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Abstract. The Monte Carlo method is used to simulate electron transport in bulk 
würtzite phases of 6H-SiC and 4H-SiC using a three valley analytical band structure. 
Spherical, non-parabolic conduction band valleys at the , K and U symmetry points of the 
Brillouin zone are fitted to the first-principles band structure. The electron drift velocity is 
calculated as a function of temperature and ionized donor concentration in the ranges of  
300-600 K and 1016-1020 cm-3, respectively. Due to the freezout of deep donor levels the role 
of ionized impurity scattering in 6H-SiC is suppressed and the role of phonon scattering is 
enhanced, compared to 4H-SiC. For two materials, it is found that electron velocity overshoot 
only occurs when the electric field is increased to a value above a certain field unique to each 
material. This critical field is strongly dependent on the material parameters. 

 
Keywords: Monte Carlo; non-parabolic, velocity overshoot, ionized donor, Brillouin 

zone. 
 
 
1. INTRODUCTION 
 

SiC poly-types are being proposed for electronic and photonic devices operating under 
high-temperature and high-power conditions, mainly due to its highly suited thermal and 
transport properties [1-5]. Although material growth and characterization issues have been 
extensively addressed in the literature, there have been few experimental efforts to investigate 
electronic characterization of SiC poly-types. This is due to the difficulty in sample 
preparation that prevailed for several years. Strong and recent research efforts resulted from 
the technological advances in the SiC poly-types growth processes [6-10] and propelled the 
characterization of their band structure, electrical, and optical properties [11-13]. Their 
theoretical electron transport properties were studied in the past years, including the 
investigation of the steady–state behavior [14-16] high–frequency transport properties [17] 
and more recently the ultrafast transient response [18]. Strong field effects on SiC polytypes 
were investigated either through Monte Carlo simulation, quantum transport based and 
Boltzmann-like equations [19]. 

The purpose of this work is to present a study on the influence of the lattice 
temperature and ionized donor concentration in the hot electron mobility in 6H-SiC and 4H-
SiC subjected to a high applied electric field along the hexagonal $c$-axis direction in the 
würtzite material. The focus on these SiC poly-types is due to their potential applications 
associated with their high saturation velocities, particularly in the domain of high temperature 
and high-speed/high-field nanostructures. 

The transport properties are calculated through the numerical solution of the 
Boltzmann transport equation by Monte Carlo technique. This paper is organized as follows. 
Details of the Monte Carlo model and the electron scattering mechanisms calculations are 
presented in section 2 and the results of Monte Carlo simulations carried out on 6H-SiC and 
4H-SiC structures are interpreted in section 3.  
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2.  METHOD OF CALCULATIONS 
 

The principle of the Monte Carlo method as applied to the determination of 
distribution functions is to simulate the motion of one electron in momentum space. This 
motion consists alternately of a drift with constant velocity in the electric field followed by a 
scattering by phonons. The time which the electron drifts in the electric field, the type of 
scattering process and the final state are random quantities with probability distributions 
which can be expresses in terms of the transition rates due to the various processes and the 
strength of the electric field. These probability distributions, however, can be quite complex, 
particularly that for the drift time, whereas it is only straightforward to generate by computer 
random numbers with equal probability over some finite range. As a result techniques are 
required to convert this equal probability distribution into the complex distributions required 
here. Suppose that the transition rate between two wave vector states k and k' is Sq(k, k'). 
Here the subscript q denotes the scattering process and can take the values q= 1, 2...N, if there 
are N possible processes. The probability per unit time that the electron will drift for a time t 
in an electric field E and then be scattered is given by 
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Also k0 is the wave vector at t=0 at the beginning of the flight, i.e. the final state after 

the previous scattering event. The procedure adopted from by Kurosawa [20] to generate 
random times from the probability distribution was to use random numbers r generated with 
equal probability between 0 and 1. Then using P(r)dr=P(t)dt we obtain 
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For some scattering processes the integral in 2 can be evaluated analytically and t 

determined from a random number r analytically or numerically. However, the complicated 
form of Sq(k, k') for some of the scattering processes considered here means that the integral 
can not be evaluated analytically and t can then be determined from r only by solving the 
integral equation or by interpolation in a numerical table of  as a function of t and the initial 
components of k. Instead of these possibilities an alternative technique has been used to 
generate times from the distribution 1. Suppose in addition to the real scattering processes 
present in the semiconductor we include fictitious processes for which 

 
                            )'()()',( 00 kkkkkS                                                        (3) 

 
Since the delta function does not allow the electron wave vector to change in the 

scattering event, this self-scattering process is of no physical significance and then the 
function 0(k) is completely arbitrary. Including this additional process in equation 1 leads to 
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and we can now choose 0(k) in such a way that the exponential factor becomes simple. The 
particular choice which has been made for 0(k) in the present work is 
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where  is constant. This choice for 0(k), while not necessarily the optimum expression, has 
the advantage that 4 becomes simply 
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and so has the effect of simulating the motion of an electron that has an energy-independent 
relaxation time of 1/. The constant  is taken to be at least as large as the largest value of 
(k) of interest in order to avoid negative values of 0(k). The effect of including the self-
scattering process is to subdivide the real flight of the electron into shorter flights of duration 
governed by the probability distribution 5. It is possible to see this in an entirely mathematical 
way by writing the original probability distribution 1 in the form  
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where for simplicity we have written [k(t)] as (t). Having determined the time of free flight, 
it is necessary to determine the scattering process responsible for terminating the flight. Since 
the probability of the electron being scattered by process q is proportional to q(k) and since 

, it is only necessary to generate a random number S between 0 and  and test the 

inequality  
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for all m. When this inequality is satisfied, the scattering process m is selected. It is at this 
stage that the only disadvantage of using the simple distribution 3 is made apparent, because 
there is now a finite probability of self-scattering being selected. Since this process does not 
change the electron wave vector, it does not contribute to the determination of the distribution 
function. It is clearly an advantage to make  as small as possible in order to make the 
number of self-scattering events a minimum. Despite this disadvantage, it is still more 
efficient to include self-scattering than to work directly with the distribution 1, particularly 
since the final state after the self-scattering is known. 

For all real processes, further random numbers are required to determine the final state 
after the scattering. It is convenient to regard phonon absorption and emission as separate 
processes in 7. Then the energy of the final state is also determined by this inequality for all 
the processes considered here, since the energy change is either independent of the change in 
momentum, as in polar and inter-valley scattering, or zero as in acoustic scattering. We note 
that this would not be the case if the acoustic phonon energy were kept finite, when a more 
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complicated procedure would be required. However, in the present case it then only remains 
to determine the components of k corresponding to this energy after the scattering event. 

In order to calculate the electron transport properties in semiconductors and devices, 
we must identify the important electron scattering mechanisms. In a semiconductor, there are 
a number of physical processes which can cause an electron in a certain state to be scattered. 
The relative importance of each scattering process in a given material depends on the electric 
field strength and the material properties. When an electron is scattered, the wave vector of 
the electron is changed from an initial wave vector k to some final wave vector k'. The time 
required for a scattering process to change the wave vector from k to k' is called the collision 
duration c. Here we assume collisions occur with c=0. The inclusion of a scattering in 
transport calculations normally requires the formulation of the total scattering rate and angular 
dependence of the scattering between state k and state k'. The transition rate S(k, k') from state 
k to state k' is normally calculated by using Fermi's golden rule 
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where 
2

||' kHk is the matrix element between plane wave functions of the perturbing 

Hamiltonian describing the scattering agency, E is the energy gain (+) or loss (-) during the 
transition and the integration is over all final states restricted by the energy conserving delta 
function. G( k,k') is the overlap integral between the periodic parts of the Bloch periodic 
functions of the initial and final states. The overlap integral is exactly equal to unity for pure 
s-state wave functions (parabolic conduction bands). When the non-periodicity of the bands is 
taken into account, the overlap integral is always less than one and is usually expressed as a 
function of the non-periodicity coefficients. Once the overlap integral between the periodic 
parts of the Bloch functions at k and k' are known the total scattering rate R(k) can be 
calculated by integrating S(k, k') in equation 9 over all allowed final states [21-22] 
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where V is the volume of the crystal. 

The scattering mechanisms can be classified into two main types, those due to lattice 
vibrations and called lattice (or phonon) scattering and defect scattering due to ionized 
impurities and alloy disorder. In the following sections the behavior of the electron scattering 
rates as a function of energy will be shown for various scattering processes. 
 
2.1. DEFORMATION POTENTIAL SCATTERING 
 

The acoustic modes modulate the inter-atomic spacing. Consequently, the position of 
the conduction and valence band edges and the energy band gap will vary with position 
because of the sensitivity of the band structure to the lattice spacing. The energy change of a 
band edge due to this mechanism is defined by a deformation potential and the resultant 
scattering of carriers is called deformation potential scattering. The energy range involved in 
the case of scattering by acoustic phonons is from zero to  , where v is the velocity of 
sound, since momentum conservation restricts the change of phonon wave-vector to between 
zero and  2k, where k is the electron wave-vector. Typically, the average value of k is of the 
order of 10

vk2

7 cm-1 and the velocity of sound in the medium is of the order of 105 cm/s. Hence, 
  1 meV, which is small compared to the thermal energy at room temperature. vk2
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Therefore, the deformation potential scattering by acoustic modes can be considered as an 
elastic process except at very low temperature. The deformation potential scattering rate with 
either phonon emission or absorption for an electron of energy E in a non-parabolic band is 
given by Fermi's golden rule as [8, 9] 
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where Dac is the acoustic deformation potential,  is the material density and  is the non-
parabolicity coefficient. The formula clearly shows that the acoustic scattering increases with 
temperature. 
 
2.2. PIEZOELECTRIC SCATTERING 
 

The second type of electron scattering by acoustic modes occurs when the 
displacements of the atoms create an electric field through the piezoelectric effect. This can 
occur in the compound semiconductors such as the III-V and II-VI materials including SiC, 
which in fact has a relatively large piezoelectric constant. The piezoelectric scattering rate for 
an electron of energy E in an isotropic, parabolic band has been discussed by Ridley [10] who 
included the modification of the Coulomb potential due to free carrier screening. The 
screened Coulomb potential is written as 
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where s is the relative dielectric constant of the material and q0 is the inverse screening 
length, which under non-degenerate conditions is given by  
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where n is the electron density. The expression for the scattering rate of an electron in a non-
parabolic band structure retaining only the important terms can be written as [8-9] 
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where Kav  is the dimensionless so called average electromechanical coupling constant. 
 
2.3. POLAR OPTICAL PHONON SCATTERING 
 

The dipolar electric field arising from the opposite displacement of the negatively and 
positively charged atoms provides a coupling between the electrons and the lattice which 
results in electron scattering. This type of scattering is called polar optical phonon scattering 
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and at room temperature is generally the most important scattering mechanism for electrons in 
III-V semiconductors, and this is also the case in SiC despite the fact that the optical phonon 
energy is particularly high at  93 meV which suppresses the phonon population and also 
electrons must reach that energy before phonon emission is possible. The scattering rate due 
to this process for an electron of energy E in an isotropic, non-parabolic band is [8-9] 
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where Nop is the phonon occupation number and the upper and lower cases refer to absorption 
and emission, respectively. For small electric fields, the phonon population will be very close 
to equilibrium so that the average number of phonons is given by the Bose-Einstein 
distribution 
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where  op  is the polar optical phonon energy. 

 
2.4. NON-POLAR OPTICAL PHONON SCATTERING 
 

Non-polar optical phonon scattering is similar to deformation potential scattering, in 
that the deformation of the lattice produces a perturbing potential but in this case the 
deformation is carried by optical vibrations. The non-polar optical phonon scattering rate in 
non-parabolic bands is given by [8, 9]  
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where Dod is the optical deformation potential and  opEE  ' is the final state energy 

phonon absorption (upper case) and emission (lower case).  
 
2.5. IMPURITY SCATTERING 
 

This scattering process arises as a result of the presence of impurities in a 
semiconductor. The substitution of an impurity atom on a lattice site will perturb the periodic 
crystal potential and result in scattering of an electron. Since the mass of the impurity greatly 
exceeds that of an electron and the impurity is bonded to neighboring atoms, this scattering is 
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very close to being elastic. Ionized impurity scattering is dominant at low temperatures 
because, as the thermal velocity of the electrons decreases, the effect of long-range 
Coulombic interactions on their motion is increased. The electron scattering by ionized 
impurity centers has been discussed by Brooks-Herring [22-24] who included the 
modification of the Coulomb potential due to free carrier screening. The scattering rate for an 
isotropic, non-parabolic band structure is given by [8, 9] 
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where ni is the impurity concentration, q0 is the screening length and ks is the dielectric 
constant of the material. 
 
 
3. RESULTS AND DISCUSSION 
 

Electron drift velocity as a function of electric field and electron donor concentration 
are important in determining the performance of high-speed and microwave semiconductor 
devices. Here we show the results of temperature and doping dependencies of the steady-state 
velocity-field characteristics and valley occupancy in the bulk 6H-SiC and 4H-SiC crystal 
structures. Fig. 1 shows the simulated velocity-field characteristic of these two structures at 
300 K, with a background doping concentration of 1016 cm-3, and with the electric field 
applied along the hexagonal c-axis. The peak drift velocity for 4H-SiC and 6H-SiC are 
1.25×105 and 105 m/s, respectively. At higher electric fields, inter-valley optical phonon 
emission dominates, causing the drift velocity to saturate at around 0.75×105 m/s for both 
phases. The threshold field for the onset of significant scattering into satellite conduction band 
valleys is a function of the inter-valley separation and the density of electronic states in the 
satellite valleys. 

The average carrier kinetic energy as a function of electric field is shown in Fig. 2, for 
6H-SiC (bold circle) and 4H-SiC (open circle). The curves have the typical form of other  
III-V compounds, which is a consequence of inter-valley transfer. At high fields, the curve for 
6H-SiC suggests that the average electron energy is higher than for 4H-SiC. This difference 
can be understood by considering the valley occupancy as a function of field. 
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   Fig. 1. Calculated steady-state electron drift velocity in bulk 6H-SiC and 4H-SiC using  

   the non-parabolic band models room temperature.  
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   Fig. 2. Average electron kinetic energy as a function of applied electric field in 

   bulk 6H-SiC and 4H-SiC using the non-parabolic band models room temperature. 
 

The importance of electron inter-valley transfer at high electric fields can be clearly 
seen in Fig. 3. In these figures the fractional valley occupancies for both phases of SiC are 
plotted. It is obvious that the inclusion of satellite valleys in the simulations is important. 
Significant electron transfer to the upper valleys only begins to occur when the field strength 
is very close to the threshold value. At the threshold field the electron valley occupancies for 
, U are K are about 95%, 4% and 1%, respectively. As it can be seen, inter-valley transfer is 
substantially larger in the 4H-SiC than 6H-SiC, due to the combined effect of a lower  
-valley effective mass, lower satellite valley separation and reduced phonon scattering rate 
within the -valley, but significant inter-valley phonon scattering at a threshold field of  
2 kV/cm. 
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   Fig. 3. Fractional occupation of the central  and satellite valleys of 6H-SiC and 4H-SiC 

   as a function of applied electric field using the non-parabolic band models room temperature. 
 

Fig. 4 shows the calculated electron drift velocity as a function of electric field 
strength for temperatures of 300, 450 and 600 K. The decrease in drift mobility with 
temperature at low fields is due to increased intra-valley polar optical phonon scattering 
whereas the decrease in velocity at higher fields is due to increased intra and inter-valley 
scattering. It can be seen from the figure that the peak velocity also decreases and moves to 
higher electric field as the temperature is increased. This is due to the general increase of total 
scattering rate with temperature, which suppresses the electron energy and reduces the 
population of the satellite valleys. This latter effect is apparent from the fact that the electron 
population in the -valley increases with temperature. 
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Fig. 4. Calculated electron steady-state drift velocity in bulk 6H-SiC and 4H-SiC as a function of applied 
electric field at various lattice temperatures and assuming a donor concentration of 1016 cm-3. The peak 

drift velocity decreases by about %5 while the threshold field increases by same percent as the lattice 
temperature increases from 300 to 600 K. 

 
Fig. 5 shows how the velocity-field characteristic of 6H-SiC and 4H-SiC change with 

impurity concentration at 300 K. It is clear that with increasing donor concentration, there are 
small changes in the average peak drift velocity and the threshold field. 
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Fig. 5. Calculated electron steady-state drift velocity in bulk 6H-SiC and 4H-SiC 

as a function of applied electric field for various donor concentration at room temperature. 
 
 
4. CONCLUSIONS 
 

Electron transport at different temperatures in bulk 6H-SiC and 4H-SiC have been 
simulated using an ensemble Monte Carlo simulation. Using valley models to describe the 
electronic band structure, calculated velocity-field characteristics show that the inter-valley 
transitions in high electric fields play an important role, in spite of a large separation between 
the central and upper valleys. The inter-valley transitions lead to a large negative differential 
conductance. Saturation drift velocities of about 0.75×105 m/s match recent measurements on 
low-doped bulk samples. We have also demonstrated that low temperature sensitivity of the 
electron transport properties of 6H-SiC and 4H-SiC are attractive for high-temperature and 
high-power electronic applications. 
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