ergy function [11], test function (ts) [12], and estimations
of the determinant of Jacobian matrix are the most im-
portant methods for VSA. The means of computing the
performance index proposed in [12] is easier than other pro-
posed methods, which require computation of eigenvalues,
eigenvectores, singular values, energy functions, or condi-
tion numbers [12]. It should be pointed out that the index
proposed in [12] does not require computing unstable load
flow solutions (UEP). This method [12] has the following
deficiencies: determination of ts is time consuming, and
the solution is not accurate.

In this section we propose a new approach for VSA.

2.1 Estimation of the Jacobian Determinant

The Jacobian matrix can be divided into four submatrixes
A, B, C, and D. It is easy to show that:

J =


A B

C D


, det(J) = det(A) · det(D − CA−1B) (1)

Define:
diag(A)= [a11 a22 . . . ann], aii are diagonal elements of
A. and prod(diag(A))= a11 · a22 · · · · · ann

1

diag(A)
=

[
1

a11

1

a22
. . .

1

ann

]

and

diag(diag(A)) =



a11 0 0

0 a22 0

0 0 a33


 (2)

Now we show:

|Xii| > |Xij | ∀i, j and X = A,B,C and D (3)

We have:

Aii =
∂Pi

∂δi
= −

n∑
j=1, �=i

Vi Vj Yij sin(δi − δj − γij)

Aij =
∂Pi

∂δj
= Vi Vj Yij sin(δi − δj − γij) (4)

Dii =
∂Qi

∂Vi
=

n∑
j=1, �=i

Vi Yij sin(δi − δj − γij)

+ 2ViYij sin(−γij)

Dij =
∂Qi

∂Vj
= ViYij sin(δi − δj − γij)

If we suppose |vi| ≈ 1, |δi| ≈ 0, and |γij | ≈ 90, then:

Aii = −
n∑

j=1, �=i

Yij , Aij = Yij ⇒ |Aii| > |Aij |

Dii = −
n∑

j=1

Yij − Yii, Dij = −Yij ⇒ |Dii| > |Dij | (5)

Bii and Cii can be computed similarly. Now we can
propose a new approximation for Jacobian matrix. We
have:

Det(J) = prod(diag(A)) · prod(diag(D)

− diag(C)diag(1/diag(A)) · diag(B)) (6)

This estimation of Jacobian determinant is calculated very
fast and can be use for computing ATC. We define λ as:

Pgi = P 0
gi(1 + λ) i ∈ Ng (number of generators) and

Pdj = P 0
dj(1 + λ) j ∈ ND (number of demands) (7)

λ = 0 ⇒ P = P 0 (base power flow) and

λ = λcr ⇒ P = Pmax (voltage stability limit).

where P 0
gi and P 0

dj are generation and demand at operating
point. λ is estimated by the quadratic equation:

λ = −a(det(J))2 + b a and b are unknown (8)

Two stable load flow solutions are needed to compute
a and b. Two different load and generation conditions (in
ATC direction) are used for computing them. Now there
are two equations and two unknown parameters:

λ1 = −a(det(J1))
2 + b and λ2 = −a(det(J2))

2 + b (9)

The experimental results and most simulation results
show that this approximation is not as accurate as ts of
Chiang. Now we use a new load flow solution to increase the
accuracy of new method and to calculate three unknown
parameters (a, b, c):
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λ = −a(det(J))c + b a, b and c are unknown (10)

VSA algorithm using this approximation is summa-
rized in the following steps:
1. Two SEPs are determined in ATC direction.
2. Test function, estimation of Jacobian determinant, is

approximated using equation of order two.
3. Critical point is computed using 8. (det(J)= 0⇒

λcr = b).
4. Test function is approximated using three different

load flow solutions (step 1 and step 3) by equation of
order three.

5. Critical point is computed using 10. (det(J)= 0⇒
λcr = b).
Simplicity, accuracy, and celerity are the advantages

of this algorithm. The following methods have been ap-
plied on 2-bus and 145-bus (Iowa State) test systems: (1)
continuation power flow; (2) energy method (quadratic
approximation) [11]; (3) energy method (exponential ap-
proximation); (4) test function of ts (order 4) [12]; (5) es-
timation of determinant; and (6) test function of ts (order
2) [12]. The results are depicted in Figs. 1 and 2. The
new method is not only very accurate but also very fast;
we use it for computing dynamic ATC considering VSA
termination criteria.

Figure 1. Computing voltage stability using six different
methods for a two-bus system (QL, p.u.: reactive power
demand in load bus 2) (QLmax, p.u.: maximum QL,
voltage stability limit).

3. TSA Methods

Although Athay’s PEBS method [13] and Second Kick [7]
are the fastest methods for computation of critical time,
they still suffer from long computation time and unreliable
accuracy of solutions. We are proposing method that we
believe address these deficiencies.

3.1 Athay’s PEBS Method

A power system is modelled, in its simplest form, for the
direct analysis of transient stability in the aftermath of

Figure 2. Computing ATC for 145-bus system (Iowa State)
using methods 1, 4, and 5.

occurrence of a fault, using the following procedure. The
loads are modelled by impedance assuming constant volt-
ages. All load and generator terminal buses are eliminated
to get at the “internal node model.” In an m machine
power system and using the centre of inertia, COI, as
reference for the i-th machine, i=1, 2, . . . ,m, we have:

θ̇i(t) = ω̃i and Mi
˙̃ωi(t) = fi(θ1(t), . . . , θm(t)) (11)

where θi and ω̃i are, respectively, the internal angle
and the speed of generator i referenced to the COI and
fi(θ1(t), . . . , θm(t)) is the accelerating power of the i-th
generator. (This section is following closely, and using the
notation of, reference [17].)

To apply the direct method of Lyapunov, the transient
energy function, TEF, is constructed for the system by
employing the first integral of the motion of these equations
to find [15]:

V (θ, ω̃) =
m∑
i=1

1

2
Miω̃

2
i−

m∑
i=1

θi∫
θs
i

fi(θ) dθ = VKE(ω̃) + VPE(θ)

(12)
where θ= [θ1, θ2, . . . , θm]T and ω̃= [ω̃1, ω̃2, . . . , ω̃m]T .

Let f(θ)= [f1(θ), f2(θ), . . . , fm(θ)]T . It has been
shown [15] that inside PEBS fT (θ)(θ− θs) ≺ 0, outside
PEBS fT (θ)(θ− θs) � 0, and at the PEBS crossing,
fT (θ)(θ− θs)= 0 and VPE(θ) reaches its maximum. We
call the expression fT (θ)(θ− θs) the PEBS crossing index.
Based on these facts, Athay has proposed the following
algorithm for the calculation of tcr.

3.1.1 The PEBS Algorithm

1. Set up the system equations and compute the steady
states θ◦ and θs for the pre-fault and post-fault sys-
tems, respectively.

2. Integrate fault-on system equations using initial state
θ◦ and ω̃◦ =0 and coarse time steps.

3. At each step of integration in the above, calculate
fT (θ)(θ− θs).
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4. Repeat steps 2 and 3 until reaching θF such that
fT (θF )(θF − θs)= 0. Calculate Vcr =VPE(θ

F ). Inte-
grate the fault-on system equations again and calcu-
late V (θ, ω̃), this time using fine time steps, to reach
θcr and ω̃cr that satisfy V (θcr, ω̃cr)=Vcr. The time to
reach this point is tcr.

3.2 Method of POMP

3.2.1 Motivation

In Fig. 3, the system trajectories (solid lines) and PEBS
(dotted line) are shown for a three-machine system. Volt-
age angle of generator number 3 is used as reference. It
is assumed that a fault occurs at time zero and clears at
time tcl. Therefore, the stable equilibrium point, SEP, of
pre-fault and post-fault system is the same. This point is
taken as the origin of the coordinates. In the present work,
we assume the system to be lossless and with no exchange
of energy with neighbouring areas. In Fig. 3, four system
trajectories are shown.

Figure 3. Sustained fault, critical trajectory, and other
trajectories.

The first is the trajectory of the system under sustained
fault. This trajectory starts at the pre-fault equilibrium
point θ◦ and ω̃◦ =0, which is taken here as origin (0,0) and
directly moves towards and crosses the PEBS. The PEBS
crossing point of this trajectory (point F) is assumed to be
close to the saddle point controlling unstable equilibrium
point.

The second is the trajectory of the critically cleared
fault. Fault-on system trajectory again starts at the pre-
fault SEP (0,0), and continues until it reaches the critical
time. At this time the fault is cleared, and the system
moves along the post-fault trajectory until it reaches the
PEBS. It meets the PEBS at point A tangentially, does
not cross it, and returns towards the post-fault SEP, which
is in this case the same point as the pre-fault SEP (0,0).
At point (A) the kinetic component of the energy function
is zero and the potential energy component is maximum.
This trajectory is called the critical trajectory, and the
value of the energy function at the tangent point A is
called the critical energy, Vcr. For the system to be stable,
its energy at the time fault is cleared has to be less than

this critical value. Finding point A and calculating energy
of the TEF, Vcr, at this point is the goal of all different
approaches that use Lyapunov’s direct method for analyz-
ing system stability. Because finding the exact location
of A is computation intensive, all different methods using
TEF try to find this point approximately and calculate an
approximate value for Vcr.

The third trajectory belongs to the system when the
fault is cleared sooner than tcr. It starts at the pre-fault
SEP, moves along the fault-on trajectory until the fault
is cleared, and then continues by moving along the post-
fault trajectory. As the fault clearing time is sooner than
tcr, the system is stable and its post-fault trajectory does
not reach the PEBS; instead its kinetic energy decreases
to a minimum, and its potential energy increases to a
maximum, at point B. After this point, the post-fault
trajectory returns towards the post-fault SEP.

The fourth trajectory belongs to the system when the
fault is cleared later than tcr. It starts at the pre-fault
SEP, moves along the fault-on trajectory until the fault is
cleared, and then continues by moving along the post-fault
trajectory. As the fault clearing time is later than tcr,
the system is unstable and its post-fault trajectory reaches
and crosses the PEBS at point D, where its potential
energy increases to a maximum. The points A and B,
where kinetic energy is minimum and potential energy is
maximum, are very important. We call them points of
maximum potential energy and minimum kinetic energy
(POMP).

To motivate our new method and see the importance
of POMPs in its structure, assume that we have a way of
(approximately) calculating POMPs. Also, let us modify
the third step of the PEBS algorithm to read: “At each step
of integration in the above, calculate fT (θB)(θB − θs).”
That is, calculate the PEBS index for the POMP B instead
of the point θ on the fault-on trajectory. As the integration
progresses, POMP will move towards the point A where
the critical trajectory is tangent to the PEBS. Before
reaching point A the PEBS crossing index fT (θB)(θB − θs)
is negative, at point A it is zero, and past point A it
is positive. Therefore, monitoring this index and noting
when it changes sign provides us with a way to recognize
when we hit point (A). Once we have found point A, Vcr

can easily be calculated and the analysis can be carried on.

3.2.2 POMP Determination Method

To determine POMP by integrating the post-fault system
would be very time consuming. Here we are proposing
an approximate method for its determination. Consider
Fig. 4. System trajectory (fault-on and post-fault) and
POMP are shown for a stable system. The maximum
magnitude of angles δ13 and δ23 occurs at points A1 and A2,
respectively. Again, voltage angle of generator number 3 is
used as reference. A1 and A2 do not occur simultaneously.
δ13 will reach its maximum (point A1) sometime after
δ23 has reached its maximum (point A2). Consider point
C. This point, in the plane of δ13 and δ23, is defined by
the set of maximum angles; C= (A1, A2) and is a good
approximation for POMP.
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Figure 4. Fault-on and post-fault system trajectories and
EPOMP.

In this method, we use C as an approximation to
POMP and call it Estimate of POMP, or EPOMP. To find
EPOMP, we expand the time variation of the angles in
Taylor series and retain the first three terms. We have,
using (11):

δim = δi − δm = θi − θm,

δ̇im = θ̇i − θ̇m = ω̃i − ω̃m = ω̃im,

˙̇
δim = ˙̃ωi − ˙̃ωm =

1

Mi
fi(θ)− 1

Mm
fm(θ) = Fim(θ) (13)

Expanding δim(t) the post-fault system in Taylor series in
terms of t around the clearing time tcl, retaining the first
three terms, we obtain:

δim(t) = δim(tcl) +
dδim
dt

(tcl)(t− tcl)

+
d2δim
2dt2

(tcl)(t− tcl)
2

= δim(tcl) + ω̃im(tcl)(t− tcl)

+
1

2
Fim(θ(tcl))(t− tcl)

2

= (θi(tcl)− θm(tcl)) + (ω̃i(tcl)− ω̃m(tcl))(t− tcl)

+
1

2
Fim(θ(tcl))(t− tcl)

2 (14)

θ(tcl) and ω̃(tcl) are calculated at the clearing time and
are final states of fault-on system and initial states of post-
fault system. Differentiating (14) with respect to t and
equating to zero provides us with ti, the time when angle
δim(t) reaches its maximum value:

δ̇im(t) = ω̃im(tcl) + Fim(θ(tcl))(ti − tcl) = 0

and (ti − tcl) = − ω̃im(tcl)

Fim(θ(tcl))
(15)

Note that as the system is stable, Fim(θ(tcl)) has to
be, and is negative. Therefore, (ti − tcl) is positive. Also
note that for each δim, for each i, the time ti to reach
its maximum value could be different, as the angles reach
their maximums at different times. Finally, inserting (15)
into (14), we obtain:

δMax
im = δim(tcl) + ωim(tcl)(ti − tcl)

+
1

2
Fim(θ(tcl))(ti − tcl)

2

= (θi(tcl)− θm(tcl))− ω̃im(tcl)

(
ω̃im(tcl)

Fim(θ(tcl))

)

+
1

2
Fim(θ(tcl))

(
ω̃im(tcl)

Fim(θ(tcl))

)2

= (θi(tcl)− θm(tcl))− ω̃im(tcl)
2

2Fim(θ(tcl))
(16)

The EPOMP (point C) is now computed approximately by
solving the following equations for θi, i=1, . . . ,m:

θMax
i − θMax

m = δMax
im ,

m∑
i=1

Miθ
Max
i = 0 (17)

Now, we have:

EPOMP=C=(θMax
1 , . . . , θMax

m )= (θMax) (18)

3.2.3 POMP Algorithm

We can state the POMP method of finding tcr as follows:

1. Set up the system equations and compute the steady
states θ◦ and θs for the pre-fault and post-fault sys-
tems, respectively.

2. Integrate fault-on system equations for a small time
duration ∆(t), using initial states θ◦ and ω̃◦ =0 and
either coarse time steps or any other fast integrating
method. Call values of the time and states at the end
of integration tb, θb, and ω̃b.

3. Use tb as tcl in (15)–(18), to find EPOMP (point C) as
an approximation of B.

4. At each step of integration in the above, calculate
fT (θMax)(θMax − θs).

5. Repeat, using tcl = tb, steps 2, 3, and 4 until reaching
θ∗ such that the PEBS index becomes zero or changes
sign. θ∗ is a very accurate estimate of θA for which
fT (θA)(θA − θs)= 0. Calculate Vcr =VPE(θ

∗) as an
approximation of VPE(θ

A).

6. Integrate the fault-on system equations and calculate
V (θ, ω̃), using fine time steps, to reach θcr and ω̃cr that
satisfy V (θcr, ω̃cr)=Vcr. The time to reach this point
is tcr.

This approach is more accurate than the PEBS ap-
proach. Here we use this method for computing ATC
considering TSA termination criteria.

3.3 Case Studies

To assess the accuracy and speed of the POMP method,
we apply it to two test systems to analyze stability and
compute the clearing time for different faults. Single line
diagrams are shown in Figs. 5 and 6. For comparison,
results for the PEBS method and the nonlinear simulation,
which is considered to be the exact solution, are also
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Figure 5. Single-line diagram of four machines [18].

Figure 6. Single-line diagram of seven machines (Cigre).

provided. In both test systems classical model is used for
the generators and COI is used as reference frame.

Table 1 shows the results for these systems. We can see
that POMP is about 37% faster than PEBS method and
also more accurate. In this table T is the calculation time

Table 1
Tcr and T (Calculation Time), by Methods (Simulation,

PEBS, and POMP) for Four Machines

Fault Simulation PEBS POMP

Line Percent Tcl, Tcl, Tcr T Tcr T PC

Stable Unstable

3–7 5 0.20 0.21 0.22 0.26 0.20 0.16 38

3–7 25 0.33 0.34 0.34 0.37 0.33 0.27 27

3–7 50 0.38 0.39 0.39 0.40 0.38 0.27 33

3–7 95 0.29 0.30 0.29 0.33 0.29 0.21 36

4–3 5 0.32 0.33 0.32 0.33 0.31 0.22 33

4–3 95 0.46 0.47 0.47 0.44 0.45 0.27 39

5–7 50 0.55 0.56 0.62 0.55 0.52 0.27 51

PC =
TPEBS −TPOMP

TPOMP
× 100

Tcr and T (Calculation Time), by Methods (Simulation,
PEBS, and POMP) for Four Machines

Fault Simulation PEBS POMP

Bus Tcl, Stable Tcl, Unstable Tcr T Tcr T

1 0.35 0.36 0.34 6.6 0.40 3.7

3 0.39 0.40 0.39 6.8 0.45 4.2

4 0.49 0.50 0.44 8.7 0.50 4.6

5 0.34 0.35 0.34 5.5 0.33 4.1

6 0.51 0.52 0.93 14 0.59 6.0

for PEBS and POMP methods and PC is the percentage
by which POMP is faster than PEBS.

4. A Small System

4.1 Two-Bus System with VSA

Consider a system with a single transmission line, which
is connected to buses 1 and 2. Bus 1 is assumed to
be a slack bus with voltage magnitude fixed at 1.0 p.u.
Transmission losses are neglected. The load is attached at
bus 2 and is represented as a P-Q demand; that is, load
is independent of bus voltage magnitude or instantaneous
frequency. Power balance equations at bus 2 are:

f1(δ, v) = PL −B12v sin(δ) = 0

and f2(δ, v) = QL −B22v
2 −B12v cos(δ) = 0 (19)

The energy-based security measure, which indicates vul-
nerability of system by voltage collapse, obtained by inte-
grating the above functions is:

V (δ, v) = −0.5B22v
2 −B12v cos(δ)+QL ln(v)+PLδ (20)

It is easy to show that:

∂V

∂δ
= f1(δ, v),

∂V

∂v
=

f2(δ, v)

v
(21)

And Jacobian matrix is:

J =




∂f1
∂δ

∂f1
∂v

∂f2
∂δ

∂f2
∂v


 =


B12v cos(δ) B12 sin(δ)

B12v sin(δ) −2B22v −B12 cos(δ)




(22)

The following function for PEBS can be obtained by dif-
ferentiating from potential energy:

PEBS(δ, v) = f1(δ, v) (δ − δS) +
f2(δ, v)

v
(v − vS) (23)

In Fig. 7 contour of potential energy, PEBS, SEP, UEP,
det(J)= 0, trajectories from SEP to UEP under increasing
power demand are shown for the two-bus system. As the
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potential energy is not periodic versus voltage magnitude,
PEBS is not equal with local maximum potential energy in
this system. Most simulation results imply that EPEBS,
Estimation of PEBS, is a better approximation than PEBS.
EPEBS for two-bus system is:

EPEBS(δ, v) = f1(δ, v) (δ − δS) +
f2(δ, v)

v
(v − vS) · e−v

(24)
EPEBS is shown in Fig. 7. We use EPEBS instead of
PEBS.

Figure 7. Equilibrium points, PEBS, EPEBS, potential
energy, and det(J)= 0 in base case for two-bus system.

5. Equations

The assumption of a constant impedance load or ignoring
of voltage magnitude may introduce an error in critical
time computation. We use structure-preserving energy
functions and system equations. Suppose there are N
number of load buses and n number of generator buses.
We can write the swing equations in the COI (centre of
Inertia) reference frame as [15]:

˙̃
φi = ω̃i i = 1 : n

Mi
˙̃ωi = Pmi −

n+N∑
j=1

Bijvivj sin(φ̃i − φ̃j) − Mi

MT
PCOI

(25)

The load flow equations are now written as:

Pi +
n+N∑
j=1

Bijvivj sin(φ̃i − φ̃j) = 0

and Qi −
n+N∑
j=1

Bijvivj cos(φ̃i − φ̃j) = 0,

i = n+ 1 : n+N (26)

When P and Q in load bus are constant, the energy
function is [15]:

V (ω̃, φ̃, v) = Vk(ω̃) + Vp1(φ̃, v) + Vp2(φ̃)

that: Vk(ω̃) = 0.5
n∑

i=1

Miω̃
2
i ,

Vp2(φ̃) =
n+N∑
i=n+1

Pi(φ̃i − φ̃S
i ) (27)

Vp1(φ̃, v) = −
n∑

i=1

Pmi(φ̃i − φ̃S
i ) +

n+N∑
i=n+1

Qi ln

(
vi
vSi

)

− 0.5
n+N∑
i=1

n+N∑
j=1

Bij(vivj cos(φ̃ij)

− vSi v
S
j cos(φ̃S

ij))

It is well known that DAE (differential-algebraic equation)
problems are very difficult to study and domain for which
the DAE model may be defined as an equivalent ODE
(ordinary differential equations) model [19]. The approach
proposed here is to convert the DAE problem to an ODE
problem. DAE models are then equivalent to the following
ODE model (ε is very small):

ε
˙̃
φi = Pi +

n+N∑
j=1

Bijvivj sin(φ̃i − φ̃j)

and εv̇i = Qi −
n+N∑
j=1

Bijvivj cos(φ̃i − φ̃j),

i = n+ 1 : n+N (28)

6. Main Algorithm of CTV Method

The experimental results and most simulation results show
the efficiency of the new algorithm. This algorithm is
applied on 3, 7 (Cigre), 10, 30 (IEEE), and 145 bus (Iowa
State). Clearing time is assumed to be five cycles. The
algorithm can be divided into three stages:

Step A: In this stage, static ATC with considering
voltage stability constraint is computed using approxima-
tion of determinant of Jacobian matrix. This method is
very fast, but it is very optimistic. In this stage, the system
is under stress, contingencies are ranked, and the worst
contingencies are determined. Computed ATC and worst
contingencies are used as the initial condition of the next
stage.

Step B: In this stage, dynamic ATC with consider-
ing transient stability constraint is computed using direct
energy method (POMP). Computed ATC is much more
accurate than stage A. This method is quite fast, as it uses
the simplified model of power system. Computed ATC is
used as the initial condition of the next stage.

Step C: In this stage the full detailed model of power
system is used and dynamic ATC is computed accurately
using simulation method. The value of ATC, which was
computed in stage B, is adjusted step by step until the
system reaches its stability border.
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The algorithm is shown in Fig. 8. The presented
method is fast and accurate. In this algorithm, energy
method uses voltage stability constraint as upper limit of
transient stability, and computed transient stability limit
by energy method is used as initial condition of simulation
method.

Figure 8. Main algorithm.

The new algorithm for computing ATC with consider-
ing TSA and VSA termination criteria is summarized as
follows:

Step A:
1. ATC with VSA termination criteria is determined

using estimation of Jacobian determinant. (Use 3 SEP
and equation of order three, Section 3.2.)

2. SEP trajectory is determined for changing power using
an equation of order 3. (Use 3 SEP.)

3. The dangerous contingency is determined using SEP
no. 3. This SEP is near static stability boundary.
Critical voltage magnitude (low voltage) or angle (high
angle) in each bus is aggravated using short circuit
or load increasing. The harmful contingency may be
greater than one, but it is very limited. This SEP (No.
3) is initial condition for 4.

Table 2
CTV (New Method), MAT (Old), and Accurate Method for Computing ATC

Static Dynamic ATC ATC Between System

ACT MAT Method Accurate Method CTV (New Method)

(p.u.) ATC (p.u.) ATC (p.u.) Speed(∗) Step C Step B Step A To (PL) from (PG)

ATC (pu) ATC (pu) ATC (pu)

18 6.04 5.10 1.00 5.09 4.79 18 2 3 3 bus

5.0 1.34 1.42 1.49 1.41 1.4 5.0 5 2 7 bus

5.5 1.42 1.53 1.31 1.53 1.44 5.5 5,6 2, 3, 4

3.1 0.60 0.82 2.65 0.82 0.77 3.1 8,9 5, 6, 7 10 bus

4.2 0.83 0.92 5.14 0.91 0.90 4.2 3 2 30 bus

3.8 0.63 0.85 6.11 0.84 0.79 3.8 16 2

3.7 0.89 0.95 6.19 0.95 0.97 3.7 18 2

3.6 1.25 1.16 6.68 1.15 1.10 3.6 23 2

3.1 0.80 0.86 5.18 0.86 0.85 3.1 24 2

2.09 0.50 0.64 6.25 0.63 0.60 2.09 30 2

6.5 1.64 1.83 8.88 1.82 1.75 6.5 141–143 34,35 145 bus

(∗)Speed of CTV per MAT=
Calculation time of MAT

Calculation time of CTV

Step B :
4. Fault-on system trajectory is determined using a fast

integration method (equation of order 2) until clearing
time. This point is initial condition for 5.

5. The point of maximum potential energy is determined
using POMP method.

6. EPEBS criterion is computed. If it is negative, go to
7. If it is positive, go to 8, and if absolute PEBS is
lower than maximum error, go to 9.

7. SEP is changed backward to SEP no. 1 using step 2,
and then step 5 is repeated.

8. SEP is changed forward to static stability boundary
using step 2, and then step 5 is repeated.
Step C :

9. In this stage the full detailed model of power system is
used and dynamic ATC is computed accurately using
simulation method. The value of ATC, which was
computed in stage B, is adjusted step by step until the
system reaches its stability border.
Medium dynamic is not considered in this algorithm,

for example, OLTCs. But because this algorithm is very
fast, this issue is not important.

7. Case Studies and Discussion

ATC methods have been applied on five test systems: 3,
7 (Cigre), 10, 30 (IEEE), and 145 (Iowa State University)
buses. Simulation results show the difference between the
new CTVmethod, MAT [5], and accurate approaches (con-
tinuation power flow, simulation for all faults). Clearing
time is assumed to be five cycles for all systems. Three
methods, CTV, MAT, and accurate method, have com-
puted dynamic ATC. Time of computation of ATC is de-
termined for comparison of the celerity of CTV and MAT

303



approaches in Table 2, which shows that the CTV method
is faster than the old method. As the number of buses
increases, the difference between the time of new and old
approaches increases. The accuracy of the new method is
22% more than that of the old one. The accurate method
is only 1% more accurate than the new method. ATC
considering only VSA is determined for comparing static
and dynamic ATC. Static ATC is double or triple dynamic
ATC. Table 2 shows that ATC dynamic is more bounded
than static ATC. Similar results were also obtained for
other systems. Therefore, the celerity and accuracy of the
new method are very good.

8. Conclusion

We have proposed a new dynamic method for computing
ATC. This method is able to calculate ATC for set-to-
set, bus-to-bus, set-to-bus, and bus-to-set and has good
accuracy and celerity. The method considers TSA and VSA
for computing ATC using energy method and simulation
method. The proposed ATC computing method uses the
most accurate methods for VSA and TSA.
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