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Abstract—One of the major goals in quantum information processing is to reduce the overhead associated with the practical

implementation of quantum protocols, and often, routines for quantum error correction account for most of this overhead. A particular

technique for quantum error correction that may be useful for protecting a stream of quantum information is quantum convolutional

coding. The encoder for a quantum convolutional code has a representation as a convolutional encoder or as a “pearl-necklace”

encoder. In the pearl-necklace representation, it has not been particularly clear in the research literature how much quantum memory

such an encoder would require for implementation. Here, we offer an algorithm that answers this question. The algorithm first

constructs a weighted, directed acyclic graph where each vertex of the graph corresponds to a gate string in the pearl-necklace

encoder, and each path through the graph represents a path through noncommuting gates in the encoder. We show that the weight of

the longest path through the graph is equal to the minimal amount of memory needed to implement the encoder. A dynamic

programming search through this graph determines the longest path. The running time for the construction of the graph and search

through it is quadratic in the number of gate strings in the pearl-necklace encoder.

Index Terms—Quantum communication, quantum convolutional codes, quantum shift register circuits, quantum error correction.

Ç

1 INTRODUCTION

QUANTUM information science [1] is an interdisciplinary
field combining quantum physics, mathematics, and

computer science. Quantum computers give dramatic
speedups over classical ones for tasks such as integer
factorization [2] and database search [3]. Two parties can
also securely agree on a secret key by exploiting certain
features of quantum mechanics [4].

A quantum system interacts with its environment, and
this interaction inevitably alters the state of the quantum
system, which causes loss of information encoded in it.
Quantum error correction [1], [5], [6] offers a way to combat
this noise—it is the fundamental theory underpinning the
practical realization of quantum computation and quantum
communication. The routines associated with it will account
for most of the overhead in the implementation of several
practical quantum protocols. Thus, any reduction in the
overhead or resources for implementing quantum error
correction should aid in building a practical quantum
system. One example of such a resource is the size of a
quantum memory needed to implement the routines of
quantum error correction.

A quantum convolutional code is a particular quantum
code that protects a stream of quantum information

communicated over a quantum channel [7], [8]. These
codes are inspired by their classical counterparts [9] and
inherit many of their properties: they admit a mathematical
description in terms of a parity check matrix of binary
polynomials or binary rational functions and have a
memory structure. They also have low-complexity encoding
and decoding circuits and an efficient maximum likelihood
error estimation procedure helps estimate errors under the
assumption that they are transmitted over a memoryless
channel [7], [10], [11].

One representation of the encoder for a quantum con-
volutional code has a simple form [7]. It consists of a single
unitary repeatedly applied to a stream of quantum data—we
call such a form for the encoder a convolutional encoder (see
Fig. 1a). An important practical concern for the implementa-
tion of an encoder is the amount of quantum storage or
memory it requires. The representation of the encoder in the
convolutional form allows one to determine this quantity in a
straightforward manner: it is equal to the number of qubits
that are fed back into the next iteration of the unitary that acts
on the stream. For example, the convolutional encoder in
Fig. 3c requires three memory qubits for implementation.
Ollivier and Tillich pursued this approach for encoding in
their early work on quantum convolutional codes [7], [11],
and more recently, Poulin et al. exploited this approach in
their construction of quantum turbo codes [10]. They
randomly generated and filtered Clifford unitaries to act as
the convolutional encoders for the constituent quantum
convolutional codes of a quantum turbo code. In this case, it
was straightforward to determine the memory required to
implement a quantum turbo code because they represented
the two constituent encoders for the quantum turbo code in
the convolutional form.

An alternate representation for the encoder of a quantum
convolutional code consists of several “strings” of the same
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unitary applied to the quantum data stream (see Fig. 1b). This
representation of the encoder is known as a pearl-necklace
encoder due to its striking similarity to a pearl necklace (each
string of unitaries corresponds to one bead of a pearl necklace
in this analogy). Ollivier and Tillich coined this term and
realized the importance of this structure early on [7], [11],
while Grassl and Rötteler (GR) later constructed detailed
encoding algorithms for encoding quantum convolutional
codes with pearl-necklace encoders [12]. The algorithm
consists of a sequence of elementary encoding operations.
Each of these elementary encoding operations corresponds to
a gate string in the pearl-necklace encoder. Grassl and
Rötteler then showed how to produce a quantum convolu-
tional code from two dual-containing classical binary
convolutional codes (much like the Calderbank-Shor-Steane
or CSS approach [13], [14]) and then constructed a pearl-
necklace encoder for the produced code [15]. Later work
demonstrated how to produce an entanglement-assisted
quantum convolutional code from two arbitrary classical
binary convolutional codes and, in some cases, it is possible to
construct a pearl-necklace encoder for the produced quan-
tum code [16], [17], [18], [19], [20]. The advantage of the
Grassl-Rötteler and the subsequent entanglement-assisted
approach is that the quantum code designer can choose high-
performance classical convolutional codes to import for use
as high-performance quantum convolutional codes.

The representation of a GR pearl-necklace encoder as a
convolutional encoder was originally somewhat unclear, but
a recent paper demonstrated how to translate between these
two representations1 [21]. There, the author exploited notions
from linear system theory to show how convolutional
encoders realize the transformations in the GR pearl-
necklace encoders.2 An important contribution of Wilde
[21] was to clarify the notion of quantum memory in a
GR pearl-necklace encoder, given that such a notion is not
explicitly clear in the pearl-necklace representation. In fact,
Wilde [21] demonstrates that a particular convolutional
encoder for the Forney-Grassl-Guha code [8] requires five
frames of memory qubits, whereas an earlier analysis of
Grassl and Rötteler suggested that this encoder would
require only two frames [12].

The goal of the present paper is to outline an algorithm that
computes the memory requirements of a GR pearl-necklace
encoder.3 Our approach considers a class of potential
convolutional encoders that realize the same transformation
that a GR pearl-necklace encoder does. The ideas are in the
same spirit as those in [21], but the approach here is different.
The algorithm to compute the memory requirements then
consists of two parts:

1. It first constructs a weighted, directed acyclic graph
where each vertex of the graph corresponds to a string
of gates in the GR pearl-necklace encoder. The graph
features a directed edge from one vertex to another if
the two corresponding gate strings do not commute,
and the weight of a directed edge depends on the
degrees of the two corresponding gate strings. Thus,
the graph details paths through noncommuting gates
in the pearl-necklace encoder. The complexity for
constructing this graph is quadratic in the number of
gate strings in the GR pearl-necklace encoder.

2. We show that the longest path of the graph
corresponds to the minimal amount of memory that
a convolutional encoder requires, and the final part
of the algorithm finds this longest path through the
graph with dynamic programming [22]. This final
part has complexity linear in the number of vertices
and edges in the graph (or, equivalently, quadratic
in the number of gate strings in the pearl-necklace
encoder) because the graph is directed and acyclic.

In this paper, we focus on encoding CSS quantum
convolutional codes, for which each elementary operation
corresponds to a string of controlled-NOT (CNOT) gates in
a pearl-necklace encoder (see [21, Section 6]). A later work
addresses the general case of non-CSS quantum convolu-
tional codes [23]. We begin with a particular pearl-necklace
encoder of a quantum convolutional code and determine
the minimal amount of quantum memory needed to
implement it as a convolutional encoder.

We structure this work as follows: first, we review some
basic concepts from quantum mechanics. Section 3 then
establishes some definitions and notation that we employ
throughout this paper. Our main contribution begins in
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Fig. 1. Two different representations of a quantum convolutional encoder. (a) Representation as a convolutional encoder. (b) Representation as a

pearl-necklace encoder. The numbering at the inputs of the pearl-necklace encoder indicates our convention for frame indexing.

1. The author of [21] called a convolutional encoder a “quantum shift
register circuit” to make contact with the language of classical shift
registers, but the two terms are essentially interchangeable.

2. Perhaps [21] is the most explicit work to show why quantum
convolutional codes are in fact “convolutional.”

3. Wilde [21] suggested a formula as an upper bound on the memory
requirements for the Grassl-Rötteler pearl-necklace encoder of a
Calderbank-Shor-Steane code, but subsequent analysis demonstrates that
this upper bound does not hold for all encoders. The algorithm in the
present paper is able to determine the exact memory requirements of a
given Grassl-Rötteler pearl-necklace encoder.



Section 4. We first determine the memory requirements for
some simple examples of pearl-necklace encoders. We then
build up to more complicated examples, by determining
the memory required for convolutional encoders with
CNOT gates that are unidirectional, unidirectional in the
opposite direction, and finally with arbitrary direction. The
direction is with respect to the source and target qubits of
the CNOT gates in the convolutional encoder (for example,
the convolutional encoder in Fig. 6b is unidirectional). The
final section of the paper concludes with a summary and
suggestions for future research.

2 QUANTUM STATES AND GATES

The basic data unit in a quantum computer is the qubit. A
qubit is a unit vector in a two-dimensional Hilbert space, H2

for which a particular basis, denoted by 0j i, 1j i, has been
fixed. The basis states 0j i and 1j i are quantum analogs of
classical 0 and 1, respectively. Unlike classical bits, qubits
can be in a superposition of 0j i and 1j i such as a 0j i þ b 1j i
where a and b are complex numbers such that jaj2 þ jbj2 ¼ 1.
If such a superposition is measured with respect to the basis
0j i, 1j i, then 0j i is observed with probability jaj2 and 1j i is

observed with probability jbj2.
An n-qubit register is a quantum system whose state

space is Hn
2 . Given the computational basis f 0j i; 1j ig for H2,

the basis states of this register are in the following set:

f i1j i � i2j i � � � � � inj i; i1; i2; . . . ; in ¼ 0; 1g;

or equivalently f i1i2 � � � inj i; i1; i2; . . . ; in ¼ 0; 1g: The state  j i
of an n-qubit register is a vector in 2n-dimensional space:

 j i ¼
X

i1;i2;...;in¼0;1

ai1;i2;...;in i1j i � i2j i � � � � � inj i;

where
P

i1;i2;...;in¼0;1 jai1;i2;...;in j
2 ¼ 1.

The phenomenon of quantum entanglement [1], which has
no classical analog, has been recognized as an important
physical resource in many areas of quantum computation
and quantum information science. A multiqubit quantum
state  j i is said to be entangled if it cannot be written as
the tensor product  j i ¼ �1j i � �2j i of two pure states. For
example, the EPR pair shown below is an entangled
quantum state: �j i ¼ ð 00j i þ 11j iÞ=p2.

In other words, in the case of an entangled state, the
qubits are linked in a way such that one cannot describe
the quantum state of a constituent of the system indepen-
dent of its counterparts, even if the individual qubits are
spatially separated.

As with classical circuits, quantum operations can be
performed by networks of gates. Every quantum gate is a
linear transformation represented by a unitary matrix,

defined on an n-qubit Hilbert space. A matrix U is unitary
if UUy ¼ I, where Uy is the conjugate transpose of the
matrix U . Since any unitary operation has an inverse, any
quantum gate is reversible, meaning that given the state of a
set of output qubits, it is possible to determine the state of
its corresponding set of input qubits.

Some examples of useful single-qubit gates are the
elements of the Pauli set �. The set � ¼ fI;X; Y ; Zg consists
of the Pauli operators:

I � 1 0
0 1

� �
; X � 0 1

1 0

� �
; Y � 0 �i

i 0

� �
; Z � 1 0

0 �1

� �
:

I is the identity transformation, X is a bit flip (NOT), Z is
a phase flip operation, and Y is a combination of both.
Two other important single-qubit transformations are the
Hadamard gate H and phase gate P , where

H � 1ffiffiffi
2
p 1 1

1 �1

� �
; P � 1 0

0 i

� �
:

The n-qubit Pauli group �n is defined as n-fold tensor
products of Pauli operators:

�n ¼ fei�A1 � � � � �An : 8j 2 f1; . . . ; ng;
Aj 2 �; � 2 f0; �=2; �; 3�=2gg:

ð1Þ

The controlled-NOT gate is a two-qubit gate. The first qubit
serves as a control and the second as a target. CNOT
performs the NOT operation on the target qubit if the control
qubit is 1j i and otherwise, leaves it unchanged. In other
words, the second output is the XOR of the target and control
qubit. The matrix representation of the CNOT gate is

CNOT �

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

2
664

3
775:

Fig. 2a shows the circuit representation of the CNOT gate.
The noncommutativity of CNOT gates is the most im-
portant concept needed to understand this paper. Two
CNOT gates do not commute if the index of the source qubit
of one is the same as the index of the target of the other.
Figs. 2b and 2c show this fact. If the input to both circuits is
aj i � bj i � cj iða; b; c ¼ 0; 1Þ, the output of the circuit depicted

in Fig. 2b is aj i � a� bj i � b� cj i, while the output of the
circuit depicted in Fig. 2c is aj i � a� bj i � a� b� cj i.
Therefore, the third qubit of two circuits is different when
a ¼ 1.

Thus, there are two kinds of noncommutativity in which
we are interested for two gate strings in a pearl-necklace
encoder:
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Fig. 2. (a) The circuit representation of CNOT gate. (b) shows that when index of the source qubit of one gate is the same as the index of the target of

the other, two CNOTs do not commute.



1. Source-target noncommutativity occurs when the index
of each source qubit in the first gate string is the
same as the index of each target qubit in the second
gate string. This type of noncommutativity occurs in
the following two gate strings:

CNOTði; jÞðDl1Þ CNOTðk; iÞðDl2Þ;

where we order the gate strings from left to right.
2. Target-source noncommutativity occurs when the index

of each target qubit in the first gate string is the same
as the index of each source qubit in the second gate
string. For example, this type of noncommutativity
occurs in the following two gate strings:

CNOTði; jÞðDl1Þ CNOTðj; kÞðDl2Þ:

More generally, if U is a gate that operates on a single
qubit, where

U � u00 u01

u10 u11

� �
;

then the controlled-U gate is a gate that operates on two
qubits in such a way that the first qubit serves as a control
and the second as a target. This gate performs the unitary U
on the target qubit if the control qubit is 1j i and otherwise,
leaves it unchanged. The matrix representation of the
controlled-U gate is

Controlled-U �

1 0 0 0
0 1 0 0
0 0 u00 u01

0 0 u10 u11

2
664

3
775:

A special type of unitary matrix which is often used in
the encoding circuit of a quantum error correction code is
called a Clifford operation [1]. A Clifford operation U is
one that preserves elements of the Pauli group under
conjugation: A 2 �n ) UAUy 2 �n. The CNOT gate, the
Hadamard gate H, and the phase gate P suffice to
implement any unitary matrix in the Clifford group [6].

3 DEFINITIONS AND NOTATION

We first establish some definitions and notation before
proceeding with the main development of the paper.

Our convention for numbering the frames in a pearl-
necklace encoder is from “top” to “bottom.” In contrast,
our convention for numbering the frames upon which the
unitary of a convolutional encoder acts is from “bottom”
to “top.” Fig. 1b illustrates the former convention for a
pearl-necklace encoder, while Fig. 6b illustrates the latter
convention for a convolutional encoder. These conventions
are useful for our analysis later on.

We now establish conventions for indexing gates in
pearl-necklace encoders. Let sk and tk denote the frame
index of the respective source and target qubits of a gate in
the kth gate string of a pearl-necklace encoder. For example,
consider the pearl-necklace encoder in Fig. 3a that has two
gate strings. The index k ¼ 1 for the left gate string, and
k ¼ 2 for the right gate string. The second CNOT gate in the
k ¼ 1 gate string has s1 ¼ 1 and t1 ¼ 1. The third CNOT gate
in the k ¼ 2 gate string has s2 ¼ 2 and t2 ¼ 3.

We also require some conventions for indexing gates in a
convolutional encoder. Let �k and �k denote the frame index
of the respective source and target qubits of the kth gate in a
convolutional encoder. For example, consider the convolu-
tional encoder in Fig. 6b. The third gate from the left has
k ¼ 3, �3 ¼ 2, and �3 ¼ 0.

Whether referring to a pearl-necklace encoder or a
convolutional encoder, the notation CNOT ði; jÞðs; tÞ denotes
a CNOT gate from qubit i in frame s to qubit j in frame t. We
employ this notation extensively in what follows. The
notation CNOTði; jÞðDlÞ refers to a string of gates in a
pearl-necklace encoder and denotes an infinite, repeated
sequence of CNOT gates from qubit i to qubit j in every frame
where qubit j is in a frame delayed by l. For example, the left
string of gates in Fig. 3a corresponds to CNOTð1; 2Þð1Þ, while
the right string of gates corresponds to CNOTð1; 3ÞðDÞ.

The following two Boolean functions are useful later on
in our algorithms for computing memory requirements:

Source-Target CNOTða1; b1ÞðDl1Þ;CNOTða2; b2ÞðDl2Þ
� �

;

Target-Source CNOTða1; b1ÞðDl1Þ;CNOTða2; b2ÞðDl2Þ
� �

:

The first function takes two gate strings CNOTða1; b1ÞðDl1Þ
and CNOTða2; b2ÞðDl2Þ as input. It returns TRUE if
CNOTða1; b1ÞðDl1Þ and CNOTða2; b2ÞðDl2Þ have source-tar-
get noncommutativity (i.e., a1 ¼ b2) and returns FALSE
otherwise. The second function also takes two gate strings
CNOTða1; b1ÞðDl1Þ and CNOTða2; b2ÞðDl2Þ as input. It re-
turns TRUE if CNOTða1; b1Þ and CNOTða2; b2Þ have target-
source noncommutativity (i.e., a1 ¼ b2) and returns FALSE
otherwise.

The following succession of N gate strings realizes a
pearl-necklace encoder:

CNOT a1; b1ð Þ Dl1
� �

CNOT a2; b2ð Þ Dl2
� �

� � �
CNOT aN; bNð Þ DlN

� �
:

ð2Þ

Consider the jth gate string CNOTðaj; bjÞðDljÞ in the above
succession of N gate strings. It is important to consider the
gate strings preceding this one that have source-target
noncommutativity with it, target-source noncommutativity
with it, nonnegative degree, and negative degree. This leads
to four different subsets Sþj , S�j , T þj , and T �j that we define
as follows:

Sþj ¼ fi j Source-TargetðCNOTðai; biÞðDliÞ;
CNOTðaj; bjÞðDljÞÞ ¼ TRUE; i 2 f1; 2; . . . ; j� 1g;
li � 0g;

S�j ¼ fi j Source-TargetðCNOTðai; biÞðDliÞ;
CNOTðaj; bjÞðDljÞÞ ¼ TRUE; i 2 f1; 2; . . . ; j� 1g;
li < 0g;

T þj ¼ fi j Target-SourceðCNOTðai; biÞðDliÞ;
CNOTðaj; bjÞðDljÞÞ ¼ TRUE; i 2 f1; 2; . . . ; j� 1g;
li � 0g;

T �j ¼ fi j Target-SourceðCNOTðai; biÞðDliÞ;
CNOTðaj; bjÞðDljÞÞ ¼ TRUE; i 2 f1; 2; . . . ; j� 1g;
li < 0g:
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The first subset Sþj consists of all the non-negative-degree

gate strings preceding gate j that have source-target

noncommutativity with it. The second subset S�j consists

of all the negative-degree gate strings preceding gate j that

have source-target noncommutativity with it. The third

subset T þj consists of all the non-negative-degree gate strings

preceding gate j that have target-source noncommutativity

with it. The fourth subset T �j consists of all the negative-

degree gate strings preceding gate j that have target-source

noncommutativity with it. We use these subsets extensively

in what follows.

4 MEMORY REQUIREMENTS FOR PEARL-NECKLACE

ENCODERS

The first step in determining the memory requirements for a

GR pearl-necklace encoder is to rearrange it as a convolu-

tional encoder. There are many possible correct candidates

for the convolutional encoder (“correct” in the sense that

they encode the same code), but there is a realization that

uses a minimal amount of memory qubits. This idea of

rearrangement is in the same spirit as some of the original

ideas of Ollivier and Tillich where there they were trying to

determine noncatastrophic encoders [7], [11], but here, we

explicitly apply them to the GR pearl-necklace encoder for

the purpose of determining memory requirements. In order

to make a convolutional encoder, we must first find a set of

gates consisting of a single gate for each gate string in the

pearl-necklace encoder such that all of its remaining gates

commute with this set. Then, we can shift all the gates

remaining in the pearl-necklace encoder to the right and

infinitely repeat this operation on the remaining gates. Fig. 3

shows a simple example of the rearrangement of a pearl-

necklace encoder CNOTð1; 2Þð1ÞCNOTð1; 3ÞðDÞ into a con-

volutional encoder.

4.1 The Source-Target Constraint
and the Target-Source Constraint

We begin by explaining some constraints that apply to
convolutional encoders formed from primitive pearl-
necklace encoders. First, consider a pearl-necklace encoder
that is a succession of m CNOT gate strings:

CNOT a1; b1ð Þ Dl1
� �

CNOT a2; b2ð Þ Dl2
� �

� � �
CNOT am; bmð Þ Dlm

� �
:

Suppose that all the gate strings in the above succession
commute with each other, in the sense that ai 6¼ bj for all
i 6¼ j. Then, the candidates for a convolutional encoder are
members of the following set M:

M � fCNOTða1; b1Þðs1; t1Þ � � � CNOTðam; bmÞðsm; tmÞ :

ti ¼ si þ li; i 2 f1; . . . ;mg; si 2 0f g [ INg;
ð3Þ

where IN ¼ f1; 2; . . .g. All members of M are correct choices
for a convolutional encoder because they produce the
required encoding and because all the remaining gates in
the pearl-necklace encoder commute with a particular
element of M in all cases. Thus, there is no constraint on
each frame index si of the source qubit of the ith CNOT gate.

Now suppose that two CNOT gates in the pearl-necklace
encoder do not commute with each other. Recall that this
noncommutativity occurs in two ways:

1. Source-target noncommutativity occurs in the follow-
ing two gate strings:

CNOT i; jð Þ Dl1
� �

CNOT k; ið Þ Dl2
� �

; ð4Þ

where j 6¼ k. Potential candidates for a convolutional
encoder belong to the following set M:

M � fCNOTði; jÞðs1; t1Þ CNOTðk; iÞðs2; t2Þ :

t1 ¼ s1 þ l1; t2 ¼ s2 þ l2; s1; s2 2 0f g [ INg;
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Fig. 3. Simple depiction of the rearrangement of a pearl-necklace encoder into a convolutional encoder (note that the technique is more complicated

than depicted for more general cases). (a) The pearl-necklace encoder consists of the gate strings CNOTð1; 2Þð1Þ CNOTð1; 3ÞðDÞ. (b) The

rearrangement of the first few gates by shifting the gates below the first three to the right. (c) A convolutional encoder realization of the pearl-

necklace encoder in (a). The repeated application of the procedure in (b) realizes a convolutional encoder from a pearl-necklace encoder.



though some choices in the set M may not be correct
because they ignore the noncommutativity of the gate
strings in (4). In order for the convolutional encoder to
be correct, we should choose the frame indices s1 and t2
such that all the gates in the gate string CNOTði; jÞðDl1Þ
that remain after CNOTði; jÞðs1; t1Þ commute with the
gate CNOTðk; iÞðs2; t2Þ. Otherwise, the chosen convolu-
tional encoder implements the transformation in (4) in
the opposite order. An an example, Fig. 4 shows the
gate strings CNOTð1; 2ÞðD0ÞCNOTð3; 1ÞðD1Þ. A correct
sample candidate M for the encoder is M �
CNOTð1; 2Þð1; 1ÞCNOTð3; 1Þð0; 1Þ, which is shown in the
figure. It is obvious that the gates remaining after
CNOTð1; 2Þð1; 1Þ (the highlighted gates) commute with
CNOTð3; 1Þð0; 1Þ.

The gate CNOTði; jÞðt2; t2 þ l1Þ is the only gate in the gate
string CNOTði; jÞðDl1Þ that does not commute with
CNOTðk; iÞðs2; t2Þ. Thus, this gate cannot belong to the
remaining set of gates. The set of all gates in the gate string
CNOTði; jÞðDl1Þ remaining after a particular gate CNOT
ði; jÞðs1; t1Þ is as follows:

fCNOTði; jÞðs1 þ d; t1 þ dÞ : d 2 INg: ð5Þ

The following inequality determines a restriction on the
source qubit frame index s1 such that the gates in the above
set both commute with CNOT ðk; iÞðs2; t2Þ and lead to a
correct convolutional encoder:

8d 2 IN s1 þ d > t2; ð6Þ

because these are the remaining gates that we can shift to the
right. Furthermore, the following inequality applies to any
correct choice of the first gate in a convolutional encoder
because this gate can be either CNOTði; jÞðt2; t2 þ l1Þ or any
other in the set in (5) that obeys the inequality in (6):

s1 � t2: ð7Þ

The inequality in (7) is the source-target constraint and
applies to any correct choice of a convolutional encoder that
implements the transformation in (4).

2. The second case is similar to the above case with a few
notable changes. Target-source noncommutativity occurs in
the following two gate strings:

CNOT i; jð Þ Dl1
� �

CNOT j; kð Þ Dl2
� �

: ð8Þ

Potential candidates for a convolutional encoder belong to
the following set M, where

M � fCNOTði; jÞðs1; t1Þ CNOTðj; kÞðs2; t2Þ :

t1 ¼ s1 þ l1; t2 ¼ s2 þ l2; s1; s2 2 0f g [ INg;

though some choices in the set M may not be correct
because they ignore the noncommutativity of the gate
strings in (8). In order for the convolutional encoder to be
correct, we should choose the frame indices t1 and s2 such
that the gates in the gate string CNOTði; jÞðDl1Þ that remain
after CNOTði; jÞðs1; t1Þ commute with CNOT ðj; kÞðs2; t2Þ.
Otherwise, the chosen convolutional encoder implements
the transformation in (8) in the opposite order. The gate
CNOTði; jÞðs2 � l1; s2Þ is the only gate in CNOTði; jÞðDl1Þ
that does not commute with CNOTðj; kÞðs2; t2Þ. Thus, this
gate cannot belong to the remaining set of gates. The set of
all gates in the gate string CNOTði; jÞðDl1Þ remaining after a
particular gate CNOTði; jÞðs1; t1Þ is as follows:

fCNOTði; jÞðs1 þ d; t1 þ dÞ : d 2 INg: ð9Þ

The following inequality determines a restriction on the
target qubit frame index t1 such that the gates in the above
set both commute with CNOT ðj; kÞðs2; t2Þ and lead to a
correct convolutional encoder:

8d 2 IN t1 þ d > s2; ð10Þ

because these are the remaining gates that we can shift to
the right. Furthermore, the following inequality applies to
any correct choice of the first gate in a convolutional
encoder because this gate can be either CNOTði; jÞðs2 �
l1; s2Þ or any other in the set in (9) that obeys the inequality
in (10):

t1 � s2: ð11Þ

The inequality in (11) is the target-source constraint and
applies to any correct choice of a convolutional encoder that
implements the transformation in (8).

4.2 Memory Requirements for a Unidirectional
Pearl-Necklace Encoder

We are now in a position to introduce our algorithms for
finding a minimal-memory convolutional encoder that
realizes the same transformation as a pearl-necklace en-
coder. In this section, we consider the memory requirements
for a CSS pearl-necklace encoder with unidirectional CNOT
gates (see Fig. 6b for an example). Section 4.3 determines
them for a CSS pearl-necklace encoder with unidirectional
CNOT gates in the opposite direction, and Section 4.4
determines them for a general CSS pearl-necklace encoder
with CNOT gates in an arbitrary direction.

First, consider a pearl-necklace encoder that is a
sequence of several CNOT gate strings:

CNOT a1; b1ð Þ Dl1
� �

CNOT a2; b2ð Þ Dl2
� �

� � �
CNOT am; bmð Þ Dlm

� �
;

where all li � 0 and all the gate strings in the above
succession commute with each other. All members of M in
(3) are correct choices for the convolutional encoder, as
explained in the beginning of Section 4.1. Though,
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Fig. 4. A correct sample M for the encoder CNOTð1; 2ÞðD0ÞCNOTð3;
1ÞðD1Þ.



choosing the same value for each target qubit frame index
ti results in the minimal required memory L, where L ¼
maxfl1; l2; . . . ; lmg: A correct, minimal-memory choice for a
convolutional encoder is as follows:

CNOTða1; b1Þðl1; 0Þ CNOTða2; b2Þðl2; 0Þ � � �
CNOTðam; bmÞðlm; 0Þ;

where we recall the convention that frames in the
convolutional encoder number from “bottom” to “top.”

Now, consider two gate strings in a pearl-necklace
encoder that have source-target noncommutativity:

CNOT i; jð Þ Dl1
� �

CNOT k; ið Þ Dl2
� �

; ð12Þ

where l1, l2 � 0. Thus, the source-target constraint in (7)
holds for any correct choice of a convolutional encoder.
Choosing s1 ¼ t2 leads to a minimal-memory convolutional
encoder because any other choice either does not implement
the correct transformation (it violates the source-target
constraint) or it uses more memory than this choice. So, a
correct, minimal-memory choice for a convolutional en-
coder is as follows: CNOT i; jð Þ l1; 0ð Þ CNOT k; ið Þ l1 þ l2; l1ð Þ.
Such a convolutional encoder requires L frames of memory
qubits, where L ¼ l1 þ l2:. Fig. 5a depicts a minimal-
memory convolutional encoder for the following gate
strings: CNOT 2; 3ð Þ Dl1

� �
CNOT 1; 2ð Þ Dl2

� �
; where l1 and l2

are both nonnegative.
Consider two gate strings in a pearl-necklace encoder

that have target-source noncommutativity:

CNOT i; jð Þ Dl1
� �

CNOT j; kð Þ Dl2
� �

; ð13Þ

where l1, l2 � 0. Thus, the target-source constraint in (11)
holds for any correct choice of a convolutional encoder.
Choosing t1 ¼ t2 leads to a minimal-memory convolutional
encoder because any other choice either does not imple-
ment the correct transformation (it violates the target-
source constraint) or it uses more memory than this choice.
A correct, minimal-memory choice for the convolutional
encoder is as follows: CNOTði; jÞðl1; 0Þ CNOTðj; kÞðl2; 0Þ;
and the number L of frames of memory qubits it requires is
as follows: L ¼ maxfl1; l2g: Fig. 5b depicts a minimal-
memory convolutional encoder for the following gate
strings: CNOT 1; 2ð Þ Dl1

� �
CNOT 2; 3ð Þ Dl2

� �
; where both l1

and l2 are nonnegative.

Suppose that two gate strings have both kinds of
noncommutativity: CNOTði; jÞðDl1Þ CNOTðj; iÞðDl2Þ; where
l1, l2 � 0. Thus, both constraints in (7) and (11) hold for any
correct choice of a convolutional encoder. The target-source
constraint in (11) holds if the source-target constraint in (7)
holds. So, it is sufficient to consider only the source-target
constraint in such a scenario.

The above examples prepare us for constructing a
minimal-memory convolutional encoder that implements
the same transformation as a pearl-necklace encoder with
unidirectional CNOT gates. Suppose that a pearl-necklace
encoder features the following succession of N gate strings:

CNOT a1; b1ð Þ Dl1
� �

CNOT a2; b2ð Þ Dl2
� �

� � �
CNOT aN; bNð Þ DlN

� �
;

ð14Þ

where all li � 0. The first gate in the convolutional encoder
is CNOT ða1; b1Þð�1 ¼ l1; �1 ¼ 0Þ. For the target indices of
each gate j where 2 � j � N , we should find the minimal
value of �j that satisfies all the source-target and target-
source constraints that the gates preceding it impose. The
inequality in (15) applies to the target index of the jth gate
in the convolutional encoder by applying the source-target
constraint in (7):

�i � �j 8i 2 Sþj ;
therefore �i þ li � �j 8i 2 Sþj ;

therefore maxf�i þ ligi2Sþj � �j:
ð15Þ

Recall that the direction of frame numbering in the convolu-
tional encoder is opposite to the direction of numbering in the
pearl-necklace encoder—so, the direction of inequalities is
reversed with respect to (7) and (11). The inequality in (15)
exploits all of the source-target constraints corresponding to
the gates preceding gate j in order to place a limit on
the location of the jth gate in the convolutional encoder. The
inequality in (16) similarly exploits all of the target-source
constraints corresponding to the gates preceding gate j:

�i � �j 8i 2 T þj ;
therefore �i � lj � �j 8i 2 T þj ;

therefore maxf�i � ljgi2T þj � �j:
ð16Þ

The following constraint applies to the frame index �j of the
target qubit of the jth gate in the convolutional encoder, by
applying (15) and (16): �j � maxff�i þ ligi2Sþj ; f�i � ljgi2T þj g:
Thus, the minimal value for �j that satisfies all the
constraints is

�j ¼ maxff�i þ ligi2Sþj ; f�i � ljgi2T þi g: ð17Þ

Of course, there is no constraint for the frame index �j if the
gate string CNOTðaj; bjÞðDljÞ commutes with all previous
gate strings. Thus, in this case, we choose the frame index �j
as follows:

�j ¼ 0: ð18Þ

A good choice for the frame index �j is as follows:

�j ¼ maxf0; f�i þ ligi2Sþj ; f�i � ljgi2T �j g; ð19Þ

by considering (17) and (18).
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Fig. 5. Depiction of (a) a minimal-memory convolutional encoder for

the gate strings CNOTð2; 3ÞðDl1 Þ CNOTð1; 2ÞðDl2 Þ, and (b) a mini-

mal-memory convolutional encoder for the gate strings CNOTð1;
2ÞðDl1 Þ CNOTð2; 3ÞðDl2 Þ where l1 and l2 are nonnegative.



4.2.1 Construction of the Commutativity Graph

We introduce the notion of a commutativity graph in order to
find the values in (19) for the target qubit frame indices. The
graph is a weighted, directed acyclic graph constructed from
the noncommutativity relations of the gate strings in (14). Let
Gþ denote the commutativity graph for a succession of gate
strings that have purely nonnegative degrees (and thus
where the CNOT gates are unidirectional). Algorithm 1
below presents pseudocode for constructing the commu-
tativity graph Gþ.

Algorithm 1. Algorithm for determining the commutativity

graph Gþ forpurely non-negative case

N  Number of gate strings in the pearl-necklace encoder

Draw a START vertex

for j :¼ 1 to N do

Draw a vertex labeled j for the jth gate string

CNOTðaj; bjÞðDljÞ
DrawEdge(START, j; 0)

for i :¼ 1 to j� 1 do

if Source-TargetðCNOTðai; biÞðDliÞ,
CNOTðaj; bjÞðDljÞÞ ¼ TRUE then

DrawEdge(i; j; li)

else if Target-SourceðCNOTðai; biÞðDliÞ,
CNOTðaj; bjÞðDljÞÞ ¼ TRUE then

DrawEdge(i; j;�lj)
end if

end for

end for

Draw an end vertex

for j :¼ 1 to N do

DrawEdge(j, END, lj)

end for

The commutativity graph Gþ consists of N vertices,
labeled 1; 2; . . . ; N , where the jth vertex corresponds to the
jth gate string CNOTðaj; bjÞðDljÞ. It also has two dummy
vertices, named “START” and “END.” DrawEdge ði; j; wÞ is
a function that draws a directed edge from vertex i to vertex
j with an edge weight equal to w. A zero-weight edge
connects the START vertex to every vertex, and an lj-weight
edge connects every vertex j to the END vertex. Also, an
li-weight edge connects the ith vertex to the jth vertex if

Source-Target CNOTðai; biÞðDliÞ;CNOTðaj; bjÞðDljÞ
� �

¼ TRUE;

and a �lj-weight edge connects the ith vertex to the
jth vertex if

Target-Source CNOTðai; biÞðDliÞ;CNOTðaj; bjÞðDljÞ
� �

¼ TRUE:

The commutativity graph Gþ is an acyclic graph because a
directed edge connects each vertex only to vertices for
which its corresponding gate comes later in the pearl-
necklace encoder.

The construction of Gþ requires time quadratic in the
number of gate strings in the pearl-necklace encoder. In
Algorithm 1, the if instruction in the inner for loop requires
constant timeOð1Þ. The sum of iterations of the if instruction
in the jth iteration of the outer for loop is equal to j� 1.
Thus, the running time T ðNÞ of Algorithm 1 is

T ðNÞ ¼
XN
i¼1

Xj�1

k¼1

Oð1Þ ¼ OðN2Þ:

4.2.2 The Longest Path Gives the Minimal-Memory

Requirements

Theorem 1 below states that the weight of the longest path
from the START vertex to the END vertex is equal to the
minimal memory required for a convolutional encoder
implementation.

Theorem 1. The weight w of the longest path from the START
vertex to END vertex in the commutativity graph Gþ is equal
to minimal memory L that the convolutional encoder requires.

Proof. We first prove by induction that the weight wj of the
longest path from the START vertex to vertex j in the
commutativity graph Gþ is

wj ¼ �j: ð20Þ

A zero-weight edge connects the START vertex to the
first vertex, so that w1 ¼ �1 ¼ 0. Thus, the base step holds
for the target index of the first CNOT gate in a minimal-
memory convolutional encoder. Now suppose the
property holds for the target indices of the first k CNOT
gates in the convolutional encoder:

wj ¼ �j 8j : 1 � j � k: ð21Þ

Suppose we add a new gate string CNOTðakþ1;
bkþ1ÞðDlkþ1Þ to the pearl-necklace encoder, and Algo-
rithm 1 then adds a new vertex kþ 1 to the graph Gþ and
the following edges to Gþ:

1. A zero-weight edge from the START vertex to
vertex kþ 1.

2. An lkþ1-weight edge from vertex kþ 1 to the END
vertex.

3. An li-weight edge from each vertex figi2Sþkþ1
to

vertex kþ 1.
4. A �lkþ1-weight edge from each vertex figi2T þkþ1

to
vertex kþ 1.

So, it is clear that the following relations hold because
wkþ1 is the weight of the longest path to vertex kþ 1 and
from applying (21):

wkþ1 ¼ maxf0; fwi þ ligi2Sþkþ1
; fwi � lkþ1gi2T þkþ1

g;

¼ maxf0; f�i þ ligi2Sþkþ1
; f�i � lkþ1gi2T þkþ1

g:
ð22Þ

The inductive proof then follows by applying (19) and (22):
wkþ1 ¼ �kþ1. The proof of the theorem follows by consider-
ing the following equalities: w ¼ maxi2f1;2;...;Ngfwi þ lig
¼ maxi2f1;2;...;Ngf�i þ lig ¼ maxi2f1;2;...;Ngf�ig. The f irs t
equality holds because the longest path in the graph is
the maximum of the weight of the path to the ith vertex
summed with the weight of the edge from the ith vertex to
the END vertex. The second equality follows by applying
(20). The final equality follows because �i ¼ �i þ li. The
quantity maxf�igi2f1;2;...;Ng is equal to minimal required
memory for a minimal-memory convolutional encoder
because the largest location of a source qubit determines
the number of frames upon which a convolutional encoder
with unidirectional CNOT gates acts. (Recall that we
number the frames starting from zero). Thus, the theorem
holds. tu
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The final task is to determine the longest path in Gþ.
Finding the longest path in a general graph is an NP-
complete problem, but dynamic programming finds it on a
weighted, directed acyclic graph in time linear in the number
of vertices and edges, or equivalently, quadratic in the
number of gate strings in the pearl-necklace encoder [22].

4.2.3 Example of a Pearl-Necklace Encoder with

Unidirectional CNOT Gates

We conclude this development with an example.

Example 1. Consider the following gate strings in a pearl-
necklace encoder:

CNOTð2; 3ÞðDÞ CNOTð1; 2ÞðDÞ CNOTð2; 3ÞðD2Þ
CNOTð1; 2Þð1Þ CNOTð2; 1ÞðDÞ:

All gate strings in the above pearl-necklace encoder have
nonnegative degree and are thus unidirectional. Fig. 6a
draws Gþ for this pearl-necklace encoder, after running
Algorithm 1. The graph displays all of the source-target
and target-source noncommutativities between gate
strings in the pearl-necklace encoder. The longest path
through the graph is START! 3! 4! 5! END, with
weight equal to three. So, the minimal memory for the
convolutional encoder is equal to three frames of
memory qubits. Also from inspecting the graph Gþ, we
can determine the locations for all the target qubit frame
indices: �1 ¼ 0, �2 ¼ 1, �3 ¼ 0, �4 ¼ 2, and �5 ¼ 2. Fig. 6b
depicts a minimal-memory convolutional encoder that
implements the same transformation as the pearl-
necklace encoder.

4.3 Memory Requirements for a Unidirectional
Pearl-Necklace Encoder in the Opposite
Direction

In this section, we find a minimal-memory convolutional
encoder that implements the same transformation as a
pearl-necklace encoder with purely nonpositive degree
CNOT gates. The ideas in this section are similar to those
in the previous one.

First, consider a pearl-necklace encoder that is a
succession of several CNOT gate strings:

CNOTða1; b1ÞðDl1Þ CNOTða2; b2ÞðDl2Þ � � �
CNOTðam; bmÞðDlmÞ;

where all li � 0 and all the gate strings commute with each
other. All members of M in (3) are correct choices for the
convolutional encoder, as explained in the beginning of
Section 3.1. But this time, choosing the same value for each
source qubit frame index si results in the minimal required
memory L, where L ¼ maxf l1j j; l2j j; . . . ; lmj jg. A correct
choice for a minimal-memory convolutional encoder is

CNOTða1; b1Þð0; jl1jÞ CNOTða2; b2Þð0; jl2jÞ � � �
CNOTðam; bmÞð0; jlmjÞ:

Now consider two gate strings that have source-target
noncommutativity:

CNOT i; jð Þ Dl1
� �

CNOT k; ið Þ Dl2
� �

; ð23Þ

where l1; l2 � 0. Thus, the source-target constraint in (7)
holds for any correct choice of a convolutional encoder.
Choosing s1 ¼ s2 leads to the minimal memory required for
the convolutional encoder because any other choice either
does not implement the correct transformation (it violates the
source-target constraint) or it uses more memory than this
choice. A correct choice for a minimal-memory convolutional
encoder is CNOT i; jð Þ 0; l1j jð Þ CNOT k; ið Þ 0; l2j jð Þ. Such a con-
volutional encoder requires L frames of memory qubits,
where L ¼ maxf l1j j; l2j jg Fig. 7a illustrates a minimal-
memory convolutional encoder for the gate strings
CNOT 3; 2ð Þ Dl1

� �
CNOT 1; 3ð Þ Dl2

� �
, where l1; l2 � 0.

Now consider two gate strings that have target-source
noncommutativity:

CNOT i; jð Þ Dl1
� �

CNOT j; kð Þ Dl2
� �

; ð24Þ

where l1; l2 � 0. The target-source constraint in (11) holds for
any correct choice of a convolutional encoder. Choosing t1 ¼
s2 leads to a minimal-memory convolutional encoder
because any other choice either does not implement the
correct transformation (it violates the target-source con-
straint) or it requires more memory than this choice. A correct
choice for a minimal-memory convolutional encoder is
CNOT i; jð Þ 0; l1j jð ÞCNOT k; ið Þ l1j j; l1 þ l2j jð Þ, with the number
L of frames of memory qubits as follows: L ¼ l1 þ l2j j. Fig. 7b
shows a minimal-memory convolutional encoder for the
encoding sequence CNOT 3; 2ð Þ Dl1

� �
CNOT 2; 1ð Þ Dl2

� �
,

where l1 and l2 are nonpositive.
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Fig. 6. (a) The commutativity graph Gþ and (b) a minimal-memory

convolutional encoder for Example 1.
Fig. 7. (a) A minimal-memory convolutional encoder for the gate strings

CNOTð3; 2ÞðDl1 Þ CNOTð1; 3ÞðDl2 Þ, and (b) a minimal-memory convolu-

tional encoder for the gate strings CNOTð3; 2ÞðDl1 Þ CNOTð2; 1ÞðDl2 Þ
where l1 and l2 are nonpositive.



Suppose we have two gate strings that feature both types
of noncommutativity: CNOTði; jÞðDl1Þ CNOTðj; iÞðDl2Þ.
Thus, both constraints in (7) and (11) hold for any correct
choice of a convolutional encoder. The source-target
constraint in (7) holds if the target-source constraint in
(11) holds when both degrees are nonpositive. So, it is
sufficient to consider only the target-source constraint in
this scenario.

The above examples prepare us for constructing a
minimal-memory convolutional encoder that implements
the same transformation as a pearl-necklace encoder with
unidirectional CNOT gates (the gates are in the opposite
direction of those in Section 4.2). Suppose that a pearl-
necklace encoder features the following succession of
N gate strings:

CNOTða1; b1ÞðDl1Þ CNOTða2; b2ÞðDl2Þ � � �
CNOTðaN; bNÞðDlN Þ;

ð25Þ

where N is the number of gate strings and all li � 0. The
first gate in the convolutional encoder is CNOT ð�1 ¼ 0;
�1 ¼ l1Þ. For the source indices of gate j where 2 � j � N ,
we should find the minimal value for �j that satisfies all the
source-target and target-source constraints that the pre-
vious gates impose. The following inequalities apply to the
source qubit frame index �j of the jth gate in the
convolutional encoder:

�i � �j 8i 2 S�j ;
therefore �i � �j þ lj

�� �� 8i 2 S�j ;
therefore maxf�i � lj

�� ��gi2S�j � �j:
ð26Þ

The inequality in (26) exploits all of the source-target
constraints corresponding to the gates preceding gate j in
order to place a limit on the location of the jth gate in the
convolutional encoder. The inequality below similarly
exploits all of the target-source constraints corresponding
to the gates preceding gate j:

�i � �j 8i 2 T �j ;
therefore �i þ lij j � �j 8i 2 T �j ;

therefore maxf�i þ lij jgi2T �j � �j:
ð27Þ

The following constraint applies to the frame index
�j of the source qubit of the jth gate in the
convolutional encoder, by applying (26) and (27):
�j � maxff�i � lj

�� ��gi2S�j ; f�i þ lij jgi2T �i g. Thus, the mini-
mal value for �j that satisfies all the constraints is

�j ¼ maxff�i � lj
�� ��gi2S�j ; f�i þ lij jgi2T �j g: ð28Þ

There is no constraint for the source index �j if the gate
string CNOTðaj; bjÞðDljÞ commutes with all previous gate
strings. Thus, in this case, we can choose �j as follows:

�j ¼ 0: ð29Þ

So, based on (28) and (29), a good choice for �j is as follows:

�j ¼ maxf0; f�i � lj
�� ��gi2S�j ; f�i þ lij jgi2T �j gg: ð30Þ

4.3.1 Construction of the Commutativity Graph for the

Nonpositive Degree Case

We construct a commutativity graph G� in order to find the
values in (30). It is again a weighted, directed acyclic graph
constructed from the noncommutativity relations in the
pearl-necklace encoder in (25). Algorithm 2 presents pseu-
docode for the construction of the commutativity graph in
the nonpositive degree case.

Algorithm 2. Algorithm for determining the commutativity

graph G� for purely non-positive case

N  Number of gate strings in the pearl-necklace

encoder.

Draw a START vertex.

for j :¼ 1 to N do

Draw a vertex labeled j for the jth gate string
CNOTðaj; bjÞðDljÞ
DrawEdge(START, j, 0)

for i :¼ 1 to j� 1 do

if Target-SourceðCNOTðai; biÞðDliÞ,
CNOTðaj; bjÞðDljÞÞ ¼ TRUE then

DrawEdge(i; j; jlij)
else if Source-TargetðCNOTðai; biÞðDliÞ,
CNOTðaj; bjÞðDljÞÞ ¼ TRUE then

DrawEdge(i; j;�jljj)
end if

end for

end for

Draw an END vertex.

for j :¼ 1 to N do

DrawEdge(j, END,jljj)
end for

The graph G� consists of N vertices, labeled 1; 2; . . . ; N ,
where vertex j corresponds to the jth gate string CNOTðaj;
bjÞðDljÞ. A zero-weight edge connects the START vertex to all
vertices, and an lj

�� ��-weight edge connects every vertex j to the
END vertex. Also, an lij j-weight edge connects vertex i to
vertex j if

Target-SourceðCNOTðai; biÞðDliÞ;CNOTðaj; bjÞðDljÞÞ
¼ TRUE;

and a � lj
�� ��-weight edge connects vertex i to vertex j if

Source-TargetðCNOTðai; biÞðDliÞ;CNOTðaj; bjÞðDljÞÞ
¼ TRUE:

The graph G� is an acyclic graph and its construction
complexity is OðN2Þ (similar to the complexity for con-
structing Gþ). Dynamic programming can find the longest
path in G� in time linear in the number of vertices and
edges, or equivalently, quadratic in the number of gate
strings in the pearl-necklace encoder.

4.3.2 The Longest Path Gives the Minimal-Memory

Requirements

We now prove that the weight of the longest path from the
START vertex to END vertex in G� is equal to the memory
in a minimal-memory realization of the pearl-necklace
encoder in (25).

308 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 3, MARCH 2012



Theorem 2. The weight of the longest path from the START
vertex to END vertex in the graph G� is equal to the minimal-
memory requirements of the convolutional encoder.

Proof. By similar reasoning as in Theorem 1, the weight of
the longest path from the START vertex to vertex j in the
commutativity graph G� is equal to

wj ¼ �j: ð31Þ

Similar to the proof of Theorem 1, we can prove that the
longest path from the START vertex to END vertex in G�

is equal to maxf�ig1�i�N . Thus, it is equal to the minimal
required number of frames of memory qubits. tu

4.3.3 Example of a Pearl-Necklace Encoder with

Unidirectional CNOT Gates in the Opposite

Direction

The following example illustrates how to find the minimal
required memory for a purely nonpositive degree pearl-
necklace encoder:

Example 2. Consider the following succession of gate
strings in a pearl-necklace encoder:

CNOTð2; 3ÞðD�1Þ CNOTð1; 2ÞðD�1Þ CNOTð2; 3ÞðD�2Þ
CNOTð1; 2Þð1Þ CNOTð2; 1ÞðD�1Þ:

All gates have nonpositive powers and thus are
unidirectional. Fig. 8a illustrates the commutativity
graph for this pearl-necklace encoder. The commutativity
graph details all of the source-target and target-source
noncommutativities between gate strings. The longest
path in G� is START! 2! 3! END, with its weight
equal to three. The memory needed to implement the
convolutional encoder is three frames of memory qubits.
From inspecting the commutativity graph G�, we can
also determine the locations of the source qubit frame
indices: �1 ¼ 0, �2 ¼ 0, �3 ¼ 1, �4 ¼ 0, and �5 ¼ 1. Fig. 8b
depicts a minimal-memory convolutional encoder for
this example.

4.4 Memory Requirements for an Arbitrary CNOT
Pearl-Necklace Encoder

This section is the culmination of the previous two
developments in Sections 4.2 and 4.3. Here, we find a

minimal-memory convolutional encoder that implements
the same transformation as a general pearl-necklace
encoder with arbitrary CNOT gate strings.

Consider a pearl-necklace encoder that is a succession of
several arbitrary CNOT gate strings:

CNOT a1; b1ð Þ Dl1
� �

CNOT a2; b2ð Þ Dl2
� �

� � �
CNOT aN; bNð Þ DlN

� �
:

ð32Þ

We construct a commutativity graph G in order to
determine a minimal-memory convolutional encoder. This
graph is similar to those in Sections 4.2 and 4.3, but it
combines ideas from both developments. In this graph, the
weight of the longest path from the START vertex to
vertex j is equal to �j when lj � 0, and it is equal to �j when
lj � 0. We consider the constraints that the gates preceding
gate j impose. The constraint inequalities use the target
qubit frame index �j when lj � 0 and use the source qubit
frame index �j when lj < 0. First, consider the case when
lj � 0. The source-target and target-source constraints that
previous gates impose on gate j occur in four different
ways, based on the sign of the involved gate’s degree:

1. There is a source-target constraint for all gates
preceding gate j that have nonnegative degree and
source-target noncommutativity with it:

�i � �j 8i 2 Sþj
therefore �i þ li � �j 8i 2 Sþj :

2. There is a source-target constraint for all gates
preceding gate j that have negative degree
and source-target noncommutativity with it:
�i � �j 8i 2 S�j .

3. There is a target-source constraint for all gates
preceding gate j that have nonnegative degree and
target-source noncommutativity with it:

�i � �j 8i 2 T þj
therefore �i � �j þ lj 8i 2 T þj ;

therefore �i � lj � �j 8i 2 T þj :

4. There is a target-source constraint for all gates
preceding gate j that have negative degree and
target-source noncommutativity with it:

�i � �j 8i 2 T �j
therefore �i þ lij j � �j þ lj 8i 2 T �j ;

therefore �i þ lij j � lj � �j 8i 2 T �j :

The graph includes an edge from vertex i to vertex j,
corresponding to each of the above constraints. The target
qubit frame index �j should satisfy the following inequality,
by considering the above four inequalities:

maxff�i þ ligi2Sþj ; f�igi2S�j ; f�i � ljgi2T þj ;

f�i þ jlij � ljgi2T �j g � �j:
ð33Þ

Choosing �j so that it minimally satisfies the above
constraints results in a minimal usage of memory:
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Fig. 8. (a) The commutativity graph Gþ and (b) a minimal-memory

convolutional encoder for Example 2.



�j ¼ maxff�i þ ligi2Sþj ; f�igi2S�j ; f�i � ljgi2T þj ;

f�i þ jlij � ljgi2T �j g:
ð34Þ

There is no constraint for a gate string CNOTðaj; bjÞðDljÞ
that commutes with its previous gates:

�j ¼ 0: ð35Þ

Thus, choosing �j as follows when lj � 0 results in minimal-

memory usage, based on (34) and (35):

�j ¼ maxf0; f�i þ ligi2Sþj ; f�igi2S�j ; f�i � ljgi2T þj ;

f�i þ lij j � ljgi2T �j g:
ð36Þ

Now, we consider the constraints that gates preceding

gate j impose on it when lj < 0. There are four different

noncommutativity constraints based on the sign of the

involved gate’s degree:

1. There is a source-target constraint for all gates
preceding gate j that have nonnegative degree and
source-target noncommutativity with it:

�i � �j 8i 2 Sþj
therefore �i þ li � �j þ lj

�� �� 8i 2 Sþj ;
therefore �i þ li � lj

�� �� � �j 8i 2 Sþj :

2. There is a source-target constraint for all gates
preceding gate j that have negative degree and
source-target noncommutativity with it:

�i � �j 8i 2 S�j
therefore �i � �j þ lj

�� �� 8i 2 S�j
therefore �i � lj

�� �� � �j 8i 2 S�j :

3. There is a target-source constraint for all gates
preceding gate j that have nonnegative degree and
target-source noncommutativity with it:

�i � �j 8i 2 T þj :

4. There is a target-source constraint for all gates
preceding gate j that have negative degree and
target-source noncommutativity with it:

�i � �j 8i 2 T þj ;
therefore �i þ lij j � �j 8i 2 T þj :

For similar reasons as above, choosing �j as follows

results in minimal-memory usage when li < 0:

�j ¼ maxf0; f�i þ li � lj
�� ��gi2Sþj ; f�i � lj

�� ��gi2S�j ; f�igi2T þj ;
f�i þ lij jgi2T �j g:

ð37Þ

A search through the constructed commutativity graph

G can find the values in (36) and (37). Algorithm 3 below

gives the pseudocode for constructing the commutativity

graph G. The graph G consists of N vertices, labeled

1; 2; . . . ; N , and vertex j corresponds to jth gate string

CNOTðaj; bjÞðDljÞ in the pearl-necklace encoder.

Algorithm 3. Algorithm for determining the commutativity

graph G in mixed case

N  Number of gate strings in the pearl-necklace encoder

Draw a START vertex.

for j :¼ 1 to N do

Draw a vertex labeled j for the jth encoding operation,
CNOTðaj; bjÞðDljÞ
DrawEdge(START, j; 0)

for i :¼ 1 to j� 1 do

if lj � 0 AND li � 0 then

if Source-TargetðCNOTðai; biÞðDliÞ,
CNOTðaj; bjÞðDljÞÞ ¼ TRUE then

DrawEdge(i; j; li)

else if Target-SourceðCNOTðai; biÞðDliÞ,
CNOTðaj; bjÞðDljÞÞ ¼ TRUE then

DrawEdge(i; j;�lj)
end if

else if lj � 0 AND li < 0 then

if Source-TargetðCNOTðai; biÞðDliÞ,
CNOTðaj; bjÞðDljÞÞ ¼ TRUE then

DrawEdge(i; j; 0)

end if

if Target-SourceðCNOTðai; biÞðDliÞ,
CNOTðaj; bjÞðDljÞÞ ¼ TRUE then

DrawEdge(i; j; jlij � lj)
end if

else if lj < 0 AND li � 0 then

if Source-TargetðCNOTðai; biÞðDliÞ,
CNOTðaj; bjÞðDljÞÞ ¼ TRUE then

DrawEdge(i; j; li � jljj)
end if

if Target-SourceðCNOTðai; biÞðDliÞ,
CNOTðaj; bjÞðDljÞÞ ¼ TRUE then

DrawEdge(i; j; 0)

end if

else if lj < 0 AND li < 0 then

if Target-SourceðCNOTðai; biÞðDliÞ;
CNOTðaj; bjÞðDljÞÞ ¼ TRUE then

DrawEdge(i; j; jlij)
else if Source-TargetðCNOTðai; biÞðDliÞ,
CNOTðaj; bjÞðDljÞÞ ¼ TRUE then

DrawEdge(i; j;�jljj)
end if

end if

end for

end for

STATE Draw an END vertex.

for j :¼ 1 to N do

DrawEdge(j, end, jljj)
end for
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4.4.1 The Longest Path Gives the Minimal-Memory

Requirements

Theorem 3 states that the weight of the longest path from

the START vertex to END vertex in G is equal to the

minimal required memory for the encoding sequence in

(32). Part of its proof follows from Lemma 4.

Theorem 3. The weight of the longest path from the START

vertex to the END vertex in the commutativity graph G is

equal to the memory required for the convolutional encoder.

Proof. The longest path in the graph is the maximum of

the longest path to each vertex summed with the

weight of the edge from each vertex to the end

vertex: w ¼ maxfwj þ jljjgj2f1;2;...;Ng. The following

relation holds by applying Lemma 4 below: w ¼
maxff�j þ ljglj�0; f�j þ jljjglj<0g, which is equal to

w ¼ maxff�jglj�0; f�jglj<0g. T h e q u a n t i t y

maxff�jglj�0; f�jglj<0g is equal to the memory require-

ment of a minimal-memory convolutional encoder, so

the theorem holds. tu
Lemma 4. The weight of the longest path from the START vertex

to vertex j in G, wj is equal to

wj ¼
�j : lj � 0;
�j : lj < 0:

�

Proof. We prove the lemma by induction. The weight w1 of

the path to the first vertex is equal to zero because a zero-

weight edge connects the START vertex to the first

vertex. If l1 � 0, then �1 ¼ 0. So, w1 ¼ �1 ¼ 0 and if l1 < 0,

then �1 ¼ 0. So, w1 ¼ �1 ¼ 0. Therefore, the lemma holds

for the first gate.
Suppose the lemma holds for the first k gates:

8i 2 f1; . . . ; kg; wi ¼
�i : li � 0;
�i : li < 0:

�

Consider adding a ðkþ 1Þth gate string CNOTðakþ1;

bkþ1ÞðDlkþ1Þ to the pearl-necklace encoder. Algorithm 3

then adds a vertex with label kþ 1 to the graph. First,

consider the case that lkþ1 � 0. Algorithm 3 then adds the

following edges to the graph G:

1. A zero-weight edge from the START vertex to
vertex kþ 1.

2. An lkþ1-weight edge from vertex kþ 1 to the END
vertex.

3. An li-weight edge from each vertex figi2Sþkþ1
to

vertex kþ 1.
4. A zero-weight edge from each vertex figi2S�kþ1

to
vertex kþ 1.

5. A �lkþ1-weight edge from each vertex figi2T þkþ1
to

vertex kþ 1.
6. A lij j � lkþ1-weight edge from each vertex
figi2T �kþ1

to vertex kþ 1.

The weight of the longest path from the START vertex
to vertex kþ 1 is then as follows:

wkþ1 ¼ maxf0; fwi þ ligi2Sþkþ1
; fwigi2S�kþ1

; fwi � lkþ1gi2T þkþ1
;

fwi þ jlij � lkþ1gi2T �kþ1
g

¼ maxf0; f�i þ ligi2Sþkþ1
; f�igi2S�kþ1

; f�i � lkþ1gi2T þkþ1
;

f�i þ jlij � lkþ1gi2T �kþ1
g:

ð38Þ

The following relation follows by applying (36) and (38)

when lkþ1 � 0: wkþ1 ¼ �kþ1. In a similar way, we can

prove that wkþ1 ¼ �kþ1, when lkþ1 < 0 and this last step

concludes the proof. tu
The complexity of constructing the graph G is OðN2Þ (the

argument is similar to before), and dynamic programming

finds the longest path in G in time linear in the number of

its vertices and edges because G is a weighted, directed

acyclic graph.

4.4.2 Example of a Pearl-Necklace Encoder with

Arbitrary CNOT Gates

We conclude the final development with an example.

Example 3. Consider the following succession of gate

strings in a pearl-necklace encoder:

CNOTð2; 3ÞðDÞ CNOTð1; 2ÞðD�1Þ CNOTð2; 3ÞðD�2Þ
CNOTð1; 2Þð1Þ CNOTð2; 1ÞðDÞ:

Fig. 9a illustrates G for the above example. The longest

path is

START! 2! 3! END;

with its weight equal to 3. Thus, the minimal-memory

convolutional encoder requires three frames of memory

qubits. Also, from inspecting the graph G, we can

determine the source qubit and target qubit frame

indices in the convolutional encoder: �1 ¼ 0, �2 ¼ 0,

�3 ¼ 1, � ¼ 1, and �5 ¼ 1. Fig. 9b depicts a minimal-

memory convolutional encoder.
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Fig. 9. (a) The commutativity graph Gþ and (b) a minimal-memory

convolutional encoder for Example 3.



5 CONCLUSION

We have shown how to realize a minimal-memory
convolutional encoder that implements the same transfor-
mation as a pearl-necklace encoder with arbitrary CNOT
gate strings. Our approach is to construct a dependency
graph whose directed edges represent noncommutative
relations between gate strings in the pearl-necklace encoder.
Determining the minimal memory is then the same task as
determining the longest path through this graph. The
algorithm for constructing and searching the graph requires
time at worst quadratic in the number of gate strings in the
pearl-necklace encoder. This technique should be useful
when we have a pearl-necklace encoder description, which
is the case in the work of Grassl and Rötteler [12], [15] and
later work on entanglement-assisted quantum convolu-
tional coding [16], [17], [18], [19], [20].

A later paper includes the general case of the algorithm
for pearl-necklace encoders with gate strings other than
CNOT gate strings [23]. The extension of the algorithm
includes all gate strings that are in the shift-invariant
Clifford group [12], [21], including Hadamard gates, phase
gates, two variants of the controlled-phase gate string, and
infinite-depth CNOT operations.

There might be ways to determine convolutional encoders
with even lower memory requirements by using techniques
different from those given here. First, our algorithm begins
with a particular pearl-necklace encoder, i.e., a particular
succession of gate strings to implement. One could first
perform an optimization over all possible pearl-necklace
encoders of a quantum convolutional code because there are
many pearl-necklace encoders for a particular quantum
convolutional code. Perhaps even better, one could look for a
method to construct a repeated unitary directly from the
polynomial description of the code itself. Ollivier and Tillich
have considered such an approach in [11, Sections 2.3 and 3],
but it is not clear that their technique is attempting to
minimize the memory resources for the encoder. There are
well-developed techniques in the classical world to deter-
mine minimal-memory encoders. Ideally, we would like to
have a “quantization” of [9, Theorem 2.22].
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