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Abstract. In this paper, we introduce a new approach to solve nonlinear pro-

gramming problems also when the objective function (functions) or constraint
function (functions) are non-smooth ones. In this approach the nonlinear func-

tions of the original problem is approximated by a piecewise linear functions.

Then we find the global extremum of this approximated problem by solving a
linear programming problem. Also, we will prove convergence of our approach.

One of the main advantages of our approach is that the approach may be ex-
tended for problems where objective function or constraint functions or both
are non-smooth functions by introducing a novel definition of global weak dif-

ferentiation in the sense of `1 space. Also, other advantage of our approach is
that we may obtain approximate solution by solving a corresponding a linear
programming problem. Finally, numerical example are given to show the effi-

ciency of the proposed approach to solve constraints nonlinear programming
problems, especially when the objective function and constraint functions are

non-smooth function.

key words : Nonlinear programming, linear programming, linearization, Taylor
linear expansion, nonlinear non-smooth function.

Introduction

Kelley’s cutting plane method [7] was introduced 1960 to solve nonlinear pro-
gramming (NLP) problems by solving a sequence of linear programming (LP) prob-
lems. Although some other methods based on linear programming exist, such as
the method of approximate programming [3, 6], LP techniques were quickly aban-
doned in favor of sequential quadratic programming (SQP) techniques. After Han
proved local and global convergence of SQP methods in [4, 5], a large amount of
research papers have been produced on SQP-based techniques. Indeed, many of
the NLP solvers today use SQP techniques in one form or the other. There are
some interesting recent papers on successive linear programming (SLP) techniques.
In [1], a procedure is presented where linear programming and quadratic program-
ming subproblems are successively solved to find the optimal solution. The linear
programming problem provides an estimate of the active constraints within a trust
region and a quadratic programming problem is constructed and solved using the
active constraints at the optimal solution of the linear problem. However, the
method in [1] utilizes linear programming problems mainly to estimate the active
constraints in each iteration, and solves a quadratic, equality constrained, problem
as well in each iteration. In [9] it is shown that LP techniques can be applied quite
successfully to solve NLP problems efficiently, even without having to solve qua-
dratic subproblems. But They supposed functions are continuously differentiable
over Rn. contrary to [8], the objective or constraint are not assumed to be convex
and non-smooth. In [8] it is assumed that constraints include linear constraints
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defining a bounded region X. In this paper, we introduce to definition of weak dif-
ferentiation for non-smooth functions([10, 11]). we may approximate our approach
by AVK method[2]. Then we may solve nonlinear non-smooth programming by
linearization of nonlinear non-smooth objective function and constraint functions.

Our approach solves problems of the form:

max f(x)
s.t.

g(x) ≤ b

x ∈ Ω =
n∏

i=1

[ai, bi] ⊆ Rn

where f and g are continuous functions (may be non-smooth) defined on Ω.
In this paper, without losing the generality, we assume that a = 0 and b = 1.

Since, the function F defined below is a bijective function. So instead of [a, b] we
may use [0, 1]. That is:

F : [a, b] → [0, 1]

x → x− a

b− a

Our approach is based on parametric linearization which is a generalization of
Taylor linear expansion of smooth function. The paper is outlined as follows:

First, we consider problem in one dimension and we assume that functions f
and g are smooth functions. Second, we assume the problem is n dimension also
f and g are smooth. Third, we assume the problem is n dimension and f and g
are non-smooth functions and solve the problem approximately by defining weak
differentiation on an interval in n-dimension space.

1. proposed approach for one dimensional problems

First, consider the following nonlinear optimization problem:

max f(x)(1.1)
s.t.

x ∈ [0, 1]

Where f : [0, 1] → R is a nonlinear smooth function. Here, we approximate the
nonlinear function f(x) by a piecewise linear function.

Now, we state the following definition for linearization of nonlinear function f(x).

Definition 1.1. We consider a partition of an interval [0, 1] on R as follows:

pn[0, 1] = {0 = x0, x1, . . . , xn = 1}
Where 0 = x0 < x1 < . . . < xn = 1.

We define the norm of partition as follows:

‖pn‖ = max
1≤i≤n

{|xi − xi−|}

Note 1.2. In this paper, we assume that xi = i
n for all i = 0, 1, . . . , n. Therefore,

‖pn‖ = 1
n .
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Definition 1.3. Let f(x) be a nonlinear function on [0, 1]. We define function
fi(x) on Ii = [xi−1, xi] as follows:

fi(x)=̃f ′(ai)x + f(ai)− aif
′(ai) i = 1, 2, . . . , n , x ∈ Ii(1.2)

Where ai ∈ Ii =
[

i−1
n , i

n

]
is a mid point i.e. ai = 2i−1

n for all i = 1, 2, . . . , n.

We define

mi = f ′(ai) = f ′(
2i− 1

2n
), i = 1, 2, . . . , n

bi = f(ai)− aif
′(ai) = f(

2i− 1
2n

)− 2i− 1
2n

f ′(
2i− 1

2n
)

If length of interval Ii be a small number, then fi(x)=̃mix+bi for all i = 1, 2, . . . , n.
Now, we define Gn(x) as a piecewise linear approximation of f(x) on [0, 1] as follows:

Gn(x) =
n∑

i=1

fi(x)× χ
[ i−1

n
, i

n
]
(x)(1.3)

where χ
[ i−1

n
, i

n
]
(x) is the characteristic function and defined as follows:

χ
[ i−1

n
, i

n
]
(x) =

 1 x ∈ [ i−1
n , i

n ]

0 x 6∈ [ i−1
n , i

n ]

Now, we prove the uniformly convergence theorem of our approach. this means
where we choose n a big number closeness Gn to f is independent of x ∈ [0, 1].

Theorem 1.4. Let f be a non-smooth function and Gn defined in (1.3). Now, we
claim where if n tends to infinity, then Gn tends to f uniformly on [0, 1].

Proof. Let En(x) = Gn(x) − f(x) for all x ∈ [0, 1]. There is 1 ≤ i ≤ n and
ηi ∈ (xi−1, xi) = ( i−1

n , i
n ) such that

f(x)− fi(x) =
f ′′(ηi)

2

(
x− 2i− 1

2n

)2

Where x ∈ [xi−1, xi]. We know ‖pn‖ = 1
n . Thus, let Mi = supx∈Ii

|f ′′(x)|. There-
fore,

|f(x)− fi(x)| ≤ Mi

2

(
xi −

2i− 1
2n

)2

=
Mi

8n2

We set M = max{M1,M2 . . . , Mn}. Consequently,

|En(x)| = |Gn(x)− f(x)| ≤
n∑

i=1

|f(x)− fi(x)| ≤
n∑

i=1

M

8n2
=

M

8n

Now, If n tends to infinity, then En(x) → 0 or equivalently Gn(x) → f(x), for
all x ∈ [0, 1]. It is clear, that interval [0, 1] is compacted and Gn(x) is continuous
on [0, 1]. Therefore, It is uniform continuous on [0, 1]. According to definition of
uniform continuous, given ε > 0, there is δ > 0 such that for all x, y ∈ [0, 1], we
have:

|x− y| < δ ⇒ |Gn(x)−Gn(y)| < ε

3
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Also, there is N(y) > 0 such that for all n, m > N(y) we have |Gn(y)−Gm(y)| < ε
3 .

Therefore, supy∈[0,1] |Gn(y)−Gm(y)| ≤ ε
3 . It is sufficient, we show that {Gn(x)} is

a cauchy uniformly sequence. There is N > 0 such that for all n, m ≥ N , we have:

|Gn(x)−Gm(x)| = |Gm(x)−Gn(y) + Gn(y)−Gm(y) + Gm(y)−Gm(x)|
≤ |Gm(x)−Gn(y)|+ |Gn(y)−Gm(y)|+ |Gm(y)−Gm(x)|

<
ε

3
+

ε

3
+

ε

3
= ε

Let N ′ = max{N,N(y)}. Thus for all n, m ≥ N ′, Gn(x) is a cauchy uniformly
sequence and uniformly continuous on [0, 1]. Then Gn(x) is equicontinuity on [0, 1].
Consequently, it is uniformly convergent. �

Now, if f(x) in the problem (1.1) is replaced with piecewise linear function Gn(x),
we arrive to the following optimization problem.

max
n∑

i=1

fi(x)× χ
[ i−1

n
, i

n
]
(x)(1.4)

s.t.

x ∈ [0, 1]

We may solve the following problems equivalent to (1.4) for all i = 1, 2, . . . , n:

max fi(x)(1.5)
s.t.

i− 1
n

≤ x ≤ i

n

There exits an index as i0 ∈ {1, 2, . . . , n} such that optimal solution is in Ii0 .
Because, nonlinear smooth function f(x) is continuous and interval of [0, 1] is com-
pacted. Also, obtained the optimal solution by solving n linear programming prob-
lems on Ii = [xi−1, xi] are distinct. Therefore, we may solve the following problem
equivalent to (1.5):

max {m1x1 + b1,m2x2 + b2, . . . ,mnxn + bn}(1.6)
s.t.

i− 1
n

≤ xi ≤
i

n
i = 1, 2, . . . , n

We may obtain the optimal solution of the problem (1.6) by solving n linear
programming problems. Or, we must solve the following n linear programming
problem for all i = 1, 2, . . . , n:

zi = max {mixi + bi}(1.7)
s.t.

i− 1
n

≤ xi ≤
i

n

We may say zk = max{mkxk + bk} or xk is the optimal solution of our problem
and zk is

zk = max{z∗1 , z∗2 , . . . , z∗n}
It is clear that when n tends to infinity our solution xk tends to the globally

optimal solution of problem (1.1), Therefore, when n is very big natural number
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for obtaining a solution very near to global optimal solution of problem (1.1) we
should solve n linear programming as (1.14). So in practice it taken a long time. So
we introduce a single linear programming whose solution is the same as the solution
of solving the above mentioned linear programming problems.

1.1. Solving n linear programming by a unique linear programming prob-
lem. Consider the problem (1.5). For linearization this problem, first we may solve
min−max problem instead of problem (1.5) as follows:

min max
1≤i≤n

{mixi + bi}

s.t.

i− 1
n

≤ xi ≤
i

n
, i = 1, 2, . . . , n

For solving this problem, let

z = max
1≤i≤n

{mix + bi}

Therefore, the problem transformed equivalently to the following linear program-
ming problem:

min z(1.8)
s.t.

mixi + bi ≤ z i = 1, 2, . . . , n

i− 1
n

≤ xi ≤
i

n
i = 1, 2, . . . , n

By solving problem above, we obtain an approximation solution of nonlinear
programming problem (1.1). In the theorem (1.4), we showed that if n →∞, then
approximation optimal solution is convergent to main optimal solution.

1.2. Piecewise linearization of constrained nonlinear programming prob-
lem in R.
Consider constraint nonlinear programming problem as follows:

max f(x)(1.9)
s.t.

g(x) ≤ b

0 ≤ x ≤ 1

Where f : [0, 1] → R and g : [0, 1] → R are nonlinear smooth functions. We may
obtain an optimal solution of problem (1.8) by transforming it to linearly form. For
this propose, from (1.2), we have

fi(x)=̃f ′(
2i− 1

n
)x + f(

2i− 1
n

)− (
2i− 1

n
) g′(

2i− 1
n

) i = 1, 2, . . . , n(1.10)

gi(x)=̃g′(
2i− 1

n
)x + g(

2i− 1
n

)− (
2i− 1

n
) g′(

2i− 1
n

) i = 1, 2, . . . , n
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Now, we define Gn(x) and Hn(x) as a piecewise linear approximation of f(x)
and g(x) an [0, 1] as follows:

Gn(x) =
n∑

i=1

fi(x)× χ
[ i−1

n
, i

n
]
(x)(1.11)

Hn(x) =
n∑

i=1

gi(x)× χ
[ i−1

n
, i

n
]
(x)

respectively, where χ
[ i−1

n
, i

n
]
(x) is the characteristic function. According to theorem

(1.4), we know that if n → ∞ then Gn(x) → f(x) and Hn(x) → g(x) for all
x ∈ [0, 1]. Now, if f(x) and g(x) in problem (2.4) is replaced with piecewise linear
function Gn(x) and Hn(x), respectively. we arrive to the following optimization
problem:

max
n∑

i=1

fi(x)× χ
[ i−1

n
, i

n
]
(x)(1.12)

s.t.
n∑

i=1

gi(x)× χ
[ i−1

n
, i

n
]
(x) ≤ b

x ∈ [0, 1]

We may solve the following n linear programming problem equivalent to (1.12)
for all i = 1, 2, . . . , n:

max fi(x)(1.13)
s.t.

gi(x) ≤ b

i− 1
n

≤ x ≤ i

n

It is clear, obtained the optimal solution by solving n linear programming prob-
lems on Ii = [xi−1, xi] are distinct. Therefore, we solve the following problem
instead of (1.13)

max {f1(x1), f2(x2), . . . , fn(xn)}(1.14)
s.t.

gi(xi) ≤ b i = 1, 2, . . . , n

i− 1
n

≤ xi ≤
i

n
i = 1, 2, . . . , n

We may obtain optimal solution of the problem (1.14) by solving n linear pro-
gramming problems. For this propose, First, we solve the following problem for all
i = 1, 2, . . . , n:

zi = max fi(xi)(1.15)
s.t.

gi(xi) ≤ b

i− 1
n

≤ xi ≤
i

n
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Next, we choose optimal solution corresponding to z∗ where

z∗ = max{z∗1 , z∗2 , . . . , z∗n}

We state our approach for linearization the problem (1.9), first we may solve
min−max problem instead of problem (1.14) as follows:

min max
1≤i≤n

{fi(xi)}

s.t.

gi(xi) ≤ b , i = 1, 2, . . . , n

i− 1
n

≤ xi ≤
i

n
, i = 1, 2, . . . , n

For solving this problem, let

z = max
1≤i≤n

{fi(xi)}

Therefore, the problem transformed to the following linear programming problem:

min z(1.16)
s.t.

fi(xi) ≤ z i = 1, 2, . . . , n

gi(xi) ≤ b i = 1, 2, . . . , n

i− 1
n

≤ xi ≤
i

n
i = 1, 2, . . . , n

By solving problem above, we obtain an approximation solution of nonlinear
programming problem (1.1).

Corollary 1.5. Let f and g be non-smooth functions in general and Gn and Hn

defined in (1.11). Now, we claim where if n tends to infinity, then Gn and Hn

tends to f and g, respectively. So our approximate solution optimal to our original
nonlinear programming.

Proof. By applying of the theorem (1.4), we get that if n → ∞ then Gn → f and
Hn → g. Now, let B = {x1, x2, . . . , xn} be a set contain the optimal solution by
solving n linear programming problems as (1.15) is in B. Therefore, the optimal
solution problem (1.16) tends to the optimal solution problem (1.9). Also, the
optimal value z∗ tends to the optimal value of problem (1.9). �

2. Extension of the proposed approach for n dimensional problems

Consider the following nonlinear optimization problem:

max f(x)(2.1)
s.t.

x ∈ A

Where A =
∏n

i=1[0, 1] ⊆ Rn and f : A → R is nonlinear smooth function. Here,
we introduce a piecewise linear parametric approximation for f(x) which is the
extension of definition (1.1).
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Definition 2.1. Consider the nonlinear smooth function f : A → R, where A =
[0, 1]n. Also, consider pni [0, 1] as a partition of [0, 1] as follows:

pni([0, 1]) = {0 = x0
i , . . . , x

ki
i , . . . , xni

i = 1}

Where x0
i < . . . < xki

i < . . . < xni
i , ki = 0, 1, . . . , ni and i = 1, 2, . . . , n. So A is

partitioned to N cells where N = n1 × n2 × . . . × nn. Let shown the kth cell by
Sk for all k = 1, 2, . . . , N . let sk = (s1

k, s2
k, . . . , sn

k ) is used to shown mid point of
Sk. Now, fk(x) is defined as a linear parametric approximate of f(x) for x ∈ Sk

as follows:

fk(x)=̃∇f(x)|x=sk
.(x− sk) + f(sk)(2.2)

where x ∈ Sk for all k = 1, 2, . . . , N .
We define

mk = ∇f(x)|x=sk
k = 1, 2, . . . , N

bk = f(sk)−∇f(x)|x=sk
× sk k = 1, 2, . . . , N

Now, GN (x) is defined as a piecewise linear approximate of f(x) as follows:

GN (x) =
N∑

k=1

fk(x)× χSk
(x)(2.3)

where χ
Sk

(x) is the characteristic function and defined as follows:

χ
Sk

(x) =
{

1 x ∈ Sk

0 x 6∈ Sk

Theorem 2.2. Let f be a non-smooth function and GN defined in (1.3). Now, we
claim where if N tends to infinity, then GN tends to f uniformly.

Proof. Let Ek(x) = f(x)−fk(x) for all x ∈ [0, 1]n. There is 1 ≤ k ≤ N and ηk ∈ Sk

such that

f(x)− fk(x) =
∇2f(ηk)

2
(̇x− sk)2

Where x ∈ Sk. We know ‖Sk‖ = 1
n1
× 1

n2
× · · · × 1

nn
= 1

N . Thus, let Mk =
supx∈Sk

|∇2f(x)|. Therefore,

|f(x)− fk(x)| ≤ Mk

2
|xk − xk−1|2 ≤

Mk

2
‖Sk‖ ≤

Mk

2
1

N2

Suppose M = max{M1,M2 . . . , MN}. Consequently,

|GN (x)− f(x)| ≤
N∑

k=1

|f(x)− fk(x)| ≤ N.
M

2
1

N2
=

M

2N

Now, If N tends to infinity. Then for all x ∈ [0, 1]n:

lim
N→∞

GN (x) = f(x)

As same case of one dimensional, we may show that GN (x) is uniformly convergent
to f(x) on [0, 1]n. �
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Now, if f(x) in the problem (2.1) is replaced with piecewise linear function
GN (x), we arrive to the following optimization problem.

max
N∑

k=1

fk(x)× χ
Sk

(x)(2.4)

s.t.

x ∈ [0, 1]n

It is clear that optimal solution is situated in a cell. Therefore, we solve a parametric
programming problem as follows:

max
N∑

k=1

fk(x′k)× χ
Sk

(x′k)(2.5)

s.t.

x′k ∈ Sk k = 1, 2, . . . .N

where N = n1 × n2 × . . . nn. We may obtain optimal solution of the problem (2.5)
by solving N linear programming problems. For this propose, First, we solve the
following problem for all k = 1, 2, . . . , N :

zk = max {mkx′k + bk}(2.6)
s.t.

xk ∈ Sk

Next, we choose optimal solution corresponding to z∗ where

z∗ = max{z∗1 , z∗2 , . . . , z∗N}

In continue, we will show a new approach for obtaining solution of problem.

2.1. Solving N linear programming by a unique linear programming prob-
lem. Consider the problem (2.5). For linearization this problem, first we may solve
min−max problem instead of problem (2.5) as follows:

min max
1≤k≤N

{mkx′k + bk}

s.t.

x′k ∈ Sk

For solving this problem, let

z = max
1≤k≤N

{mkx′k + bk}

Therefore, the problem transformed to the following linear programming problem:

min z(2.7)
s.t.

mkx′k + bk ≤ z k = 1, 2, . . . , N

x′k ∈ Sk k = 1, 2, . . . , N

By solving the problem above, we obtain a approximate solution of nonlinear
programming problem (2.1).
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2.2. Piecewise linearization general constrained nonlinear programming
problem.
Consider constraint nonlinear programming problem as follows:

max f(x)(2.8)
s.t.

g(x) ≤ b

x ∈ [0, 1]n

Where f : [0, 1] → R and g : [0, 1] → R are nonlinear smooth functions. We may
obtain an optimal solution of problem (2.8) by transforming it to linearly form. For
this propose, from (2.2), we have

fk(x)=̃∇f(x)|x=sk
.(x− sk) + f(sk) k = 1, 2, . . . , N(2.9)

gk(x)=̃∇g(x)|x=sk
.(x− sk) + g(sk) k = 1, 2, . . . , N

As same case of one dimensional, in this case, we may transformed the problem
(2.8) to linear programming problem as follows:

min z(2.10)
s.t.

fk(x′k) ≤ z k = 1, 2, . . . , N

gk(x′k) ≤ b k = 1, 2, . . . , N

x′k ∈ Sk k = 1, 2, . . . , N

3. Extension to non-smooth nonlinear programming problems

In general it is reasonable to assume that the objective function is a non-smooth
ones. Therefore, we define type of generalized differentiation for non-smooth func-
tions in coincide with usual differentiation for smooth function.

For linearization, we use from relation bellows:

f(x) ∼= f(s) + (x− s)f ′(s)

Suppose f ′ is not defined in s. we introduce weak differentiation for calculating
differentiation of f in s we have:

f ′(s) = lim
x→s

f(x)− f(s)
x− s

Given ε > 0, for all x ∈ (s− ε, s + ε), we define:

f ′(s) ∼=
f(x)− f(s)

x− s
, x ∈ (s− ε, s + ε)

For this propose, we refer to the following approach for calculating f ′(s):

min
∫ 1

0

[∫ s+ε

s−ε

|f(x)− f(s)− (x− s)f ′(s)|dx

]
ds

We can extended above approach to n dimensional.
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Theorem 3.1. Consider the nonlinear smooth function f : [0, 1]n → R. Then the
optimal solution of the following optimization problem is the function f ′(x).

min
p(.)

∫ 1

0

∫ 1

0

. . .

∫ 1

0

|f(x)− [f(s) + p(s).(x− s)]|dx1dx2 . . . dxn(3.1)

where s = (s1, s2 . . . , sn) ∈ [0, 1]n is an arbitrary point and p(.) is a vector of the
form (p1(.), p2(.), . . . , pn(.)).

Proof. See [10]. �

Now based on theorem (3.1) the following definition may be stated for non-
smooth functions.

Definition 3.2. Let f : [0, 1]n → R is a non-smooth function. The global weak
differentiation with respect to x in the sense of `1 space is defined as the p(.) the
optimal solution of the minimization problem which is shown in (3.1).

In the case that n = 1, we may obtain differentiation of f(x) on [0, 1] by partition-
ing interval [0, 1] to n subinterval of [xi−1, xi] such that xi = i

n for all i = 1, 2, . . . , n.
Let si be a point in

[
i−1
n , i

n

]
. we show differentiation of f(x) at x = s by p(s). We

may obtain values of p(s), by solving the following problem:

min
n∑

i=1

∫ xi

xi−1

|f(x)− f(si)− (x− s).p(si)|dx× 1
n

where xi = i
n and si ∈ (xi−1, xi) is an arbitrary point for all i = 1, 2, . . . , n. (note:

we may define si = 2i−1
2n for all i = 1, 2, . . . , n)

4. numerical examples

In this section, we solve some constraint nonlinear smooth and non-smooth pro-
gramming problems by transforming to a linear programming problem.

Example 4.1. Consider nonlinear smooth programming problem as follows:

max ex

s.t.

sin (x)− x ≤ 1
1 ≤ x ≤ 3

We may convert interval [1, 3] to [0, 1]. For this propose, we may define bijective
function F (x) as follows:

F (x) : [1, 3] → [0, 1]

x → x− 1
2

Now, we have:

max e(2x+1)

s.t.

sin(2x + 1)− 2x ≤ 2
0 ≤ x ≤ 1
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the optimal solution and the optimal value are x∗ = 3 and z∗ = 20.0855,respectively.
We may partitioned interval of [0, 1] to subinterval Ii = [xi−1, xi] where xi = i

n
for all i = 1, 2, . . . , n. So, we may transform the above problem to the following
equivalent linear programming problem:

min z

s.t.

2e(1+
2i−1

n )
(

x− 2i− 1
2n

)
+ e(1+

2i−1
n ) ≤ z i = 1, 2, . . . , n[

2 cos
(

1 +
2i− 1

n

)
− 2

](
x− 2i− 1

2n

)
+ sin

(
1 +

2i− 1
n

)
2i− 1

n
≤ 2 i = 1, 2, . . . , n

i− 1
n

≤ xi ≤
i

n

Where xi = i
n for all i = 1, 2, . . . , n. In the following table showed optimal solutions

for values of distinct n.

n optimal solution optimal value
10 2.9000 16.3567
50 2.9800 19.2941
100 2.9900 19.6868
200 2.9950 19.8854
300 2.9967 19.9520
400 2.9975 19.9853
500 2.9980 20.0053
600 2.9983 20.0187
1000 2.9990 20.0454

Example 4.2. Consider nonlinear smooth programming problem as follows:

max arctan (x + 2y)
s.t.

x− sin (y) ≤ 1
0 ≤ x, y ≤ 1

the Optimal solution and the optimal value are x∗ = y∗ = 1 and z∗ = 1.249046,respectively.
We may partitioned interval of [0, 1]×[0, 1] to subinterval [xi−1, xi]×[yj−1, yj ] where
xi = i

n and yj = j
n for all i, j = 1, 2, . . . , n. So, we may transform the above problem
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to the following equivalent linear programming problem:

min z

s.t.

1

1 +
(

2i−1
2n + 2j−1

n

)2

[(
x− 2i− 1

2n

)
+ 2

(
y − 2j − 1

2n

)]
+ arctan

(
2i− 1

2n
+

2j − 1
n

)
≤ z

(
x− 2i− 1

2n

)
− cos

(
2j − 1

2n

) (
y − 2j − 1

2n

)
+

(
2i− 1

2n
− sin

(
2j − 1

2n

))
≤ 1

i− 1
n

≤ xi ≤
i

n
i = 1, 2, . . . , n

j − 1
n

≤ yj ≤
j

n
j = 1, 2, . . . , n

Where xi = i
n and yj = j

n for all i, j = 1, 2, . . . , n. In the following table showed
optimal solutions for values of distinct n.

n optimal solution optimal value
10 (0.9500,0.9500) 1.2169
20 (0.975,0.975) 1.2335
30 (0.9833,0.9833) 1.2388
40 (0.9875,0.9875) 1.2414

Example 4.3. Consider nonlinear non-smooth function as f(x) = e|2x−1| on [0, 1].
For obtaining weak differentiation function of f(x) i.e. f ′(x) on [0, 1], first, we
partitioned the interval of [0, 1] to n subinterval. That is Ii = [xi−1, xi] = [ i−1

n , i
n ]

for all i = 1, 2, . . . , n. We may solve the following problem:

min
n∑

i=1

∫ xi

xi−1

|f(x)− f(
2i− 1

2n
)− (x− 2i− 1

2n
).p(

2i− 1
2n

)|dx× 1
n

Differentiation f(x) for n = 10, 20, 30 showed in the following figure, respectively:

1. Obtained differentiations for n=10,20,30 from left to right, respectively

Example 4.4. Consider nonlinear non-smooth programming problem as follows:

max e|2x−1|

s.t.

sin (x) ≤ 1
0 ≤ x ≤ 1
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We may solve our problem as previous examples. Therefore, obtained the optimal
solutions as follows:

n optimal solution optimal value
10 0.9373 2.3979
20 0.9760 2.5909
30 0.9855 2.6406

The optimal solution is x∗ = 1 , z∗ = 2.7183, exactly.

5. conclusion

In this paper we introduce a new approach to solve constrained nonlinear non-
smooth programming problems. The main advantage of this approach is that an
approximate of global solution is obtained. Also the approach can be extended for
problem with non-smooth nonlinear programming problem by introducing a novel
definition of global weak differentiation in the sense of `1 space. Also, we may
obtain an approximate solution of a nonlinear non-smooth programming problems
by solving a linear programming problem where the norm of problem is very small.
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