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Abstract— The computation of capacity for discrete 

memoryless channels can be efficiently solved using the 

Arimoto-Blahut (AB) iterative algorithm. However, the 

extension of this algorithm to compute the capacity for 

channels with causal side information (SI) at the transmitter is 

not straightforward, because generally it is hard to evaluate 

the rates and capacities having auxiliary random variables. In 

this paper, we use an alternative reformulation of differential 

evolution optimization method to compute the capacity for 

channels with causal side information and introduce efficient 

algorithm to compute the capacity of these channels. Also we 

extend this algorithm to compute the sum capacity of discrete 

multiple access channels with causal side information at the 

transmitter. 

Keywords- Arimoto-Blahut algorithm, differential evolution 

algorithm, causal and non causal side information, discrete 

multiple access channel 

I.  INTRODUCTION 

A numerical algorithm for the computation of the 
capacity for a discrete memoryless channel has been 
introduced in [1], [2], [3] and [4]. This celebrated algorithm 
is known as the Arimoto-Blahut algorithm. This algorithm 
has been successfully extended to the calculation of the sum 
capacity of discrete multiple access channels [5], [6], [7]. In 
[8] an algorithm for computing channel capacity and rate-
distortion with non causal side information is introduced.  

A. Our work 

In this paper, first, we modify the Arimoto-Blahut 
algorithm [1], [2] using the improved version of differential 
evolution optimization method [9] for channel with causal 
side information at the transmitter. And then, we apply the 
modified Arimoto-Blahut algorithm and the partial 
improvement of the method used in [5], [6] and [7], to 
compute the sum capacity of discrete multiple access 
channels with causal side information at the transmitter and 
illustrate the algorithm with three examples. 

B. Notation  

We use x, y and 𝐬 to denote the input vector (x1 … xn), 
output vector ( y1 … yn)  and state vector ( s1 … sn) , 

respectively, and allow 𝐱𝑖 , 𝐲𝑖  and 𝐬𝑖  to denote (x1 … xi) , 
( y1 … yi)  and  s1 … si , respectively. P(s) , P(x) , P(x|y) 
represent probability distribution functions with the specific 
values at the i

th
 channel use, P si , P xi  and P(xi|yi) . 

Also,  𝒳 ,  𝒴  and 𝒮  represent the input alphabet, output 
alphabet and state alphabet, respectively. 

C. The Arimoto-Blahut Algorithm 

Using the lemma in [10], we can write the following 
expressions, 

 P∗ x y =
P x P y x 

 P x P y x x
 

 P∗ x =
e
 P y x log p x y  y

 e
 P y x log p x y  y

x
 

and we start with a guess of maximizing distribution P x  
and find the best conditional distribution P∗ x y . The closed 
form expression for P∗ x  is as follows. 

 Pt+1 x =
Pt (x)eD t (P (y |x )||P y  )

 Pt (x)eD t (P (y |x )||P y  )
x

 

where Dt(∙)  and Pt(x)  are Kullback-Leibler distance and 
input distribution after „t‟ iteration, respectively. For 
simplicity, we rewrite (3) as: 

 Pt+1 x =
Pt x eD t

 Pt x eD t
x

 

For accelerating the convergence, we use a coefficient, η, in 

(4) [11], [12]: 

 Pt+1 x =
Pt (x)eηD t

 Pt (x)eηD t
x

 

where, 

 1 ≤ η ≤
1

1− min X P(y|x)y
 
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Then the channel capacity is computed with following 

expression: 

 C =  P x P y x log
P x y 

P x x,y  

D. Causal Side Information 

We begin with a brief review of discrete memoryless 
channel with causal side information, along with the 
appropriate definitions. Consider the channel depicted in Fig. 
1. The channel is discrete with input alphabet 𝒳 , output 
alphabet 𝒴, and state alphabet 𝒮, all of which are finite sets. 
The channel states are i.i.d with distribution P(s) and 
independent of the input sequence. Furthermore, given the 
states, the channel is memoryless with transition distribution 
P(𝐲|𝐱, 𝐬) . Hence, the conditional distribution of y and s 
given x can be written as: 

 P(y,s|x)=P(s)P(y|x,s)= P si P(yi|xi , si
n
i=1 )  

The state sequence in this model plays the role of „side 
information‟. The encoder maps the message 𝜔 ∈
{1,2, … , 2𝑛𝑅 } into 𝒳𝑛  using functions 

 𝐱i = fi ω, 𝐬i ,   1 ≤ i ≤ n (9), 

where 𝐬𝐢 = (s1, s2, … , si)  is the state information at the 
encoder before the i

th
 transmission; namely, the encoder 

operates causally with respect to the state sequence. The 
receiver decodes the message 𝜔 from received vector y as 
ω =g(y), where y denotes the whole received sequence. This 
constitutes a code. The notions of achievable rates of 
transmission and capacity are defined analogously with the 
ordinary discrete memoryless channel.  

Shannon [13] showed that this capacity is equal to the 
regular capacity of the derived discrete memoryless channel 
shown in Fig. 2. The input alphabet of the derived channel, 
denoted by 𝒯, is the set of all possible mappings t ∶  𝒮 → 𝒳, 
which we refer to as strategies or strategy functions. We may 
describe each strategy tj(s) ∈ 𝒯  by the  𝒮 -tuple 

(xj
1 , xj

2 , … , xj
 𝒮 

), i.e, tj(s) ∈ xj
s  for s = 1, … ,  𝒮  and j=1,…,n. 

Therefore,  𝒯 =  𝒳  𝒮 . The device shown in Fig. 2, called 
“transducer”, just takes t and s as inputs and produces x as its 
output by computing x = t s . Therefore, the boxed section 
constitutes a discrete memoryless channel defined by, 

 P y t =  P s P(y|x t, s , s)s  (10), 

and also, 

 P(𝐲|𝐭)= P(yi|ti
n
i=1 ) (11) 

thus, the capacity with causal side information at the 

transmitter is given by, 

 C = maxP(t) I(t; y) (12), 

 

Encoder P(y|x,s) Decoder

State Generator

w x y

s

w

 

Figure 1.  Channel configuration 

Encoder P(y|x,s) Decoder

State Generator

w t y

s

w

Device

x

 

Figure 2.  Shannon‟s Equivalent channel 

where the maximization is taken over the distribution P(t) of 

the random strategy variable tj ∈ 𝒯. Note that: 

1- The strategies employed by the derived channel are 
functions of the current state alone. The operational meaning 
of this structure is that it is possible to achieve capacity using 
a code of the form xi = fi ω, si . 

2- At most  𝒴  of the strategies need be given positive 
probability in order to achieve capacity. Therefore if the 
cardinalities of 𝒳 and 𝒴 are equal (in particular if 𝒳 = 𝒴), 
then at most  𝒳  of the strategies need be given positive 
probability. 

In general, one does not know in advance which function 
of the strategies is to be used to achieve capacity. Fading 
coefficients, channel interference levels, states of a markov 
channel and channel gains are some examples and adaptive 
rate/power control over Rayleigh fading channels, MIMO 
beam-forming, precoding and multi-tone water filling are 
some scenarios and applications for this case [14], [15]. 

E. Differential Evolution Optimization Algorithm 

Differential evolution algorithms are commonly used for 
global optimization. It has emerged as one of the techniques 
most favored by engineers for solving continuous 
optimization problems [9], [16]. This method has several 
attractive features. Besides being an exceptionally simple 
evolutionary strategy, it is significantly faster and robust for 
solving numerical optimization problems and is more likely 
to find the true global optimum function. Also, it is worth 
mentioning that differential evolution has a compact 
structure with a small computer code and has fewer control 
parameters in comparison to other evolutionary algorithms. 
Differential evolution has been successfully applied to a 
wide range of problems [17], [18], [19], [20], [21], [22], 
[22], [23], [24], [25].  

The working with differential evolution depends on the 
manipulation and efficiency of three main steps; mutation, 
reproduction and selection. We give an alternative 
reformulation of differential evolution optimization method 
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to compute the capacity for channels with causal side 
information at the transmitter and extend it to sum capacity 
of discrete multiple access channels with causal side 
information at the transmitter. 

II. THE PROPOSED ALGORITHM 

A. Computing the capacity for channel with causal side 

information at the transmitter 

As we said before in introduction, for channel in Fig. 3 

we need  𝓍  𝒯 . 𝒮  functions to take t and s as inputs and 
produce x as its output by xi = fi ω, si . For example, the 
channel in which 𝐬 = (0,1) is the state vector, 𝐱 = (0,1) is 
the input vector and 𝐲 = (0,1) is the output vector, strategies 
with at most binary alphabet need be given to achieve 
capacity; therefore, we have 16 (22×2  ) functions. Fig. 3 
shows the two types of them as a graph. The first figure (a) 
provides xor function and the other provides xnor function. 

We can make a matrix for every function. For xor 
function in the above example, this matrix is A and for xnor 
function this matrix is B. 

 𝐴 =  

1 0
0 1
0 1
1 0

  

 𝐵 =  

0 1
1 0
1 0
0 1

  

The rows of matrix are possible values for auxiliary 
random variable „t‟ and state „s‟ and columns are possible 
values for input „x‟. For channel with cardinality equal to 3 
in the input and output of channel, the number of functions 
and matrixes can be 81 or 729. The former is related to 
channel the strategy of which has two alphabets and the latter 
for the maximum number of alphabet, i.e. three. 

We name every row of matrix with a random vector 
Xi , i = 1, … ,  𝒮 ×  𝒯  , these random vector are members of 
a set which consists of all possible permutations of one in 
V =  1,0, … ,0 .  The dimension of V and the number of 
members of this set is  𝒳 . In previous example for xor 
function this set is   0,1 ,  1,0   and X1 = (1,0) ,  X2 =
(0,1),  X3 = (0,1) and X4 = (1,0). 

Only one or some functions achieve capacity, but which 
of them? We should choose the best function. The set 
{X1 , … , X 𝒮 × 𝒯 }   optimization leads to optimize functions. 

{X1 , … , X 𝒮 × 𝒯 }  plays the role of a population of  𝒮 ×  𝒯  
candidate solutions in differential evolution algorithm. 
Optimizing is done in parallel form in three main steps; 
mutation, reproduction and selection, but we need some 
changes in these steps. 

This algorithm for computing the capacity for channel 
with causal side information at the transmitter goes through 
these steps: 

(a)

(t,s)

(0,0)

x

0

1

(0,1)

(1,0)

(1,1)

(b)

(t,s)

(0,0)

x

0

1

(0,1)

(1,0)

(1,1)

 

Figure 3.  Two types of functions from t, s to x: a) x=xor(t,s), 

b) x=xnor(t,s) 

Step 1: The first step is the random initialization of the 
parent population ( Xi , i = 1, … ,  𝒮 ×  𝒯 ) . Randomly 

generate a population of  𝒮 ×  𝒯  arrays. The size of every 
Xi  is  𝒳  and then form matrix X as the following form, 

 XG =

 
 
 
 
 
 

X1

X2

.

.

.
X 𝒮 × 𝒯  

 
 
 
 
 

 

Matrix X makes a function from t and s to x. 
Step 2: Calculating the objective function value C(X) 

using (10), (11), (12) and the Arimoto-Blahut algorithm. 

Step 3: Generating perturbed individual Vi(i =
1, … ,  𝒮 ×  𝒯 ). This array is randomly generated from the 
population and then form perturbed matrix V as the 
following form, 

 VG+1 =

 
 
 
 
 
 

V1,G+1

V2,G+1

.

.

.
V 𝒮 × 𝒯 ,G+1 

 
 
 
 
 

 

Step 4: Recombining each target array Xi with perturbed 
individual generated in step 3 to generate a trial vector Ui  
using the following form, 

 Ui,G+1 =  
Vi,G+1   if randi < Cror i = k

Xi,G                            otherwise
  

where k ∈  {1,…,  𝒮 ×  𝒯 }, i = 1, … ,  𝒮 ×  𝒯  and 
randi  ∈  1, … ,  𝒳   is a random number, chosen once for 
each i. And also, Cr ∈  1, … ,  𝒳   which regulates the 
convergence rate of proposed algorithm and ensures at least 
one of the randomly selected Ui  to be Vi ; therefore, the 
matrix UG+1 is as the following form, 

 UG+1 =

 
 
 
 
 
 

U1,G+1

U2,G+1

.

.

.
U 𝒮 × 𝒯 ,G+1 

 
 
 
 
 

 
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Step 5: Calculating the objective function value C(UG+1) 
using (10), (11) and (12) and the Arimoto-Blahut algorithm. 

Step 6: Choosing the best between these two (function 
value at target and trial point), using the following form for 
next generation, 

 XG+1 =  
UG+1    if C UG+1 > 𝐶(XG )

XG                            otherwise
  

Step 7: Checking whether convergence criterion is met, if 
yes then stop; otherwise go to step 3.  

B. Computing the sum capacity of discrete multiple access 

channel with causal side information at the transmitter 

The total capacity, Ctotal , of discrete multiple access 
channel is the solution for the following optimization 
problem: 

 maxP x1 p x2 …P(xm ) I(x1, x2, … ; y) 

As a new method, we can make a vector the elements of 
which are the initial input joint distribution, P x1, … , xm , as 
follows,  

P x1, … , xm ⟺

 
 
 
 
 

P x1 = i1,1 , … , xm = im,1 
∙
∙
∙

P x1 = i1,|𝒳1|, … , xm = im,|𝒳m |  
 
 
 
 

 

and then apply it to (5) as follows, 

 Pt+1 x1, … , xm =
Pt (x1 ,…,xm )eηD t

 Pt (x1 ,…,xm )eηD t
x 1,…,x m

 

After the convergence of the Arimoto-Blahut algorithm, 
we can change the optimal P x1 , … , xm  to the joint 
distribution which is named P∗ x1 , … , xm . According to the 
rank of P∗ x1, … , xm , we have two situations: 

 Rank P∗(x1, … , xm ) = 1 . At this case we can 
compute the sum capacity by following expression, 

 Ctotal =  P∗ x1 , … , xm P y x1 , … , xm log
P x1 ,…,xm  y 

P∗ x1 ,…,xm  
 

 Rank P∗(x1, … , xm ) ≠ 1. This will be the case in 
general. We need to project P(x1, … , xm ) as a 
product distribution (Pproduct (x1 , … , xm )) [26], [27]. 

Then we can compute the sum capacity with 
following expression, 

 Ctotal =  Pproduct  x1 , … , xm P y x1 , … , xm log
P x1 ,…,xm  y 

Pproduct  x1 ,…,xm  


We can extend the proposed algorithm to compute the 
sum capacity of discrete multiple access channels with causal 
side information at the transmitter [28]. Fig. 4 shows a 
discrete multiple access channels with causal side 
information at the transmitter. si  represents the state of the 
channel that is revealed to all transmitters just before each 

P(y|x1,…,xm,s)

wmÎ
nR ®xmwm,si

yw1Î
nR ®x1w1,si1

m

si

 

Figure 4.  Discrete multiple access channel with causal side information at 

the transmitter 

transmission instant. For this channel the sum capacity is the 
solution of the following optimization problem: 

 maxP x1 p x2 …P(xm ) I(x1(ω1 , si), … , xm (ωm , si); y) () 

III. EVALUATION RESULTS 

In this section we validate the performance of the 
algorithm proposed in section II over two channels and one 
discrete multiple access channel. All of them are with causal 
side information at the transmitter. 

Example 1. Consider the channel with following 
transition probability distribution; this channel has two 

states, s = (0, 1) with P s = 0 =
1

4
 and P s = 1 =

3

4
 , the 

inputs of this channel are 0 or 1. 

 P y x, s =  

0.55 0.45
0.65 0.35
0.45 0.55
0.90 0.10

   

where the columns represent the different elements of 𝒴 = 

{0,1} and the rows correspond to the natural ordering of the 

x, s. The  𝒯  is equal to  𝒴 . We have applied the algorithm 

to this channel. Fig. 5 shows the convergence of this 

algorithm to C = 0.04 bits per channel use after 3 iterations. 
The optimal function (matrix) obtained by this evaluation 

is: 

 A =  

1 0
0 1
0 1
1 0

   

Example 2. In this example, 𝒴 = 𝒳 = {0,1,2} and states 
are the same as previous example, but we want to choose  𝒯  
equal to two, not the maximum value, i.e. three. For this 
channel transition probability distribution is:  

 P y x, s =

 

  
 

0.60 0.30 0.10
0.70 0.20 0.10
0.70 0.20 0.10
0.10 0.80 0.10
0.25 0.25 0.50
0.50 0.40 0.10 

  
 

  

Fig. 6 Shows convergence of this algorithm to C = 
0.2559 bits per channel use after 10 iterations and the 
optimal function (matrix) obtained by this evaluation is: 
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 A =  

0 1 0
1 0 0
0 0 1
0 1 0

   

Example 3. Consider two-user binary discrete multiple 

access channel with two states, s = (0,1), with P s = 0 =
1

4
 

and P s = 1 =
3

4
 , the transition probability distribution is: 

 P y x1 , x2, s =

 

 
 
 
 
 

0.25 0.75
0.20 0.80
0.30 0.70
0.10 0.90
0.40 0.60
0.50 0.50
0.65 0.35
0.85 0.15 

 
 
 
 
 

 

where the columns represent the different elements of 𝒴 = 

{0,1} and the rows correspond to the natural ordering of the 

x1, x2 and s. The  𝒯1  and  𝒯2  are equal to  𝒴 . This 

algorithm converges to Ctotal = 0.3324 bits per channel use 

after 23 iterations. 

 

Figure 5.  Optimized result for example 1 

 

Figure 6.  Optimized result for example 2 

 

 

IV. CONCLUSION 

We have given a new algorithm based on differential 
evolution optimization algorithm and the Arimoto-Blahut 
algorithm to compute the capacity for discrete memoryless 
channel and discrete multiple access channel with causal side 
information at the transmitter. This algorithm is fast, robust 
and needs small computer codes for optimization and 
simulation. With using the searching algorithm, the example 
1 needs 16 iterations and the example 2 needs 81 iterations 
(these results are obtained by brute force algorithm), but we 
have optimized these two examples with 3 and 10 iterations, 
respectively. Also, we have obtained the sum capacity of 
discrete multiple access channels with causal side 
information at the transmitter with fewer iterations. 
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