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We construct charged black hole solutions to three-dimensional new massive gravity (NMG), by adding
electromagnetic Maxwell and Chern–Simons actions. We find charged black holes in the form of warped
AdS3 and “log” solutions in specific critical point. The entropy, mass and angular momentum of these
black holes are computed.
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1. Introduction

The three-dimensional gravity has different black hole solu-
tions. The BTZ black holes were found in [1] describe three-
dimensional solutions with a negative cosmological constant.
Adding the higher derivative terms changes the solutions and their
asymptotic behaviors. The topological massive gravity (TMG) de-
scribes propagation of the massive gravitons around the flat, de
Sitter or anti-de Sitter background metrics. This theory is con-
structed by adding a parity-violating Chern–Simons term to the
Einstein–Hilbert action [2]. The cosmological TMG solutions con-
tain either the BTZ black holes [1] or the warped AdS3 black holes
[3] and [4]. The black hole solutions for topologically massive grav-
itoelectrodynamics (TMGE) presented in [4]. In this case the three-
dimensional Einstein–Maxwell theory was investigated by includ-
ing both gravitational and electromagnetic Chern–Simons terms.

The new massive gravity (NMG) was found in [5]. This theory
was constructed by adding a parity-preserving higher derivative
terms to the tree level action. In NMG theory there is also the
BTZ solution as well as the warped AdS3 solutions [6]. In [7] (and
in [8] for TMG) it is obtained that for a critical coupling in NMG
it is possible to find a family of massive logarithmic black holes
(asymptotic to the extremal BTZ black holes in the sense of log
gravity). For more recent works on new massive gravity see [11].

In this Letter and in Section 2, we add electromagnetic Maxwell
and Chern–Simons term to the new massive gravity action. Then
by using the dimensional reduction procedure presented in [4,6,7],
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we find the equations of motion for gravitational and electromag-
netic fields. In Section 3 we use the polynomial (up to second
degree) ansatz and solve the equations of motion. We will find a
charged black hole in addition to the known NMG solutions. Then
we will find the entropy, mass and angular momentum for this
charged black hole. We find the angular momentum by using the
super-angular momentum approach. By writing the metric in the
ADM form and using the first law of black holes thermodynamics
we can read the mass. We then discuss on the domain of validity
of our solution.

In Section 4, we change our ansatz to find the logarithmic
charged solutions. We will use the same method of Section 2 to
compute the metric and the gauge field. Solving the equations of
motion gives solutions in some specific critical points. In this case,
since the theory is asymptotically AdS we can use the ADT ap-
proach to compute the conserved charges. Our computation agrees
exactly with the super-angular momentum approach.

2. NMGE

We start from a three-dimensional gravitational field and cou-
ple it to an electromagnetic filed through the Lagrangian INMGE =
INMG + IEM . The first action is the cosmological new massive grav-
ity theory [5]

INMG = 1

2κ

∫
d3x

√|g|
{

R − 1

m2

(
RμνRμν − 3

8
R2

)
− 2Λ

}
,

(2.1)

where κ = 8πG and m is a relative mass parameter. The second
action is the sum of the electromagnetic Maxwell and Chern–
Simons actions
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IEM = −1

4

∫
d3x

√|g|FμνFμν + μ

2

∫
d3xεμνρAμ∂νAρ,

(2.2)

where μ is the Chern–Simons coupling constant. We try to find
a stationary circularly symmetric solution for this Lagrangian by
using the dimensional reduction procedure, presented in [4,6,7].
We use the following ansatz for the metric and the gauge field

ds2 = λab(ρ)dxa dxb + ζ−2(ρ)R−2(ρ)dρ2,

A = ψa(ρ)dxa, (2.3)

where (a,b = 0,1) and (x0 = t , x1 = ϕ). The parameter λ can be
expressed as a 2 × 2 matrix

λ =
(

T + X Y
Y T − X

)
, (2.4)

and R2 ≡ X2 = −T 2 + X2 + Y 2 is the Minkowski pseudo-norm of
the “vector” X(ρ) = (T , X, Y ). One may reduce the action to the
form of I = ∫

d2x
∫

dρ L. The effective Lagrangian L for NMG part is
given in [6]. Defining the vector L ≡ X ∧ X ′ ,1 where prime denotes
the derivative with respect to ρ , one can write the curvature terms
in the Lagrangian as follows

R = ζ 2
[
−2

(
R R ′)′ + 1

2

(
X ′2)] − 2ζ ζ ′R R ′,

RμνRμν − 3

8
R2

= ζ 4
[

1

2

(
L′2) − 1

4

(
R R ′)′(

X ′2) + 5

32

(
X ′2)2

]

+ ζ 3ζ ′
[(

L · L′) − 1

4
R R ′(X ′2)] + ζ 2ζ ′2 1

2

(
L2). (2.5)

The electromagnetic part for the ansatz (2.3) is given in [4]

LEM = ζ

2
ψ ′Σ · Xψ ′ + 1

2
μψψ ′. (2.6)

To find the equations of motion we first consider ζ as a gen-
eral function of ρ then after the variations we choose a gauge,
in which, ζ will be a constant value. The equations of motion for
this model are as follows:

By variation of X :

Ξ = 1

2κ

(
X ∧ (

X ∧ X ′′′′) + 5

2
X ∧ (

X ′ ∧ X ′′′)
+ 3

2
X ′ ∧ (

X ∧ X ′′′) + 9

4
X ′ ∧ (

X ′ ∧ X ′′) − 1

2
X ′′ ∧ (

X ∧ X ′′)
−

(
1

8

(
X ′)2 + m2

ζ 2

)
X ′′

)
+ m2

2ζ 2
ψ ′Σψ ′ = 0. (2.7)

Variation relative to ζ leads to the Hamiltonian constraint:

H ≡ 1

2κ

[(
X ∧ X ′) · (X ∧ X ′′′) − 1

2

(
X ∧ X ′′)2

+ 3

2

(
X ∧ X ′) · (X ′ ∧ X ′′)

+ 1

32

(
X ′2)2 + m2

2ζ 2

(
X ′)2 + 2m2Λ

ζ 4

]

+ m2

2ζ 2
ψ ′Σ · Xψ ′ = 0, (2.8)

1 (A ∧ B)i = ηi jε jkl Ak Bl .

and finally variation relative to ψ gives

(
ζ(Σ · X)ψ ′ − μψ

)′ = 0, (2.9)

so the last equation gives a constant of motion, which by a gauge
transformation can be set to zero [4]. One may conclude from (2.9)
that ψ ′ = μ

ζ R2 Σ · Xψ . From now on we will use the same method

as [4]. Defining a null vector field S E = − κ
2 ψΣψ , one deduces that

S ′
E = 2μ

ζ R2 X ∧ S E . Also it can be shown that

ψ ′Σψ ′ = − 2μ2

ζ 2 R2κ

[
S E − 2

R2
X(S E · X)

]
,

ψ ′Σ · Xψ ′ = 2μ2

ζ 2 R2κ
S E · X, (2.10)

which can be used to simplify the equations of motion. For exam-
ple the Hamiltonian becomes

(
X ∧ X ′) · (X ∧ X ′′′) − 1

2

(
X ∧ X ′′)2

+ 3

2

(
X ∧ X ′) · (X ′ ∧ X ′′) + 1

32

(
X ′2)2

+ m2

2ζ 2

(
X ′)2 + 2m2Λ

ζ 4
+ 2μ2m2

ζ 4 R2
S E · X = 0. (2.11)

3. Black hole solution

In this section we try to find the black hole solutions by choos-
ing the following ansatz for the vector field X

X = αρ2 + βρ + γ . (3.1)

Inserting this ansatz into the Hamiltonian constraint, one finds that
we should insert α2 = α · β = 0, which is equivalent to α ∧ β =
bα. For convenience we set α · γ = −z. Since we have the same
situation as [4] we choose μ = ζ . Using Eqs. (2.10) and (2.7) we
are able to find the value of S E · X as

2m2

ζ 2 R2
S E · X =

(
17

4
b2 − 2m2

ζ 2

)
z + 2z2, (3.2)

where b2 = β2. Using (2.10) together with (2.7) and (2.11) we find
the value of S E as

S E = ζ 2

2m2

(
R2α + 2zX

)(
2z + 17

4
b2 − 2m2

ζ 2

)
. (3.3)

Putting S E into the Hamiltonian constraint (2.11) we find the fol-
lowing algebraic relation(

5

4
b2 − 2m2

ζ 2

)
z +

(
1

32
b4 + 2m2Λ

ζ 4
+ m2

2ζ 2
b2

)
= 0, (3.4)

where the coefficient of z2 from the gravity part has been can-
celed by the gauge field part. This is our first equation coming from
the Hamiltonian constraint. Another equation will be found by the
constraint S ′

E = 2
R2 X ∧ S E , where computing X ∧ (3.3) gives us the

right-hand side of it as

2

R2
X ∧ S E = − ζ 2

m2

(
17

4
b2 − 2m2

ζ 2
+ 2z

)
(bρα + α ∧ γ ), (3.5)

and computing the derivative of (3.3) gives the left-hand side of
S ′

E = 2
R2 X ∧ S E
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S ′
E = ζ 2

2m2

(
17

4
b2 − 2m2

ζ 2
+ 2z

)
× {

α
(
2b2ρ − 4zρ + 2β · γ ) + 2z(2ρα + β)

}
, (3.6)

where in the above equation we have used R2 = X2 = b2ρ2 +γ 2 +
2(α · γ )ρ2 + 2(β · γ )ρ . Comparing Eqs. (3.5) and (3.6), leads to

(b + 1)

(
17

4
b2 − 2m2 + 2z

)
= 0, (3.7)

where m2 = m2

ζ 2 . This equation has two obvious solutions b = −1

and z = m2 − 17
8 b2, where the second one has been described

in [6].

3.1. The case of b = −1

By defining Λ = Λ

ζ 2 , the Hamiltonian constraint in Eq. (3.4)

gives

z = −1 + 16m2(1 + 4Λ)

8(5 − 8m2)
. (3.8)

Following to [6] we can choose a rotating frame and a length-time
scale such that

α =
(

1

2
,−1

2
,0

)
, β = (ω,−ω,−1),

γ = (z + u, z − u,−2ωz), (3.9)

where u = β2
0 ρ2

0
4z + ω2z. By these parameters one finds [6]

R2 = (1 − 2z)ρ2 + γ 2 ≡ β2
0

(
ρ2 − ρ2

0

)
. (3.10)

Knowing the above parameters, we are able to write the metric as
warped AdS3 form [6]

ds2 = (
1 − β2

0

)[
dt −

(
ρ

1 − β2
0

+ ω

)
dφ

]2

− β2
0

1 − β2
0

(
ρ2 − ρ2

0

)
dφ2 + 1

β2
0ζ 2

dρ2

ρ2 − ρ2
0

. (3.11)

One may write the metric in the ADM form by choosing r2 = ρ2 +
2ωρ + ω2(1 − β2

0 ) + β2
0 ρ2

0
1−β2

0

ds2 = −β2
0
ρ2 − ρ2

0

r2
dt2 + r2

[
dφ − ρ + (1 − β2

0 )ω

r2
dt

]2

+ 1

β2
0ζ 2

dρ2

ρ2 − ρ2
0

, (3.12)

where ρ0 (describes the location of the horizon) together with ω
are two parameters of theory. The value of β0 is given by

β2
0 = 21 + 16m2(−1 + 4Λ)

4(5 − 8m2)
. (3.13)

It remains to find the electromagnetic field for this solution. By
writing ψ = ψ T Σ0 = (−ψ1, ψ0), the components of S E will be

S0
E = κ

2

(
ψ2

0 + ψ2
1

)
= 1

2m2

(
17

4
− 2m2 + 2z

)(
β2

0

2

(
ρ2 − ρ2

0

)

+ 2z

(
ρ2

2
+ ωρ + u + z

))
,

S1
E = κ

2

(
ψ2

0 − ψ2
1

)
= 1

2m2

(
17

4
− 2m2 + 2z

)(
−β2

0

2

(
ρ2 − ρ2

0

)

+ 2z

(
−ρ2

2
− ωρ − u + z

))
,

S2
E = κ

2
(2ψ0ψ1)

= − 1

m2

(
17

4
− 2m2 + 2z

)
(ρ + 2zω)z, (3.14)

so the first two components give

ψ0 = ±
√

21 − 8m2 − 4β2
0

8κm2

(
1 − β2

0

)
,

ψ1 = ±
√

21 − 8m2 − 4β2
0

8κm2

[
ρ + ω

(
1 − β2

0

)]
. (3.15)

The equation for S2
E shows that the signs of the solutions must be

opposite, i.e.,

A = ψa dxa

= ±
√

21 − 8m2 − 4β2
0

8κm2

{(
1 − β2

0

)
dt − [

ρ + ω
(
1 − β2

0

)]
dφ

}
.

(3.16)

3.2. Entropy, mass and angular momentum

We begin this section by computing the entropy. According to
the Wald formula the entropy for our metric is given by [6]

S = 4π Ah

(
δL

δR0202

(
g00 g22)−1

)
h

= Ah

4G

(
1 − 1

m2

[(
g00)−1R00 + g22R22 − 3

4
R

]
h

)
, (3.17)

where Ah denotes the area of the horizon. We find the entropy as

S = Ah

4G

(
1 + 1

2m2

[(
X · X ′′) − 1

4

(
X ′2)])

= Ah

8G

[
8m2 − 8z − 1

4m2

]
, (3.18)

where similar to NMG case, here again the value of entropy is
independent of ρ0 and ω and it is a renormalized form of the
Bekenstein–Hawking entropy by a constant factor.

On the other hand, the computation of mass and angular mo-
mentum is possible if we could linearize the field equations and
use ADT approach [9] and [10]. But instead of this, we follow
Clément’s guess in [6] and compute the global charges for grav-
itational part by using the super-angular momentum vector. The
super-angular momentum contains two parts. The first part is
coming from the NMG part of the model and is given by [6]

J NMG = − ζ 2

m2

{
(X)2[X ∧ X ′′′ − X ′ ∧ X ′′] + 2

(
X · X ′)X ∧ X ′′

+
[

1

8

(
X ′)2 − 5

2

(
X · X ′′)]X ∧ X ′

}
+ X ∧ X ′. (3.19)

The other contribution is coming from the electromagnetic part.
Knowing the fact that the Lagrangian has an SL(2, R) symmetry
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one is able to find the electromagnetic contribution to super-
angular momentum as

J EM = 1

2

(
∂LEM

∂ψ ′
0

ψ1 − ∂LEM

∂ψ ′
1

ψ0,
∂LEM

∂ψ ′
0

ψ1 + ∂LEM

∂ψ ′
1

ψ0,

−∂LEM

∂ψ ′
0

ψ0 + ∂LEM

∂ψ ′
1

ψ1

)

= 1

2κ
S E . (3.20)

Summing these two contributions we find the total super-angular
momentum,

1

2κ
J NMGE = 1

2κ
J NMG + 1

2κ
S E . (3.21)

Inserting the values of X and ψ0 and ψ1 we find the following
vector

J NMGE = 1

m2
(2z − 1)

(
m2 − z − 1

8

)(
ρ2

0α + β ∧ γ
)
. (3.22)

To find the mass and angular momentum we do the same steps as
[6]. The mass and angular momentum can be computed from

M = − ζ

8G

(
δ J Y + Δ

)
, J = ζ

8G

(
δ J T − δ J X)

, (3.23)

where δ J is the difference between the values of the super-angular
momentum for the black hole solution and for the background
(ρ0 = ω = 0) solution. As we will see, the value of Δ is not im-
portant for us (it depends on the specific theory we are looking).

Inserting the values ρ0 = ω = 0 in (3.12) the horizon-less back-
ground metric will be

ds2 = −β2
0 dt2 + ρ2

(
dφ − 1

ρ
dt

)2

+ 1

β2
0ζ 2

dρ2

ρ2
, (3.24)

with α = ( 1
2 ,− 1

2 ,0), β = (0,0,−1), γ = (z, z,0). Using the above
relations one finds the following value for super-angular momen-
tum in background solution

J BG = − z

m2
(2z − 1)

(
m2 − z − 1

8

)
(1,1,0). (3.25)

For black hole solution one finds

J = (2z − 1)

m2

(
m2 − z − 1

8

)(
ρ2

0

2
(1,−1,0) + (

u − z
(
1 + 2ω2),

−u − z
(
1 − 2ω2),2ωz

))
, (3.26)

so the angular momentum after simplification becomes

J = ζ

128Gzm2

(
8m2 − 8z − 1

)
(2z − 1)

(
ρ2

0 − 4ω2z2). (3.27)

To compute the mass one can use the first law of black hole
thermodynamics in the modified Smarr-like formula [4] which is
appropriate for warped AdS3 black holes, i.e.,

M = THS + 2Ωh J . (3.28)

Using the ADM form of the metric we can read the Hawking tem-
perature and the horizon angular velocity as [4]

T H = 1

4π
ζ rh

(
N2)′∣∣

h, Ωh = −Nφ
∣∣
h. (3.29)

By comparing the metrics to the following one

ds2 = −N2 dt2 + r2(dφ + Nφ dt
)2 + 1

(ζ rN)2
dρ2, (3.30)

one finds that N2 = β2
0

ρ2−ρ2
0

r2 and Nφ = −ρ+(1−β2
0 )ω

r2 so we can

read the Hawking temperature and angular velocity as T H = ζβ2
0 ρ0
Ah

and Ωh = 2π
√

1−β2
0

Ah
, where the area of the horizon is given by Ah =

2π√
1−β2

0

[ρ0 + ω(1 − β2
0 )]. Using the first law we find the following

value for the mass

M = − ζ

16Gm2

(
8m2 − 8z − 1

)
(2z − 1)ωz. (3.31)

It is important to note that our result satisfies in differential form
of first law i.e. dM = T H dS + Ωh d J , for both variables ρ0 and ω
of the black hole.

3.3. Domain of validity

To have a causally regular warped AdS3 black hole one needs to
consider 0 � β2

0 � 1 or equivalently 0 � z � 1
2 . Using this condition

we can find the domain of validity of the solution

16m2 − 21

64m2
� Λ � −1 + 16m2

64m2
, for m2 � 5

8
, or 0 > m2,

−1 + 16m2

64m2
� Λ � 16m2 − 21

64m2
, for

5

8
� m2 > 0. (3.32)

On the other hand the solution describes a magnetic field given by

B = Fρφ = ∓
√(

2κm2
)−1

(
17

4
− 2m2 + 2z

)
, (3.33)

where the reality condition for the value of magnetic field implies
21
8 � m2 > 0.

3.4. Relation to NMG

As a check we can show that the NMGE solution reduces to
NMG when we choose the value of z as follows

z = m2 − 17

8
. (3.34)

In this value the electric field found in (3.14) will be zero and we
find the same metric as [6].

The values for entropy, angular momentum and mass are given
by

S = Ah

2Gm2
, J = 2z − 1

8Gzm2

(
ρ2

0 − 4ω2z2),
M = ζ

Gm2
(1 − 2z)ωz, (3.35)

which are in agreement with [6].

4. “Log” black hole solutions

In this section we try to find a new type of solutions known as
“log” solutions. We choose the following ansatz for X [8]

X = αF (ρ) + βG(ρ). (4.1)

Inserting this into the Hamiltonian constraint gives rise again to
α2 = α · β = 0. Additionally one finds G = aρ . It also gives the
following relation for β2 = b2
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1

32
b4a4 + m2

2
b2a2 + 2m2Λ = 0. (4.2)

Using the relations found in previous section one can find the
value of S E as

S E = 1

2m2
a4b4ζ 2ρ2α

(
ρ2 F (4) + 4ρ F ′′′ +

(
17

8
− m2

a2b2

)
F ′′

)
,

(4.3)

so the derivative of S is

S ′
E = 1

2m2
a4b4ζ 2ρα

(
ρ3 F (5) + 8ρ2 F (4) +

(
113

8
− m2

a2b2

)
ρ F ′′′

+ 2

(
17

8
− m2

a2b2

)
F ′′

)
, (4.4)

and

2

ζ 2 R2
X ∧ S E

= −a3b3ρα

(
ρ2 F (4) + 4ρ F ′′′ +

(
17

8
− m2

a2b2

)
F ′′

)
. (4.5)

From the constraint S ′
E = 2μ

ζR2 X ∧ S E we can obtain a differential

equation for F (ρ) as

abρ3 F (5) + 2(4ab + 1)ρ2 F (4) +
[(

113

8
− m2

a2b2

)
ab + 8

]
ρ F ′′′

+ 2(ab + 1)

[
17

8
− m2

a2b2

]
F ′′ = 0. (4.6)

Since a and b are coming in the same footing in our equations one
may fix a or b to one. We fix a = 1 and obtain b from Eq. (4.2).
Without losing the generality, instead to solve directly the differ-
ential equation (4.6) we insert the following general function with
arbitrary constants A, B and v into (4.6)

F (ρ) = Aρv lnρ + B. (4.7)

In this way we find the two following algebraic equations (l = 2
b )

v(v − 1)(v + l)

(
−4v(v − 1) − 1

2
+ m2l2

)
= 0,

40v4 + 32(l − 2)v3 + (
27 − 48l − 6m2l2

)
v2

+ (
4m2l2(1 − l) + 2(9l − 1)

)
v + l

(
2m2l2 − 1

) = 0. (4.8)

Solving the above equations one finds

v = 0,1: m2 = 1

2l2
, v = 1

2
: m2 = − 1

2l2
,

v = −l: m2 = 8l2 + 8l + 1

2l2
. (4.9)

These solutions valid when we impose (4.2). This says that they
hold in critical points l, in terms of Λ. To find the metric we
choose the following basis vectors as [7]

α = 1

2

(
1 + l2,1 − l2,−2l

)
,

β = (
1 − l−2,−1 − l−2,0

)
, (4.10)

which leads to the metric

ds2 = (−2l−2ρ + F (ρ)
)

dt2 − 2lF (ρ)dt dφ

+ (
2ρ + l2 F (ρ)

)
dφ2 + l2

4ρ2
dρ2. (4.11)

4.1. Charged black holes

Among the solutions found in (4.9) the first three cases of v =
0, 1

2 ,1 have vanishing S E so they describe the known log-NMG
solutions found in [7]. So here we just look at the charged black
holes for the case of v = −l.

4.1.1. The case of v = −l
The logarithmic charged black hole solution is given by

ds2 = (−2l−2ρ + (
Aρ−l log(ρ) + B

))
dt2

− 2l
(

Aρ−l log(ρ) + B
)

dt dφ

+ (
2ρ + l2

(
Aρ−l log(ρ) + B

))
dφ2 + l2 dρ2

4ρ2
, (4.12)

and

S E = −16A
(l + 1)(2l + 1)

l(8l2 + 8l + 1)
ρ−lα. (4.13)

Now we can read the gauge field as

A = ψa dxa = ±
√

−16
A

κ

(l + 1)(2l + 1)

l(8l2 + 8l + 1)
ρ−l(dt − l dφ). (4.14)

The similar results is obtained for TMGE in [8] (see Eqs. (51) and
(52)). The above solution shows that the charged black hole found
here contains both electric and magnetic fields. In order to have a
real electromagnetic field we need one of the two following con-
ditions

1. A > 0; l < −1 or −1

2
−

√
2

4
< l < −1

2
, or

−1

2
+

√
2

4
< l < 0,

2. A < 0; −1 < l < −1

2
−

√
2

4
, or

−1

2
< l < −1

2
+

√
2

4
, or 0 < l. (4.15)

The entropy of this black hole can be computed from the Wald
formula evaluated at the horizon ρ = 0 [7]

S = π

2G

([(
1 − 1

2m2l2

)(
2ρ + l2 F (ρ)

) 1
2

]

− 2

m2

[
ρ2(2ρ + l2 F (ρ)

)− 1
2 F ′′(ρ)

])
h
. (4.16)

The entropy has a finite value in the case where l < 0. So we find

S = π

4m2G

√
B

l2
(
2m2l2 − 1

) = Ah

8m2l2G

(
2m2l2 − 1

)
. (4.17)

Again in this case the entropy is proportional to the area of the
horizon. To compute the angular momentum we can use two
methods. In first method we use the information in previous sec-
tion. The super-angular momentum for the NMG part is given by

J NMG = − b3

m2
α

(
−ρ2(ρ F ′′′ + F ′′) + 1

8

(
F − ρ F ′))

+ bα
(

F − ρ F ′). (4.18)

The background corresponds to A = B = 0. Using the relation
(4.13) and by (3.19), (3.20) and (3.23) one finds the following value
for angular momentum
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J = 2ζ l2(l + 1)

G(8l2 + 8l + 1)
B. (4.19)

As an alternative way we can apply the second method. The metric
in (4.11) is asymptotically AdS if limρ→∞(ρ−1 F (ρ)) = 0 (or l > −1
in this case) so we can use the ADT approach to compute the con-
served charges. The net Killing charge is given by

Q (ξ) = Q G(ξ) + Q EM(ξ). (4.20)

The Q G is the Killing charge corresponding to the gravitational
part and is given by [7]

Q G(ξ) = ζ

Gm2l3

(
ρ3 F ′′′ + ρ2 F ′′

+ 1

4

(
1

2
− m2l2

)(
ρ F ′ − F

))([α]ξ)0
, (4.21)

where [α] is the matrix

α =
( −αY −αT + αX

αT + αX αY

)
. (4.22)

To find the angular momentum we need the Killing vector ξ =
(0,1). Then we find

Q G(ξ) = ζ

Gm2
l−1(l + 1)

(
(2l + 1)Aρ−l + lB

)
. (4.23)

In addition for the background (A = B = 0) we have Q BG
G = 0. The

Q EM is the Killing charge with respect to the electromagnetic part.
The difference between the solution and the background in elec-
tromagnetic part can be found in [3]

δQ EM(ξ) = ζπ

m2κ

{
ξ T Σ .

(
S E − SBG

E

) − κ
(
ψ − ψBG)

ψBGξ T }0
.

(4.24)

In this case the background A = B = 0 results the vanishing of the
gauge field so we find

δQ EM(ξ) = − ζ

Gm2
l−1(l + 1)(2l + 1)Aρ−l. (4.25)

Then the angular momentum is

J = δQ G(ξ) + δQ EM(ξ) = 2ζ l2(l + 1)

G(8l2 + 8l + 1)
B, (4.26)

where it is exactly equal to (4.19) and independent of ρ .
To find the mass of the solution we can use the second method

and insert the Killing time like vector ξ = (−1,0). It simply gives
M = J

l . We can find the Hawking temperature for this black hole,

which is equal to zero, T H = 1
2π

√
gρρ d

dρ

√
gtt |h = 0.

5. Summary and discussion

In this Letter we find the charged solution for the three-
dimensional new massive gravity by adding the Maxwell and
Chern–Simons term into the action. We use the reduced action ap-
proach to find the equation of motion for gravitational and gauge
fields. Then we consider two types of ansatz. In first case we con-
sider the second order polynomial solution (3.1). Our results con-
tain those solutions with vanishing gauge field (uncharged) which

has been found previously and a charged black hole solution in
warped AdS3 form.

We show that the entropy of such a black hole (3.18), is similar
to uncharged cases and is proportional to the area of the horizon.
We also find the angular momentum (3.27) and the mass (3.31)
for this charged black hole using the first law of thermodynamics
(3.28) for black holes. Our computation shows that this solution is
valid in a special range of cosmological constant Λ with respect to
relative mass parameter m2 and the Chern–Simons coupling con-
stant μ = ζ (3.32).

In second case we consider the logarithmic ansatz (4.7). Solving
equations of motion gives us different solutions in different critical
points. Again in this case there are uncharged solutions as well
as a charged solution. The charged solution corresponds to v = −l

with relative mass parameter m2 = μ2( 8l2+8l+1
2l2

). At this point the

cosmological constant is given by Λ = μ2 32l2+32l+5
2l2(8l2+8l+1)

. The domain

of validity for this black hole is when l > −1 together with (4.15).
Since in this type of solutions the asymptotic of the theory

is the AdS space we can find the conserved charges of the the-
ory by using the ADT formalism. We show that the infinite parts
of the charges in gravitational part (4.23) and in the electromag-
netic part (4.25) cancel each other and give a finite value for mass
M = J

l and angular momentum (4.26) (which exactly agrees with
the value found in super-angular momentum approach (4.19)).
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