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ABSTRACT 

Energy and momentum approaches can lead to different results in one dimensional 
analysis of flow through compound channels and therefore a choice between these two 
equations must be made to analyse the flow. This investigation is an effort to provide some 
insight into the validity of these two approaches for one dimensional analysis of steady 
gradually-varied flow through compound channels. To achieve this, at first the energy and 
momentum equations and a comprehensive form of steady gradually-varied flow governing 
equation (G.E.) are introduced. As the G.E. shows and it has been reported in the literature, 
the accuracy of the two approaches depend on two important factors, 1) correct evaluation of 
friction or energy slopes and 2) selection of a proper functional form for Froude number. It is 
a common practice to assume that energy and friction slopes are equal and can be estimated 
by typical resistance equations for corresponding steady uniform flow (conveyance estimation 
methods). This is a reasonable assumption and is justified because of the inexact empirical 
methods involved in evaluating the slopes. Then several computed water surface profiles 
corresponding to experimental data (M1, S1 and S2 types) are developed by combinations of 
different conveyance methods and Froude number definitions. Finally, experimental data 
collected in this study and those reported in the literature are used to compare different 
computed water surface profiles with laboratory measurements. The study indicates that the 
momentum principle is more consistent with corresponding steady uniform flow 
energy/friction slope for water surface profile computation in compound channels at least for 
the profile types considered in this study. Interestingly, this result is independent of the 
conveyance method used to estimate the corresponding steady uniform flow energy/friction 
slope. 
 
Keywords: compound channel, conveyance, energy equation, Froude number, momentum 
equation, water surface profile 
 
1 INTRODUCTION 

One dimensional analysis of flow through open channels is generally done by combining 
continuity equation with one of the energy or momentum equations. Selection of the energy 
or momentum equation depends on the problem under study and our interpretation of the 
phenomenon. In general, it can be said that in the analysis of local phenomena, when 
boundary shear stresses or forces involved in the problem are noticeable and unknown, but 
energy losses are negligible or known independently, the energy equation is a good start to 
analyse the flow. Analysis of flow over a short smooth step placed in the bottom of a channel 
is a good example of such analysis. After analysing the flow using energy equation (ignoring 
losses), and finding the depth of flow over the step, the momentum equation can be used to 
find the force on the step, if required. A different problem is the hydraulic jump in a 
horizontal channel. For the analysis of this phenomenon, the energy losses are noticeable and 
unknown while it is commonly assumed that the boundary shear forces and weight 



component in the direction of flow can be ignored. Therefore, the momentum equation is a 
good start. After analysing the flow using the momentum equation, the energy equation can 
be used to find energy loss in the jump. 

In gradually-varied flows, as longitudinal phenomena, both boundary shear stresses and 
energy losses are noticeable and unknown. Therefore, two different terms, energy (Se) and 
friction (Sf) slopes find meaning and appear in the one dimensional analysis of flow and as 
stated by Field et al. [1] there continues to be considerable confusion in the literature about 
the use of energy or momentum equations in analyses of flow in one dimensional open 
channels. Almeida [2] provides a good insight into the subject by giving a more justified 
explanation of the terms starting from steady uniform flow. He states that the free-surface 
uniform and steady flow, is a unique situation in which Se = Sf = S0. In this case, using the 
concept of a one dimensional finite global control volume, the work developed by the gravity 
force is nullified or dissipated by the internal viscous process. However, within the frame of a 
water column model, with a pseudo cross-section uniform flow velocity, this work is balanced 
by the boundary shear or friction force in order that flow kinetic energy be constant [2]. He 
comments that in general fe SS ≠  and Se can be greater or less than Sf depending on the type 
of the water surface profile [2]. The question is "What factors contribute to the difference 
between the two terms and how big the differences can be?". Many factors such as non-
uniform velocity distribution and its variation with depth, curvature of the flow and even 
pressure distribution can contribute to the difference of the terms. As stated by Almeida, the 
problem of a more accurate prediction of Se and Sf remains almost unsolved. Therefore, it is a 
common practice and reasonable approximation in engineering practice to estimate the slopes 
by typical resistance equations for corresponding steady uniform flow. In addition to the 
energy and friction slopes, other factors such as Froude number definition also affect the 
numerical results of energy and momentum equations in situations such as analysis of flow 
through compound channels. 

Fig. 1 shows the general configuration of a compound channel. A compound channel 
consists of a main channel and one or two floodplains. Different flow velocities in the main 
channel and floodplains produce an interaction region between sub-sections and hence 
traditional methods such as Manning equation fail to estimate the conveyance of the channel. 
Therefore, one dimensional analysis of flow is based mainly on refined conveyance 
estimation methods. In the context of this paper, these methods are used to evaluate energy or 
friction slope depending on the equation used. Energy and momentum equations can lead to 
different results in this case and therefore a choice between these two equations must be made 
to analyse the flow. Field et al. [1] indicated the important differences between the energy and 
momentum equations for compound channels, but because of the lack of suitable 
experimental data, they failed to present the superiority of one to the other and suggested the 
necessity for more experimental and field measurements.  

This paper is an effort to shed more light on the validity of these two approaches for one 
dimensional analysis of steady gradually-varied flow through compound channels. To achieve 
this, several computed water surface profiles corresponding to experimental data (M1, S1 and 
S2 types) are developed by combinations of different conveyance methods and Froude 
number definitions in energy and momentum equations. Then experimental data collected in 
this study and those reported in the literature are used to compare different computed water 
surface profiles with laboratory measurements to come to a conclusion about the choice 
between energy and momentum equation. 
 
2 ONE DIMENSIONAL MOMENTUM AND ENERGY EQUATIONS 

Eq. 1 presents the one dimensional momentum equation for steady flow through open 
channels under the assumption of hydrostatic pressure distribution [1]. 



 
Figure 1. Compound channel cross section (geometry and terminology) 
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where A is the cross sectional area, x is the direction along the channel and So is longitudinal 
bed slope of the channel. Sf and M are the friction slope and momentum function, 
respectively, which are defined as: 
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where 0τ  is the bed shear stress, ρ  is the density of water and R is the hydraulic radius of the 
cross section. And: 
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where y  is the vertical distance between the water surface and the centre of area, g is the 
gravitational acceleration, Q is the discharge and β  is the momentum correction factor, defined as: 
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where v is the local streamwise velocity and V is the average flow velocity which satisfies the 
continuity equation. 

Under the assumptions of no lateral discharge and prismatic channel, Eq. 1, results in 
Eq. 5 if the variation of β  with depth is ignored and it will result in Eq. 6 if β  varies with 
depth. 
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where in these equations, T is the top width. 
In a similar fashion and under the same assumptions, Eq. 7 presents the one 

dimensional energy equation. 
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where Se and E are the energy slope and specific energy, respectively, which are defined as: 
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where u is the internal energy per unit mass and q~ is the rate of heat dissipation [1]. And:  
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where α  is the energy correction factor which is defined as: 
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Under the assumptions of no lateral discharge and prismatic channel, Eq. 7 results in 
Eq. 11 if the variation of α  with depth is ignored and it will result in Eq. 12 if α  varies with 
depth. 
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By looking at Eqs. 5, 6, 11 and 12, a more comprehensive form of governing equation for 
steady non-uniform flow through compound channels can be introduced as follows. 
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where S is substituted with Se and Sf depending on the equation used, and Fi is Froude number 
of flow. In a comprehensive approach, the general functional form for Froude number can be 
defined as: 
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where iη  can have different meaning and definitions as follows. 
i=1: in this case 11 =η . This is equivalent to a uniform velocity distribution and 1== βα . 

i=2: in this case αη =2 . It means that the energy approach is used and 0
dy
dα

= . 

i=3: in this case
dy
dα

2T
Aαη3 −= . This also means the use of energy equation and 0≠

dy
dα . 

i=4: in this case βη =4 . This refers to the use of momentum approach and 0=
dy
dβ . 

i=5: in this case
dy
dβ

T
Aβη5 −= . This also refers to the momentum equation and 0≠

dy
dβ . 

There are other definitions in the literature proposed for Froude number in compound 
channels [3, 4 and 5]. They are not discussed here because they are not directly related to the 
subject of this paper.  
 
3 PROCEDURE FOR SOLVING GRADUALLY-VARIED FLOW EQUATION 

To solve the 1-D governing equation of gradually-varied flow (Eq. 13), it is customary to 
assume that the value of S (Se or Sf) is predicted by: 
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where K is the conveyance of a corresponding steady uniform flow with the same depth and 
discharge Q under non-uniform flow condition. The conveyance of regular cross sections can 
be calculated using the standard uniform flow equations such as Manning or Chezy equations. 
However, in a compound channels, due to its special characteristics, some improved methods 
are used. The followings are a brief description of the methods [6].  
a) Single Channel Method (SCM): In this method, it is assumed that the whole cross section 
behaves as a single cross section and therefore the compound channel is considered as a 
regular cross section. In the case of different main channel and floodplain roughness, an 
equivalent roughness coefficient can be estimated using equations such as Horton equation 
[5]. 
b) Divided Channel Method (DCM): In this traditional method, the compound section is 
divided into a main channel and one or two floodplains. The conveyance of each sub-section 
is calculated separately by one of the standard resistance equations. The total conveyance is 
equal to the sum of the conveyances of sub-sections. In this research the vertical divided 
channel method is used. 
c) Weighted Divided Channel Method (WDCM): This improved method has been 
developed by Lambert and Myers [7]. It uses a weighting factor to allow a transition between 
the velocity given by using a vertical division and the velocity predicted by a horizontal 
division. The weighting factor varies between zero and unity and is applied to both the main 
channel and the floodplain areas to give improved mean velocity estimate for these areas.  
d) Coherence Method (COH): This method has been developed by Ackers [8]. "Coherence” 
is defined as the ratio of the basic conveyance calculated by the SCM, with the perimeter 
weighting of the friction factor, to that calculated by the DCM. Ackers introduces four regions 
of depth in the floodplain, which is distinguished by the coherence value and also suggests 
different discharge deficit (DISDEF) or discharge adjustment factors (DISADF) for 
improvement of discharge in each region. 
e) Exchange Discharge Model (EDM): This method which was proposed by Bousmar and 
Zech [9], focuses on the interaction between the main channel and the floodplains and the 
exchange discharges and momentum transfers between them. Based on the EDM, the 
exchange discharge in non-uniform flow through compound channels depends on the 
turbulent momentum flux and the geometrical changes in cross sections. A non-linear 
computational procedure is required to calculate the conveyances of sub-sections. 

In this research all these methods are used to investigate the effect of conveyance 
estimation methods on the results of the study. This is done because there is no general 
agreement on one method. 

In addition to the energy and friction slopes, the Froude number also depends on the 
method selected for estimation of sub-section conveyance. The following equations are 
equations that can be used to calculate the terms involved in each Froude number definitions. 
If i=2: 
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where j is the sub-section number and aj and kj are the area and conveyance of sub-section, 
respectively. 
If i=4: 
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If i=3, F3 becomes: 
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This requires a working equation for F3 that includes an evaluation of
dy
dα . Blalock and Sturm 

[10] derived such an equation. For the case of homogeneous roughness for sub-sections, F3 is 
calculated using the following equations. 
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where in these equations, tj, rj and pj are the top width, hydraulic radius and wetted perimeter 
of sub-section, respectively. 
If i=5: 
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Derivation of 
dy
dβ  under the assumption of homogeneous roughness for sub-sections, results in 

the following equations for calculating F5. 
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Eq. 13 can be solved numerically using the following scheme: 
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where y1 is the control depth or depth calculated in the pervious step and xΔ  is the distance 
step. In an iterative procedure, )yψ( 1

 and )ŷψ( 2
 are calculated corresponding to y1 and trial 

or improved value of 2ŷ . y2 is accepted when the difference between y2 and 2ŷ  is less than a 
specified tolerance. 



 
4 EXPERIMENTAL DATA 

The data available in the literatures are more related to the experiments that have been 
conducted in uniform flow conditions. Unfortunately, experimental data on gradually-varied 
flow through compound channels are rare. Sturm and Sadiq [11] have conducted a series of 
experiments in a flume 17.1m long having a compound section with the hydraulic and 
geometric parameters (with reference to Fig. 1) as follows. 
 
Bl = Br = 1.0675 m,          b = 0.1335 m,                 h = 0.152 m,           Sml = Smr = Sfl = Sfr = 0, 
nfl = nfr = 0.0171,             nmc = 0.0176,                  S0 = 0.005 
 
They detected M1 and M2 water surface profiles. M1 profiles are used in this research.  

Field et al. [1] used some experimental data on water surface profiles in compound 
channels that have been collected in UK-FCF. Unfortunately, the experimental noise was high 
and masked the details of observations. Other data on gradually-varied flow in compound 
channels have been collected by Bousmar and Zech [12], but the information provided was 
not found to be adequate enough to be used in this research. 

Authors conducted some experiments in a concrete flume 10m long having a compound 
cross section. The flume was constructed in two steps. In the first step, the bed slope provided 
a steep slope condition. The following parameters refer to the hydraulic and geometric 
parameters (with reference to Fig. 1) in this case. 
 
Bl = Br = 0.378 m,              b = 0.074 m,          h = 0.151 m,           Sml = Smr = Sfl = Sfr = 0, 
nfl = nfr = nmc = 0.0104,      S0 = 0.0121 
 
In the second step, the flume was reconstructed to be able to provide a mild slope condition. 
In this case, 0.0032 and 0.0725m were new values for S0 and b, respectively. Other 
parameters were the same as in the first step.   

In these experiments, the discharge was measured with an electromagnetic flow meter 
with 0.01 L/s precision and a V-notch weir (for measurement control). The water levels were 
recorded by a point gauge meter mounted above the flume with a precision of 0.5 mm. The 
overall precision in depth measurement is estimated to be 1 mm. The reproducibility of the 
experiments was tested and the average difference in depth between two experiments with 
similar inputs was found to be 0.5 mm and none greater than 1.3 mm. A set of experiments 
were conducted in the main channel to determine the Manning’s n value reported above.  

The water surface profiles developed in this research were S1, S2, M1 and M2 types. M1 
and S1 profiles were developed using a gate control at the downstream and M2 and S2 
profiles by a free overfall. The M2 profiles were found not to be suitable for one dimensional 
analysis. In this case, as reported by Sturm and Sadiq [11], also supported by our 
observations, a local drawdown region near the downstream end of the channel is developed 
and a noticeable unilaterally mass transfer from the floodplains to the main channel is 
observed where the flow has a fully two dimensional pattern. This phenomenon is intensified 
when the M2 profile approaches to the rapid vertical drawdown.  

In the next section, the experiments that have been conducted by Sturm and Sadiq [11] 
are introduced using the notation Sturm(Q) and those conducted by the authors on the steep 
and mild slopes are referred to as S(Q) and M(Q), respectively. Q is the discharge in L/s. 
 
5 DATA ANALYSIS 

In one dimensional analysis of gradually-varied flows, normal and critical depth values 
play an important role in the behaviour of the governing differential equation and the 



formation of the water surface profiles. Normal depth in compound channels is only a 
function of selected conveyance method, but critical depth values depend on both the 
conveyance method used and Froude number definition. In this research, both the specific 
energy and the momentum functions are used to determine critical depths. This makes the 
study comprehensive and clarifies the role of correct normal and critical depth computation in 
water surface classification in compound channels. In the analysis that follows in the case of 
energy equation, the Froude number definition corresponding to i=3 and in the case of 
momentum approach, the Froude number definition corresponding to i=5 are used in addition 
to i=1 definition. The results of the other definitions of Froude number (i=2 and i=4) are 
between the other results, correspondingly. 

For the purpose of this study, the analysis of experimental data is divided into three 
different categories as follows. 
 
5.1 FIRST CATEGORY 

It was found for some experimental data that there is not any significant difference 
between the results obtained from energy and momentum equations. Different conveyance 
methods did not give significantly different results as well. This behaviour is observed in high 
relative depth values. Therefore, it can be postulated that M1 profiles far from the normal 
depth and S1 profiles far from the critical depth are not sensitive to the choice between energy 
and momentum equations. Fig. 2 shows the calculated results vs. the observed values for a 
M1 profile detected in M(24.46) test.  
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Figure 2. Observed vs. calculated M1 profiles for M(24.46) test 

 
5.2 SECOND CATEGORY 

For some experimental data, the differences between the results of the energy and 
momentum approaches have meaning but the differences compared to experimental noise are 
so small that a definitive conclusion cannot be made. This condition is observed in moderate 
values of relative depth while differences are increased near normal depth for M1 profiles and 
near critical depth for S1 profiles. Fig. 3 presents the observed values for one of the M1 
profiles, detected by Sturm and Sadiq [11] (Sturm(113) test), vs. the calculated values. 
Although, the measured data show an overall trend towards the shape of M1 profiles, the 
noise in data is such that a definitive conclusion cannot be made. As reported in Table 1, the 



COH method gives the best estimate of normal depth compared to other conveyance 
estimation methods. Therefore, COH method can be suggested as the best conveyance 
estimation method in this test.   
 

Table 1. Observed and calculated normal depths for Sturm(113) test 
Measurement EDM COH WDCM DCM SCM Method 

0.2122 0.2110 0.2122 0.2118 0.2105 0.2120 y0 (m) 
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Figure 3. Observed vs. calculated M1 profiles for Sturm(113) test 

 
5.3 THIRD CATEGORY 

Analysis of some experimental data among those collected by Sturm and Sadiq [11] and 
those collected by the authors, not only shows a significant difference between the results of 
energy and momentum equations, but also gives a clear indication of superiority of one 
equation to the other. The followings describe these tests. 
M(23.44) test: In this experiment, there are three critical depths. The value of the first critical 
depth is 13.86cm which occurs in the main channel. The normal depth and two other critical 
depths are found in Table 2. As shown in this table, except EDM method, other conveyance 
estimation methods identify M1 water surface profile type for momentum approach and S1 
type for energy approach. EDM method identifies M1 type for both approaches. 

Fig. 4 shows the observed vs. calculated water surface profiles. Experimental data also 
indicate the formation of M1 profile. Calculation based on the energy equation was stopped 
and discontinued near the related critical depth. As observed in the figure, water surface 
profiles calculated by momentum equation converge to normal depth and behave the same 
way as experimental observations. Therefore, in this experiment, the momentum approach 
performs better than energy approach for all conveyance estimation methods other than EDM. 
Sturm(42.50) test: In this experiment, two separated water surface profiles, corresponding to 
two different water surface elevations at the downstream end of the flume, have been 
developed. The uniform flow depth was measured 17.39cm and the first critical depth was 
calculated 13.72cm in the main channel. The normal and other calculated critical depths are 



reported in Table 3. The results are reported here only for one of the water surface profiles 
while the conclusions are valid for the other water surface profile as well. 
 

Table 2. Calculated normal and critical depths for M(23.44) test 

EDM COH WDCM DCM SCM Method 

0.1729 0.1720 0.1722 0.1699 0.1749 y0 

_ _ _ _ _ , 0.1685 yc(i=1) 

_ , 0.1721 0.1517 , 0.1742 0.1517 , 0.1731 0.1518 , 0.1742 _ yc(i=3) 

_ , 0.1678 0.1521 , 0.1692 0.1520 , 0.1688 0.1521 , 0.1692 _ yc(i=5) 
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Figure 4. Observed vs. calculated M1 profiles for M(23.44) test 

 
Comparison of the values given in Table 3 indicates that, independent of the conveyance 

estimation methods, the energy equation identifies a S1 profile type while the momentum 
equation identifies the type of profile as M1. Also, it can be seen that the COH method gives a 
more accurate estimation of normal depth than the other conveyance methods. Therefore, Fig. 
5 presents only the results of SCM, DCM and COH methods vs. the observed values. Fig. 5 
further supports the consistency of steady uniform flow conveyance methods with the 
momentum approach. 

As mentioned before, in this study other set of experiments were conducted in a steep 
slope. The control gate at the downstream end of the flume was completely opened and a S2 
profile was developed ending to a free overfall. Five experiments were conducted in this 
regard ( S(51.61), S(61.34), S(72.59), S(80.70) and S(101.15) ). Among them, the results of 
S(61.34) and S(101.15) tests are shown in Figs. 6 and 7, respectively. As shown in the figures, 
the dashed lines and solid lines refer to the momentum and energy equations, respectively. 
The results clearly show an overall agreement between experimental data and those resulted 



from the use of momentum equation for this type of profile. The other experiments present 
similar results. 
 

Table 3. Calculated normal and critical depths for Sturm(42.50) test 

EDM COH WDCM DCM SCM Method 

0.1720 0.1729 0.1718 0.1695 0.1764 y0 

_ _ _ _ 0.1520 , 0.1673 yc(i=1) 

0.1521 , 0.1726 0.1522 , 0.1741 0.1522 , 0.1732 0.1522 , 0.1741 _ yc(i=3) 

0.1522 , 0.1688 0.1524 , 0.1692 0.1524 , 0.1691 0.1524 , 0.1692 _ yc(i=5) 
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 Figure 5. Observed and calculated M1 profiles for Sturm(42.50) test 

 
6 CONCLUSIONS 

In this paper, the consistency of the use of steady uniform flow conveyance estimation 
methods with one of the energy and momentum equations for analysis of steady one 
dimensional gradually-varied flow through compound channels was investigated. To achieve 
this, different conveyance estimation methods were combined with different Froude number 
definitions involved in momentum and energy governing equations in order to calculate water 
surface profiles corresponding to experimental data. The conclusion can be made that 
although in some conditions, the difference between the two approaches may not be 
significant, comparison of the observed and computed water surface profiles indicate the 
better performance of momentum equation than energy equation for the S1, S2, and M1 
profiles investigated in this study. The role of conveyance estimation methods and Froude 
number definitions on identifying the correct type of profile and water surface profile 
computation in compound channel was also highlighted in this research. 
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 Figure 6. Observed and calculated S2 profiles for S(61.34) test 
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 Figure 7. Observed and calculated S2 profiles for S(101.15) test 
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