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ABSTRACT 
We studied numerically impingement of vertical liquid 

jets of moderate Reynolds number for both Newtonian and non-

Newtonian liquids to clarify the structure formation of circular 

hydraulic jump and the phenomenon of jet buckling. First, we 

have studied the hydraulic jump characteristics and governing 

parameters for a laminar water jet. Moreover, different types of 

hydraulic jump have been investigated by varying the height of 

a circular wall around the bed in flow downstream. The results 

show that a circular hydraulic jump has two kinds of steady 

states which can be reached by changing wall height. Next, we 

studied the impingement of a non-Newtonian liquid jet on a 

solid surface. In this case, we observe that instead of having a 

significant hydraulic jump, jet buckling phenomenon happens. 

The results were used in order to achieve a better 

understanding of the jet buckling phenomenon and the 

conditions in which this phenomenon happens. 

 

NOMENCLATURE 
       D  jet inlet diameter 

H  jet length 

Rj  jump radius 

a  jet diameter at the point of impingement  

d or H∞ outer depth   

Q  inlet volume flux  

∆H  jump height 

u                  inlet velocity 

ρ  liquid density 

ɳ  liquid viscosity 

 

 

INTRODUCTION 
 When a vertical Newtonian liquid jet impinges on a 

horizontal surface and spreads out radially on the surface a 

circular hydraulic jump is formed. At the hydraulic jump, the 

height of the liquid surface suddenly varies and the flow also 

changes from a rapid (supercritical) flow to a slow (subcritical) 

flow. A picture of the circular hydraulic jump is shown in Fig. 1. 

 

 

 
 

Figure 1. PICTURE OF A STATIANARY CIRCULAR 

HYDRAULIC JUMP [28] 
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The circular hydraulic jump is common in daily life and appears 

to be a simple phenomenon. However, it is much more 

complicated than it seems to be. In fact, it involves a strongly 

distorted free surface, a boundary layer and separation of flow. 

Studies concerning this phenomenon have been done by various 

approaches [1–12]. The circular hydraulic jump is relatively 

easily created in laboratory experiments, while the theoretical 

and numerical studies are limited by the complexities 

mentioned above. Especially when we use water as the liquid, 

these complexities will arise because of the turbulent effects of 

water. The experimental results show that a circular hydraulic 

jump has two kinds of steady states which can be reached by 

changing the height of a circular wall (d) around the bed in flow 

downstream. When d is low or 0, a type I jump is formed as 

shown in Fig. 2(a). A type I jump contains an eddy on the 

bottom, called a ‘separation bubble’. On increasing d, the jump 

becomes steeper until d reaches the critical dc. If d becomes 

larger than dc, the liquid outside of the jump topples and 

another steady state, a type II jump, is formed as shown in Fig. 

2(b) and 2(c). An eddy under the surface in a type II jump, the 

secondary circulation, which is usually called a ‘roller’, is 

observed. The existence of a roller distinguishes the two types 

of jumps. 

 

 

 

 

 
 

Figure 2. A SCHEMATIC ILLUSTRATION OF THE 

PROGRESSION IN FLOW STRUCTURE OF THE 

CIRCULAR LAMINAR HYDRAULIC JUMP PROMPTED 

BY INCREASING THE OUTER DEPTH. THE STEADY 

SYMMETRY-BREAKING INSTABILITIES EMERGE 

EXCLUSIVELY FROM THE TYPE ii JUMPS. [27] 

 

 

 

A simple and common theoretical approach to inviscid 

hydraulic jump problems is due to Rayleigh [1]. In this 

approach, hydraulic jumps are regarded as a shock, a 

discontinuity, based on the analogy between the shallow water 

theory and gas theory [13]. Thus flow structure in the jump 

region is neglected. This approach has been widely used in 

hydraulic engineering. In a theoretical study of circular 

hydraulic jumps, a scaling relation of the radius of the circular 

hydraulic jump has been proposed [6]. This scaling relation is 

simple but agrees rather well with experimental data. A 

theoretical model for a type I jump has been developed by Bohr 

and coworkers [8, 9, 12], but no model for the type II jump is 

available yet. In the theoretical model of Bohr et al., it is 

assumed that the pressure distribution is hydrostatic and that the 

surface tension force is negligible. However, those effects seem 

to play a crucial role in the formation of hydraulic jumps, 

especially in the type II state. Numerical simulations have been 

also performed for the circular hydraulic jump problems in [7], 

where a preset fixed boundary was used to represent the real 

free surface of the liquid. It should be noted that direct 

computation of the free surface of the liquid, which usually 

appears to be a very difficult problem, is important and essential 

to a numerical simulation of hydraulic jumps. 

 When a vertical non-Newtonian liquid jet with a Reynolds 

number less than a specific value impinges on a horizontal 

surface, the phenomenon of jet buckling happens. This means 

that there would be some instability to the liquid jet. In 

industries like food, chemistry, medical, among others, the 

phenomenon of jet buckling has a large relevance in tasks 

involving the filling of containers with liquid like substances. 

This flow instability is related to the occurrence of some 

problems like splashing, sloshing and void formation [14-15] 

and therefore is undesirable. Despite its obvious importance, the 

literature on this subject is scarce  .The jet buckling 

phenomenon has been studied since the late fifties, when the 

work entitled "Liquid rope coiling" by Barnes and Woodcock 

[16] led the way to several experiment al studies, that have been 

performed until the present time [17-21]. Concerning the 

theoretical understanding of this phenomenon, the work of 

Taylor [22] was the pioneer. He noticed that  the  jet  buckling  

was  similar  to  the  buckling  instability  that  occurs  in  

slender  beams  and  concluded  that  this phenomenon was  

related to longitudinal compressive stresses in the 'liquid rope'. 

Zak [23], based in the investigations performed by Cruickshank 

[4], studied this problem with analytical models and established 

criteria for the onset of this instability. In the review performed 

by Bejan [19], in contradiction with the Cruickshank studies 

[17], it was concluded that this phenomenon can also occur for 

high Reynolds numbers. Later, Mahadevan et al. [24] showed 

that the buckling instabilities  are  an  outcome  from  a 

competition  between  compression  and  bending  stresses  in  

slender  objects. More recently, Ribe [25] proved that there are 

other variables involved and demonstrated theoretically that 

coiling can appear in three distinct dynamical regimes:  viscous, 

gravitational and inertial. The experiment al observance of these 

three regimes was afterwards performed by Maleki et al. [21] 
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MATHEMATICAL MODEL 
 

 

Hydraulic Jump for Newtonian Liquid 

For all flows, Fluent solves conservation equations for mass and 

momentum. For flows involving heat transfer or 

compressibility, an additional equation for energy conservation 

is solved. For flows involving species mixing or reactions, 

species conservation equation are solved or, if the non-

premixed combustion model is used conservation equations for 

the mixture fraction and its variance are solved. Additional 

transport equations are also solved when the flow is turbulent. 

In this paper conservation equations for laminar flow are 

presented. 

 

 

The Continuity Equation 

The tracking of the interface(s) between the phases is 

accomplished by the solution of a continuity equation for the 

volume fraction of one (or more) of the phases. For the  thq  

phase, this equation has the following form:  
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Where pqm is the mass transfer from phase q to phase p and 

qpm is the mass transfer from phase p to phase q. By default, 

the source term on the right-hand side of Equation 1,
q

S , is 

zero, but we can specify a constant or user-defined mass source 

for each phase. The volume fraction equation will not be solved 

for the primary phase; the primary-phase volume fraction will 

be computed based on the following constraint: 
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Momentum Conservation Equations 

Conservation of momentum in an inertial reference frame is 

described by 

      FgpVVV
t
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Where p is the static pressure,  is the stress tensor (described 

below), and g  and F  are gravitational body force and 

external body forces respectively.  

The stress tensor  is given by 
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Where  is the molecular viscosity, I is the unit tensor, and the 

second term on the right hand side is the effect of volume 

dilation. 

The mesh used to solve this model was constructed by using 

Gambit 2.3.16 (FLUENT 6.3.26). The generated mesh contains 

quadrilateral elements and is shown in Figure 5. 

 

 

 
Figure 3. AXISYMETRIC MESH GENERATION 

 

 

The number of cells per jet radius is 30 CPR and the number of 

total cells in the Figure 5 is 8500.  

 

 

    Jet Buckling for Non-Newtonian Liquids 

To study the phenomenon of jet buckling, in addition to 

equations mentioned above we have to solve the power law 

equation as follows.  

 

 

Viscosity for Non-Newtonian Fluids  

For incompressible Newtonian fluids, the shear stress is 

proportional to the rate-of-deformation tensor D : 

D                 (5) 

where D is defined by 
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and  is the viscosity, which is independent of D .  
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For some non-Newtonian fluids, the shear stress can similarly 

be written in terms of a non-Newtonian viscosity :  

DD)(          (7) 

 

In general,  is a function of all three invariants of the rate-of-

deformation tensor D . However, in the non-Newtonian models 

available in FLUENT,  is considered to be a function of the 

shear rate  only.  is related to the second invariant of D and 

is defined as  

DD :
2

1
                                                (8) 

 

FLUENT provides four options for modeling non-Newtonian 

flows:  

Power law                                                                                 

Carreau model for pseudo-plastics                

Cross model                                                             

Herschel-Bulkley model for Bingham plastics 

Note that the non-Newtonian power law described below is 

used in this study. 

Non-Newtonian flow will be modeled according to the 

following power law for the non-Newtonian viscosity:  

TTn ek
/1 0                                  (9) 

FLUENT allows you to place upper and lower limits on the 

power law function, yielding the following equation:  

max

/1

min
0    TTn ek    (10) 

where k , n , oT , min , and max are input parameters. k is a 

measure of the average viscosity of the fluid (the consistency 

index); n is a measure of the deviation of the fluid from 

Newtonian (the power-law index), as described below; oT is the 

reference temperature; and min and max are, respectively, the 

lower and upper limits of the power law. If the viscosity 

computed from the power law is less than min , the value of 

min will be used instead. Similarly, if the computed viscosity is 

greater than max , the value of max will be used instead. The 

value of n determines the class of the fluid:  

 n = 1    Newtonian Fluid                                

 n = 2   shear-thickening (dilatants fluids)          

 n = 3   shear-thinning (pseudo-plastics) 

In this case, the number of cells per inlet jet radius is 30 CPR 

and number of total cells is 13500. The generated mesh contains 

quadrilateral elements and is shown in Figure 7. 

 

 
Figure 4. 2D MESH GENERATION 

 

 

RESULTS 
We have used a simple 2D Axisymetric geometry, 

shown in Fig. 5 for the impingement of a Newtonian liquid jet. 

At inlet the velocity is 0.3 m/s (Re=3000) and the operating 

pressure is 101325 Pascal. We have studied the effect of outer 

depth by changing the height of the circular wall shown in 

Fig.5. 

 

 

 Figure 5.GEOMETRY EMPLOYED TO STUDY THE 

STRUCTURE FORMATION OF CIRCULAR HYDRAULIC 

JUMPS. IN THIS CASE d=1mm 

 

 

Flow properties of the Newtonian liquid are given in table 1. 

We have used water properties in this case.  
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Table 1. NEWTONIAN LIQUID PROPERTIES 

Density (Kg/m
3
)     998.2 

Viscosity (Kg/m-s)    0.001  

 

 

In the study of the impingement of a Non-Newtonian liquid jet 

we have used a 2D geometry. Fig. 6 shows the geometry 

employed to study the phenomenon of jet buckling. 

 
Figure 6. GEOMETRY EMPLOYED TO STUDY THE 

STRUCTURE FORMATION OF JET BUCKLING 

 

 

The flow properties of the Non-Newtonian liquid are shown in 

table 2. 

 

 

Table 2. NON-NEWTONIAN LIQUID PROPERTIES AND 

POWER LAW PARAMETERS 

Density (Kg/m
3
)     1360 

Power law index (n)    0.4851 

Consistency index k (kg.s^n-2/m)   0.2073 

Reference temperature (°K)   310 

Minimum viscosity limit Ƞmax(kg/m-s)  30 

Maximum viscosity limit Ƞmin(kg/m-s)  20 

 

 

Validation 
The present numerical scheme on the hydraulic jump has been 

compared with the results of Bush & Aristoff [26] which is a 

correction to the Watsons model by considering the effect of 

surface tension. The comparison is shown in Fig. 7. Regarding 

Fig. 7, it can be observed that our numerical results are in a 

good agreement with results presented by Bush & Aristoff [26]. 

For the case of jet buckling we have compared our results with 

the results of Cruikshank and Munson [17] and they are in a 

good agreement as it will be shown later in this paper. 

 

 

 

 
Figure 7. COMPARISON OF PRESENT NUMERICAL 

STUDY WITH BUSH & ARISTOFF RESULTS FOR THE 

DEPENDENCE OF JUMP RADIUS Rj ON THE 

GOVERNING PARAMETERS, WHERE a IS THE JET 

RADIUS AT THE POINT OF IMPINGEMENT, H∞ IS THE 

OUTER DEPTH, AND Bo=ρgRj∆H/σ IS THE JUMP BOND 

NUMBER. 

 

 

 Circular Hydraulic jump results 

Figures 8 through 11 show the effect of inlet volume flux, liquid 

viscosity, and outer depth on the jump radius. 

 

 
Figure 8. EFFECT OF JET INLET VOLUME FLUX ON THE 

JUMP RADIUS (a) Q=2.355e-05 m
3
/s (b) Q=3.14e-05 m

3
/s (c) 

Q=3.92.5e-05 m
3
/s 
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Figure 9. EFFECT OF OUTER DEPTH ON THE JUMP 

RADIUS (a) d=1mm (b) d=2mm (c) d=3mm 

 

 

                  
Figure 10. JUUMP RADIUS VERSUS THE LIQUID 

VISCOSITY 

 

 

 
Figure 11. JUMP RADIUS VERSUS THE INLET 

VELOCITY AND DOWNSTREAM HEIGHT. 

 

 

Regarding Figures 8 through 11, it can be concluded that 

the jump radius will increase when the inlet volume flux 

increases and it will decrease when liquid viscosity or outer 

depth increases. 

Furthermore, we have studied the effect of outer depth on flow 

vortexes and the transition from type I jump to type II.  

Regarding Fig. 12, the case of Fig. 12(a) shows a type I jump 

which contains an eddy on the bottom, called a ‘separation 

bubble’. In the case of Fig. 12(b) we have a type II jump with 

an eddy under the surface and a secondary circulation, called a 

‘roller’. In Fig. 12(c) again we have a type II jump and in the 

Fig. 12(d) due to the extension in the roller no jump will occur. 

It can be seen that the transition will occur for an outer depth 

between 0 and 1 mm. studying several cases with outer depths 

in this range, it has been investigated that the transition will 

occur for d/D of 0.06 where d is the outer depth and D is the 

jump diameter.   

 

 

 
Figure 12. EFFECT OF OUTER DEPTH ON FLOW 

VORTEXES AND JUMP TYPE (a) d=0mm, (b) d=1mm, (c) 

d=2mm, (d) d=3mm 

 

 

Jet Buckling Results 

In Fig. 13 a schematic illustration for the phenomenon of jet 

buckling in a series of time steps is shown. Due to this Figure, it 

is obvious that the structure formation for the impingement of a 

Non-Newtonian liquid on a horizontal surface is clearly 

different from one of a Newtonian liquid. 

In this case as the liquid viscosity is so high, it cannot spread on 

the surface and as a result, by continuance in the jet flow there 

would be some instability to the liquid jet and the jet buckles.  
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Figure 13. STRUCTURE FORMATION OF JET 

BUCKLING (NUMERICAL RUN 1) 

 

 

During the numerical study several different conditions were 

tested and some of them are listed in Table 3. 

 

 

Table 3.  

NUMERICAL CONDITIONS EMPLOYED IN THE STUDY 

OF JET BUCKLING  

Numerical     Inlet Velocity     Reynolds     H/D     Flow Regime 

     Run                (m/s)            (ρud/ɳmax) 

       1               2.4                 0.217          10       Jet Buckling 

       2                 8                  0.725          10         Transition  

       3                   13.5               1.225          10     Smooth Filling                         

       4                    2.4                0.217           5      Smooth Filling 

       5                    2.4                0.217          7.2        Transition   

       6                    2.4                0.217         12.5      Jet Buckling 

 

 

Results show that the occurrence of jet buckling depends on the 

Reynolds number and H/D where H is the jet length and D is 

the jet inlet diameter. Regarding table 1, we can investigate the 

conditions in which the phenomenon of jet buckling happens. In 

a rather good agreement with observations published by 

Cruikshank and Munson [17] it can be seen that a Non-

Newtonian liquid jet buckles if both conditions Re < 0.725 and 

H/D >7.2 are satisfied. 

When a Non-Newtonian liquid impinges on a horizontal surface 

(in no-slip condition) the shear rate will increase at the point of 

impingement as a result of increase in velocity gradients. This 

increase in the shear rate will result in reduction of liquid 

viscosity (Fig. 14). The relatively significant difference in 

viscosity of different layers results in the deformation of liquid 

jet and the phenomenon of jet buckling. It is worth mentioning 

that jet buckling is a physical instability and it lasts just for a 

short time and after a while there would be no buckling and the 

liquid would be in physical stability.    

 

 

 
Figure 14. CONTOURS OF VISCOSITY (Kg/m-s) FOR A 

NON-NEWTONIAN LIQUID JET 
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CONCLUSION 
The impingement of vertical Newtonian and non-

Newtonian liquid jets has been studied numerically to clarify 

the structure formation of circular hydraulic jump and the 

phenomenon of jet buckling. With regard to the results and 

points made above it can be concluded that in the case of 

circular hydraulic jump, the jump radius will increase when the 

inlet volume flux increases and it will decrease when liquid 

viscosity or outer depth increases. Furthermore, it has been 

investigated that the transition from a type 1 jump to a type 2  

will occur for d/D of 0.06. In the case of jet buckling 

phenomenon, it can be seen that a Non-Newtonian liquid jet 

buckles if both conditions Re < 0.725 and H/D >7.2 are 

satisfied. 
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