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ABSTRACT 
A numerical model is developed to study the transient 

behavior of a liquid jet leaving a capillary tube under an 
electrostatic field. The surface profile of the deforming jet is 
defined using the Volume-of-Fluid (VOF) scheme and the 
advection of the liquid free-surface is performed using Youngs’ 
algorithm. Surface tension force is treated as a body force 
acting on the free-surface using continuum surface force (CSF) 
method. To calculate the effect of the electric field on the shape 
of the free-surface, the electrostatic potential is solved first. 
Next, the surface density of the electric charge and the electric 
field intensity are computed, and then the electric force is 
calculated. Liquid is assumed to be a perfect conductor, thus 
the electric force only acts on the liquid free-surface and is 
treated similar to that of surface tension using the CSF method. 
The developed model is validated by a comparison between the 
calculated results and measurements for an electrowetting 
scenario for which experimental results are available in the 
literature.  

INTRODUCTION 
Electrostatic atomization, also called Electrospray, is a 

well known phenomenon in which an electrostatic force 
elongates the liquid meniscus formed at the outlet of a capillary 
nozzle to a jet which next disrupts into small droplets by 
electrical and mechanical forces. Electrospray systems have 
several advantages over mechanical atomizers. The size of 
electrospray drops can range from hundreds of micrometers 

down to several tens of nanometers. The size distribution of the 
droplets can be nearly monodisperse. Droplet generation and 
droplet size can be controlled roughly via the control of the 
flow rate of the liquid and the applied voltage at the capillary 
nozzle. The fact that the droplets are electrically charged 
facilitates the control of their motion (including their deflection 
and focusing) by means of an electric field. Charged droplets 
are self dispersing in space, also resulting in the absence of 
droplet coagulation. The deposition efficiency of a charged 
spray on an object is higher than that of an un-charged spray. 
This feature can be utilized, for example, in surface coating or 
thin-film production. 

Electrospray has opened new routes to nanotechnology. 
Electrospray is used for micro and nano-thin-film deposition, 
micro or nano-particle production, and micro- or nano-capsule 
formation. Thin films and fine powders are (or potentially 
could be) used in modern material technologies, 
microelectronics, and medical technology [1]. In spite of these 
advantages, this method of atomization has some difficulties to 
perform.  The main difficulty is the existence of many different 
atomization modes depending on the settings of the process. 
Jaworek et al. [2] classified ten modes of atomization according 
to geometrical forms of the meniscus and/or jet. Therefore 
numerical simulation is an effective method to understand and 
control the phenomenon. 

Many studies contributed to the understanding of the 
phenomenon by modeling and simulation of the involved 
processes numerically. Hartman et al. [3] developed a 
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Lagrangian model to predict droplet size and velocity and 
compared the results with those of the experiments. They 
improved a physical model to obtain the shape of the liquid 
cone and jet; the electric fields inside and outside the cone; and 
the surface charge density on the liquid surface [4]. In their 
model, a one-dimensional momentum equation was used to 
simulate the flow field. Using an analytical model, Hartman et 
al. [5] found that the jet break-up mechanism depends on the 
ratio of the normal stress from the electric field to that of the 
surface tension. 

Alfonso et al. [6] modeled electrospray using a hybrid 
experimental-numerical technique. They proved that the surface 
charges are always in equilibrium, being the liquid bulk quasi-
neutral. They presented a consistent general scaling of all 
electro-hydro-dynamic (EHD) variables involved which are 
verified by experiment. Fang et al. [7] used a model similar to 
that of Hartman et al. [4] but solved axisymmetric flow 
equations and used an adaptive grid generation scheme. They 
did not consider the jet break up in their model. Zeng et al. [8] 
used VOF method to simulate Taylor cone formation. While 
previous models could only predict the steady shape of the 
cone-jet, Zeng et al. [8] could capture the transition events as 
well. However, they did not consider jet break up and droplet 
formation; they also used a semi conductor liquid in their 
simulations. Lastow et al. [9] performed a simulation similar to 
that of Zeng et al. [8], but they studied conductive fluid 
atomization. They did not consider jet break up and surface 
tension effects in their model. 

As mentioned above, most studies available in the literature 
focused on the steady state solution of the liquid jet profile 
under electrostatic field. The transient behavior of the liquid jet 
deformation, the transient mode, and the corresponding 
conditions for achieving this mode were not studied. The jet-
break up and surface tension effects were also not included. In 
this paper, we use a VOF scheme to model transient behavior 
of electrospraying considering surface tension and jet-break up. 
This work can easily be extended to model other atomization 
modes such as dripping, microdripping and spindle modes. 

MATHEMATICAL MODEL 
The configuration of the problem is depicted in Error! 

Reference source not found. and the dimensions of the parts 
pointed at by alphabetic indexes are cited at the last column of  
"Table 1". 

A conductive liquid jet leaves a capillary nozzle with a 
constant volume flow rate, ܳ ൌ  The electric voltage .݊݅݉/ܮߤ 5
applied between nozzle and counter electrode is ߶଴ ൌ  .ܸܭ 2.8

Fluid Flow 
The fluid flow is assumed incompressible, axisymmetric, 

Newtonian and laminar. As the air surrounding the liquid jet is 
not being forced, it does not significantly the liquid motion. 
Therefore, the shear stresses at the liquid gas interface are not 
considered. The mass and momentum conservation equations 
are as follows: 
.ሬԦߘ ሬܸԦ ൌ 0  (1) 

߲ሬܸԦ
ݐ߲ ൅ .ሬԦߘ ൫ሬܸԦ ሬܸԦ൯ ൌ െ

1
ߩ ߘ
ሬԦ݌ ൅

1
ߩ ߘ
ሬԦ. ി߬൅ Ԧ݃ ൅

1
ߩ ௕ܨ
ሬሬሬሬԦ  (2) 

where VሬሬԦ, p, ρ and ി߬ represent the velocity vector,  pressure, the 
liquid density and the stress tensor respectively; Ԧ݃ is the 
gravitational acceleration and  ܨ௕ሬሬሬሬԦ is any body force (per unit 
volume) acting on the fluid. As the fluid is Newtonian the stress 
tensor is: 
ി߬ ൌ ߤ ቂ൫ߘሬԦ ሬܸԦ൯ ൅ ൫ߘሬԦ ሬܸԦ൯

்
ቃ (3) 

 

Figure  1: Schematic of the problem under consideration. The 
electric potential is applied between the nozzle and the counter 

electrode. 
Solving the above equations, the flow field in the 

computation domain is obtained. The VOF method is then used 
to advect the free surface location. In this method, a scalar 
function f, called volume fraction, is defined as the fraction of a 
cell volume occupied by liquid. f is assumed to be unity when a 
cell is fully occupied by the liquid and zero for an empty cell. 
Cells with f values of 0 < f < 1 define the location of free 
surface. The advection equation for volume fraction as 
߲݂
ݐ߲ ൅ ൫ሬܸԦ. ൯݂ߘ ൌ 0 (4) 
provides the f field in each time step. 

Electrostatic Force 
Along with the hydrodynamic equations presented above, 

the Laplace equation [10] is solved on the entire domain to 
calculate the electric potential in every grid cell at each time 
step: 
߶ଶߘ ൌ 0 (5) 
In addition, the relation between the electric potential and the 
electric field intensity is known to be: 
ሬԦܧ ൌ െߘ߶ ሺ6ሻ 
Since the liquid is assumed to be a perfect conductor, the 
electrostatic force only acts on the liquid free-surface [11]. The 
electrostatic force per unit area is computed as [12]: 
௘ሬሬሬԦܨ ൌ

1
ܧ௦ߩ2

ሬԦ ሺ7ሻ 

where ߩ௦ is the surface density of the electric charge calculated 
as: 
௦ߩ ൌ െߝ஺௜௥

డథ
డ௡

ൌ െߝ஺௜௥ܧሬԦ. ො݊ ሺ8ሻ 

Nozzle 

Counter Electrode 
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where డ
డ௡

 represents the gradient along the outward normal to 
the liquid free surface. 

Boundary Conditions 
A Neumann condition is used for pressure in all domain 

boundaries (డ௣
డ௡
ൌ 0). Also, an outflow boundary condition is 

used for velocity on all boundaries except on solid walls and at 
the entry of the nozzle where constant velocity is employed. A 
summary of boundary conditions is mentioned in Table 1. 
 
Table 1: Summary of applied boundary conditions based 

on the schematic shown in Figure  1. 
 Velocity Pressure potential mm 

A ݒ ൌ ொ
஺ൗ ࡼࣔ 

ൗ࢔ࣔ ୀ૙ ߶ ൌ ߶଴ 0.51 

B ࢛ࣔ
ൗ࢔ࣔ ୀ૙  , ࣔ࢜ ൗ࢔ࣔ ୀ૙ ࣔࡼ

ൗ࢔ࣔ ୀ૙ ࣔࣘ
ൗ࢔ࣔ ୀ૙  9.0 

C ݑ ൌ 0 , ݒ ൌ ࡼࣔ 0
ൗ࢔ࣔ ୀ૙ ߶ ൌ ߶଴  5.0 

D ࢛ࣔ
ൗ࢔ࣔ ୀ૙  , ࣔ࢜ ൗ࢔ࣔ ୀ૙ ࣔࡼ

ൗ࢔ࣔ ୀ૙ ࣔࣘ
ൗ࢔ࣔ ୀ૙  15 

E ࢛ࣔ
ൗ࢔ࣔ ୀ૙  , ࣔ࢜ ൗ࢔ࣔ ୀ૙ ࣔࡼ

ൗ࢔ࣔ ୀ૙ ࣔࣘ
ൗ࢔ࣔ ୀ૙  6.0 

F ݑ ൌ 0 , ݒ ൌ ࡼࣔ 0
ൗ࢔ࣔ ୀ૙ ߶ ൌ 0  6.0 

 

  
As the liquid is assumed a perfect conductor, the electric 

potential for the points inside the liquid is equal to the applied 
potential. The liquid used in this study was 50% (v/v) methanol 
in water  with physical properties as listed in Table 2. 
 
Table 2: Physical properties of (50% (v/v) methanol in water) 

 

Density࣋  ቀࢍࡷ
 ૜ቁ࢓ Viscosityࣆሺࢇࡼ. ࢙ሻ 

ࡺ൫ ࢽ ൗ࢓ ൯ 

Surface 
tension ࡿࣆ

ൗ࢓ࢉ  
Conductivity 

ૡૢ૝ 1.8 ൈ 10ିଷ 0.0358 3.5 

NUMERICAL PROCEDURE 
The Youngs algorithm [13] is used for advection of 

function f. This algorithm consists of two steps: an approximate 
construction of the free surface and the advection of the 
interface to a new location. First, the interface is reconstructed 
by locating a line within each interfacial cell utilizing volume 
fraction of the cell, f, and normal vector to the interface.  
Normal vectors are computed using f function gradients in two 
directions. In the second step, the reconstructed interface and 
new velocities are used to compute volume fluxes across each 
cell face in one coordinate direction at a time. Having 
calculated the advection of the interface in all directions, the 
final volume fraction field and the new shape of the interface 
are obtained.  

Surface tension is modeled as a volume force acting on fluid 
elements near the free surface; the method used is the 
continuum surface force (CSF) model [14] integrated with 
smoothed values of function f in evaluating free surface 
curvature [15]. 

The time discretization of the momentum equation is 
divided into two steps. First, an interim velocity is computed 
explicitly from convective, viscous, gravitational, and body 
forces for a time step ∆ݐ. Then, the pressure is calculated 

implicitly. As momentum cannot be advected more than a grid 
per time step, the Courant number should be less than one. The 
same condition is applied for the volume tracking as it can be 
only advected to the neighboring cells. Further details of the 
solution procedure of the hydrodynamic equations using VOF 
method is given elsewhere [15]. 

The solution of the electrostatic equations in order to obtain 
the corresponding force distribution on the free surface is 
explained in details. Some difficulties arise from constant 
electric potential throughout the main liquid jet. It means that 
the free surface of the liquid is a Dirichlet condition as the 
value of the electric potential on free surface is known and set 
to be that of the nozzle. The deforming liquid interface may 
have any arbitrary shape that does not necessarily coincide with 
the edges of the computational cells. To resolve this issue we 
use five neighboring nodes in different locations with respect to 
the reconstructed interface to discrete the Laplace equation, Eq. 
(5), near the free surface. These nodes near the free surface are 
schematically illustrated in Figure  2. 

  By employing a non-uniform Cartesian mesh, Eq. (5) may 
be discretized as follows:  
ଶ
஺
൜ݎோ ൬ థ௅೔శభ,ೕିథ஼

∆௑ோ೔,ೕା∆௑௅೔శభ,ೕ
൰ െ ௅ݎ ൬ థ஼ିథோ೔షభ,ೕ

∆௑ோ೔షభ,ೕା∆௑௅೔,ೕ
൰ൠ ൅

ଶ
஻
൜ݎ஼ ൬ థ஻೔,ೕశభିథ஼

∆௒்೔,ೕା∆௒஻೔,ೕశభ
൰ െ ஼ݎ ൬ థ஼ିథ்೔,ೕషభ

∆௒்೔,ೕషభା∆௒஻೔,ೕ
൰ൠ ൌ 0

(9) 

where: 

ܣ ൌ ∆ܴܺ௜ିଵ,௝ ൅ ௜,௝ܮܺ∆ ൅ ∆ܴܺ௜,௝ ൅  ௜ାଵ,௝ܮܺ∆
ܤ ൌ ∆ܻ ௜ܶ,௝ିଵ ൅ ௜,௝ܤܻ∆ ൅ ∆ܻ ௜ܶ,௝ ൅  ௜,௝ାଵܤܻ∆

ሺ10ሻ 

and: 

஼ݎ ൌ ௜,௝ݎ

௅ݎ ൌ ஼ݎ െ
∆ܴܺ௜ିଵ,௝ ൅ ௜,௝ܮܺ∆

2
ோݎ ൌ ஼ݎ ൅

∆ܴܺ௜,௝ ൅ ௜ାଵ,௝ܮܺ∆
2

ሺ11ሻ 

௜,௝ܮܺ∆ ,  ∆ܴܺ௜,௝ ௜,௝ܤܻ∆ ,  and ∆ܻ ௜ܶ,௝  , shown in Figure  2, are 
parameters  computed for each cell near the interface 
depending on the free surface location. As explained before, a 
boundary condition needs to be satisfied on the free surface 
while solving Eq. (5), therefore, the above parameters must be 
calculated in order to exactly locate the reconstructed free 
surface profile with respect to the computational grid. 

 These parameters take different values, depending on the 
orientation of the interface line in a cell.  Nearly ten different 
arrangements may occur depending on the f value and the free 
surface orientation. One of these arrangements in which the 
interface line intersects both horizontal edges of the cell is 
illustrated in Figure  3. For this case, the parameters are: 

߶ܴ௜,௝ ൌ ߶଴ , ௜,௝ܮ߶ ൌ ߶଴
ԄT୧,୨ ൌ Ԅ୧,୨ , ԄB୧,୨ ൌ Ԅ୧,୨
௜,௝ܮܺ∆ ൌ 0  , ∆ܴܺ௜,௝ ൌ ܴ   

௜,௝ܤܻ∆ ൌ
∆ ௜ܻ,௝

2 , ∆ܻ ௜ܶ,௝ ൌ
∆ ௜ܻ,௝

2  

(12) 
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Figure  2: Nodes (red points) used to discrete the Laplace 
equation in a sample situation. Geometrical parameters 

appeared in Eqs. (9) and (10) are also illustrated. 
 
 are electric potentials used in the ܤ߶ and ܶ߶ ,ܮ߶ ,ܴ߶

discretization of Eq. (5). If a node selected to discrete the 
equation lies on the free surface, its value is known and equal 
to the applied potential ߶଴, otherwise, it must be calculated. 

 

 
Figure  3: One orientation for the free surface where the 

interface line intersects both horizontal edges of the cell and 
one of the symmetry lines. 

Electric field intensity 
The electric field intensity on the free surface needs to be 

calculated to obtain the surface density of the electric charge 
and the electric force acting on the free surface. Again, 
arbitrary position of the free surface on Cartesian mesh is an 
issue here. As shown in Figure  4, first we find the midpoint of 
the approximated interface line in each cell. Then, three 
directions are considered: the first two being the x and y 
directions and the third is the direction of the line connecting 
the centerpoint of reconstructed interface line and the center of 
(i+2,j+2) cell (pointed out by ‘dia’ subscript here as shown in 
Figure  4). Next the derivative of the electric potential is 

computed on these directions ቀడ׎
డ௫
, డ׎
డ௬
, డ׎
డ௡ವ೔ೌ

ቁ. As the free surface 
is a boundary inside the computational domain, we must use 
directional derivative outward from the fluid interface. As 
shown in Figure  4 we select three nodes in each direction 
(nodes specified with red color in Figure  4), and compute the 
derivatives. These nodes, however, do not lie in the center of 
cells thus their values are initially unknown; they are calculated 
by interpolating between the three points. For example to find 
the electric potential at the red point in cell (i+2,j) of Figure  4, 
we use three green points as shown in the figure.  

Having obtained the above derivatives, we need to 
calculate the electric field intensity vector by using two of the 
above derivatives depending on the values of f in the adjacent 
cells. 

 
Figure  4: Nodes and directions used for the electric field 

intensity calculation.  First, three green points are used to obtain 
the electric potential value at each red point. The red points are 
then used to calculate the potential derivative (Only the three 
green points used to interpolate the potential value on the red 

point within cell (i+2,j) are shown in the figure). 
 
MODEL VALIDATION 

 Solving the Laplace equation for an irregular domain has 
been reported [16] but its integration with VOF scheme is new 
in this study. To validate the formulation and the 
implementation of the numerical scheme, the results are 
compared with the analytical solutions data.  

Consider a solid hemisphere placed on a lower plate of a 
capacitor Error! Reference source not found.. The solid is 
conductive and has the bottom plate potential. For this case, the 
method of images can be used to calculate the electric field on 
the surface as [17]: 
หܧሬԦห

หܧሬԦஶห
൘ ൌ 3ܿos0         ߠ ൑ ߠ ൑ ߨ

2ൗ  
ሺ13ሻ 

where ߠ is the polar angle measured from the apex, as shown in 
the inset of Figure  6 and ܧሬԦஶ is the uniform electric field 
between plates far from the hemisphere. 

j+1 

j

j-1 

i+1 ii-1 i+2

j+2

X direction 

Y
di

re
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n

Dia. direction

∆ ௜ܻ,௝ 

∆ ௜ܺ,௝  
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j 

j-1 

i+1 i i-1 
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Figure  5: A solid hemisphere placed on a lower plate of a 
capacitor. The drop is conductive and has the same potential as 

that of the lower plate. 
 

Figure  6 compares the numerical and analytical electric 
field magnitudes and their horizontal and vertical components, 
calculated along the surface (i.e., from the apex to the contact 
point). The figure shows a good agreement between the 
numerical results and those of the analytical method. 

 

 
Figure  6: A comparison between analytical and numerical 
solutions for a hemispherical conductive solid between two 

conductive plates. There were 20 cells per droplet radius in this 
simulation (CPR = 20). E, EX and EY denote non-dimensional 
หܧሬԦห, ܧ௫ and ܧ௬ respectively. The prefix A and N specify the 

analytical and numerical data, respectively. 

NUMERICAL PARAMETERS 
Up to this point, the numerical method to simulation the 

electrostatic field was explained and validated. The main goal 
of this section is to model the electrostatic atomization process. 
One of the main issues concerning to numerical simulation of 
this process is that it needs to deal with different length scales 
in the solution domain. The largest of them is the length scale 
related to the spacing between the capillary nozzle and the 
electrode facing it, this length is from the order of 10-2 meter. 
Another length scale is that of the cone which forms at the 
outlet of the capillary nozzle and is from the order of 10-4 
meter. The smallest length scale is associated with the jet 
departing from the vertex of the cone which is from the order 
of 10-6 meter. The cone shaped part and the jet part or the flow 

are illustrated in Figure  7. In this work the formation of the 
cone shaped part is focused on and the jet part is assumed 
neglidible in simulation due to it’s  negligible size in 
comparison with the size of the cone part. This assumption has 
no significant effect on the cone part and just decreases the 
accuracy of the solution at the vicinity of the cone vertex. 

 

 
  

Figure  7: The cone shaped part and the jet departing from the 
vertex of the cone( length scales are comparable in the image) 

[18] 
 
In order to manage the problem of different length scales in the 
domain we divide the solution domain into two zones: 

1. The zone in which both hydrodynamic and 
electrostatic equations are solved (this zone is referred 
to as zone 1). 

2. The zone in which just electrostatic equations are 
solved (this zone is referred to as zone 2). 

These two zones are illustrated in Figure  8. The zone defined 
by solid black color at the centre of the domain is the zone 1 
and the rest of the domain is treated as zone 2. 
 

Figure  8: The zone defined by solid black color at the centre of 
the domain is the zone 1 in which the hydrodynamic and 

electrostatic equations are solved and the rest of the domain is 
treated as zone 2 in which just electrostatic equations are 

solved. Magnified view of the zone 1 is also shown in the figure. 
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Uniform structured mesh is used for zone 1. The size of the 

mesh is reported by specifying the number of cells lying in the 
outside radius of the capillary nozzle, this number is referred to 
as CPR which is abbreviated form of “cells per radius”. Results 
from different CPR values are displayed in Figure  9. The CPR 
values used are 40, 60, 90 and 135 which are multiplied by 1.5 
in each step to obtain a more refined mesh for the next step. 
According to Figure  9 mesh independency is achieved for CPR 
values greater than 60 so this value is used for the simulations 
in the rest of the paper. 

Non-uniform structured mesh is used for zone 2. Number of 
cells in directions A, B and C is 45, 90 and 90 respectively. 
Mesh independency has been verified for this zone too. The 
grid used for zone 2 is shown in Figure  10. 

 
Figure  9: Steady state cone simulated using different mesh 

refinements. The results using CPR values greater than 40 are 
similar. 

  

Figure  10: the grid used for numerical calculations. 

Electrostatic atomization 
The evolution of the formation of a cone-jet before 

atomization is illustrated in Figure  11. As shown in the second 
image, the jet is elongated due to the downwards electrostatic 
surface force. As the jet is elongated, the surface curvature 

increases at its tip and surface tension force overcomes electric 
force momentarily such that the jet tip returns upwards and 
becomes thicker. The procedure is repeated by electric force 
pulling the jet tip down until surface forces balance each other 
and jet becomes stable. 
 As an important point, it should be noted that, similar to the 
surface tension force, the sharper the curvature of the free 
surface, the greater the electrostatic force will be. This is 
because the electric field intensity has a greater value as a result 
of a greater electric potential gradient in the sharp edges (see 
Figure  13 as an example). Therefore, the electric force has the 
highest value at the tip of the liquid jet; this is the reason for the 
jet break up due to a large applied potential. As the jet becomes 
stable, the break-up takes place at the tip of the jet, i.e. fine 
droplets form and leave the liquid. The length scale of these 
droplets is very small compared to the jet diameter. Thus, it is 
necessary to use a very fine mesh to capture the exact 
characteristics of these separated droplets; this, in turn, 
increases the simulation time considerably. The behavior of the 
separated droplets, therefore, is not the focus of this study. 

 

 
 

  

 
 

  

Figure  11: The evolution of a cone-jet formation. The time 
associated with each image is also shown in the figure. 

ܳ ൌ , ݊݅݉/ܮߤ 5 ߶଴ ൌ  ܸܭ 2.8
 

Figure  12 shows velocity flow field. According to this 
figure the velocity magnitude has its maximum at the cone tip 
which is a consequence of the high electrostatic force on this 
region, as mentioned before. In addition the vortex formed in 
the middle of cone is apparent in this figure. As explained 
above the liquid jet is pulled upwards being an effect of the 
surface tension force. Interaction of this upward flow with the 
downward flow at the nozzle outlet is the cause of this vortex. 

As displayed in Figure  12 (Top) there is a vortex inside the 
cone which drives the flow entering the cone towards the 

0 ms 84 ms 168 ms

252 ms 336 ms 420 ms
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lateral surface, so the liquid flows on free surface and reaches 
the cone vertex.  This causes the flow to accelerate and flow 
velocity on free surface gets considerably greater than the 
velocity of the flow inside the nozzle. therefore parasitic 
currents are negligible in this simulation. 

 
Figure  12: The velocity field (Top) and surface density (Bottom) 

of the electric charge at steady state. 
The Surface charge density is also depicted in Figure  12. It 

is seen that the maximum density takes place at the tip of the 
jet. This effect was expected from Eq. (7) where the surface 
charge density is proportional to electric field intensity on the 
free surface. In other words, the electric field intensity, the 
charge density and the electric force, all reach their maximum 
value at the tip. Consequently the jet tip is pulled downwards. 
Since the nozzle flow rate is constant, as much as the jet 
elongates, its tip becomes more pointed. Therefore, a greater 
electrical force is exerted on the tip, thus its acceleration 
increases. On the other hand, a pointed tip has greater curvature 

which increases surface tension force upwards around the tip. 
Finally the opposite forces acting on the jet tip lead to the jet 
break up and a little part of the tip separates in the form of a 
droplet. The departure of a droplet decreases the curvature at 
the jet tip momentarily leading to jet backstroke. The same 
process is repeated establishing a spray operation. The 
determining effect of the surface tension on the break up 
phenomenon should be noticed here. Assume a liquid with no 
surface tension; in such a case, the velocity increase and the jet 
elongation at the tip leads to no break up and the jet diameter at 
the tip approaches zero. 

In Figure  13 the electric potential distribution in the whole 
domain is illustrated. As observed, the equipotential lines get 
closer at the vicinity of the jet tip demonstrating that the 
potential gradient is high in this region. 

 
 

Figure  13: The electric potential distribution for the entire 
domain of computation. 

CONCLUSIONS 
In this study, a numerical model was developed to study 

the atomization of a liquid jet under an electrostatic field. The 
model was used to simulate the fluid flow distribution and free 
surface profile of a perfectly conductive liquid jet under the 
effect of an electric field. To validate the model, a case for 
which analytical results are available in the literature was 
considered. For a hemispherical solid placed on the lower plate 
of a charged capacitor, the electric field intensity values on the 
drop free surface was obtained from the numerical model and 
compared to those of the analytical data. The good agreement 
between the two results validated the model and its underlying 
assumptions. 
The developed model has been utilized to simulate the 
electrospraying process and “Taylor cone” formation. 
Consecutive stages of cone formation are demonstrated. 
Velocity profile in steady state as well as electric charge density 
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and electric potential distribution in solution domain are 
numerically calculated and presented. Application of the model 
facilitates the simulation of different electrospraying modes and 
finding the conditions under which cone-jet mode occurs, all of 
these can be subjects for future works. 
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