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1. Introduction

The study of scattering amplitudes has been an active subject over the past few years. In particular, it has been shown by Britto,
Cachazo, Feng and Witten (BCFW) [1,2] that any n-point on-shell scattering amplitude can be written as sums of products of lower-point
on-shell amplitudes. The BCFW recursion relation has been found by the observation that a tree-level n-point scattering amplitude is a
rational function of the external momenta. Hence, by analytic continuation of the external momenta into the complex plane, the amplitude
becomes meromorphic function which is then uniquely determined by its singularities, i.e., its poles and residues.

A meromorphic functions is uniquely determined by its singularities provided that there is no pole at infinity. Hence, the BCFW
recursion relations are valid when the complex scattering amplitude has no pole at large complex parameter z. Naive power counting of
individual Feynman diagrams seems to lead to dangerously high power of z, however, cancellation among them may result in a much
lower power of z. A criterion has been found in [3,4] which allows one to conclude which theories allow the BCFW recursion relations.

The applicability of the BCFW recursion relations to string theory has been studied in [5,6]. It has been shown explicitly in [5] that the
Veneziano amplitude has no pole at infinity. Using the pomeron vertex operators [7], it has been shown in [6] that all tree-level complex
string amplitudes lake a pole at large z. This happens in a particular unphysical kinematic region. In this region then the string BCFW
recursion relations hold. The same relations are then valid by analytic continuation to the physical region. The string BCFW recursion
relation has been then found explicitly in [6] for the scattering amplitude of external open string tachyons. The string BCFW recursion
relations has been also studied in [8]. The string BCFW recursion relation for the scattering amplitudes involving both open and closed
string has been studied in [9].

It has been observed in [6] that the leading and subleading asymptotic behavior of string amplitudes is the same as the asymptotic
behavior of their low energy field theory. This leads the authors to conjecture that in a particular limit (the eikonal Regge (ER) limit) in
which some of the kinematic variables are much larger than the string scale and the rest much smaller, the string S-matrix elements are
reproduced by the corresponding S-matrix elements in the low energy field theory. This conjecture has been checked explicitly in [6] by
demonstrating that MHV amplitudes in type I string theory and N = 4 super Yang–Mills theory are in fact equal in this limit at four and
five-point functions. In this Letter we would like to check this conjecture at the six- and higher-point function.

The six-point function has been studied in [10,11] where it has been shown that the amplitude involves the complicated triple Hy-
pergeometric function. The amplitude in general is a function of 9 independent Mandelstam variables. However, to study the amplitude
at the ER limit one needs to keep nonzero the Mandelstam variables that are either large at ER limit or they appear as massless pole in
the scattering amplitude. We will see that these criteria allows one to set to zero three Mandelstam variables and hence the amplitude
become much more easier to study. We will see that the string form factors for many terms in the scattering amplitude can be written
in terms of only the Gamma functions which may then be easily studied at the ER limit. Some terms in the amplitude can be written in
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terms of the multiple of the Gamma functions and the triple Hypergeometric functions which are hard to study at the ER limit. In those
cases, one may constraint another set of three Mandelstam variables to zero to write the result in terms of only the Gamma functions.
In the eight-point functions, we will see that 10 Mandelstam variables can be set to zero which simplifies greatly the calculation of the
amplitude. In the general case of 2n-point functions, one can set (2n − 3)(2n − 4)/2 Mandelstam variables to zero. Many terms of the
amplitude can be calculated explicitly, and the final results are in terms of multiple of the Gamma functions.

In Section 2 we review the four-point function and its behavior at the ER limit. In Section 3, we calculate the six-point function at the
particular case that three of the Mandelstam variables are zero. We consider only terms in which the polarization of the gluons contract
with each other. This part of the amplitude is the same as the scattering amplitude of six massless scalar fields. There are 15 contractions
between the scalar polarizations. We will see that the string form factor in 7 of them are just involve the Gamma function, 4 of them
involve the Gamma and the Hypergeometric function 3 F2, 3 of them involve the Gamma and the Hypergeometric function 4 F3 and the
last one involve the more complicated triple Hypergeometric function. In Section 3.1, we show that the form factors for the first 11 terms
are easily reduce to one in the ER limit. For other terms that involve 4 F3 and the triple Hypergeometric function, one may choose another
constraint to write them in terms of only the Gamma functions which are then reduce to one in the ER limit. In Section 4, we perform
the calculation of 8-point function for the special case of adjacent contractions of the scalar polarizations and show that the form factor
reduces to one in the ER limit. In Section 5, we extend the result of Section 4 to the general case of 2n-point functions.

2. Four-point functions

It has been shown in [6] that the S-matrix element of four and five gauge bosons which can be written in terms of the MHV amplitudes
are reduced to the corresponding MHV amplitudes in the Yang–Mills theory at the ER limit. Here we review the argument for the four
gauge bosons.

The color-ordered scattering amplitude of four gauge bosons on D-brane is given by [12,13]

A ∼ K (ζ1, ζ2, ζ3, ζ4)Tr(λ1λ2λ3λ4)
�(2α′k1 · k4)�(2α′k1 · k2)

�(1 + 2α′k1 · k4 + 2α′k1 · k2)
(1)

where the kinematic factor is

K = −4α′2k1 · k2(ζ1 · k4ζ3 · k2ζ2 · ζ4 + ζ2 · k3ζ4 · k1ζ1 · ζ3 + ζ1 · k3ζ4 · k2ζ2 · ζ3 + ζ2 · k4ζ3 · k1ζ1 · ζ4)

− 4α′2k2 · k3k2 · k4ζ1 · ζ2ζ3 · ζ4 + {1,2,3,4 → 1,3,2,4} + {1,2,3,4 → 1,4,3,2} (2)

In four dimensions, using the spinor-helicity formalism [14], the amplitude simplifies to just one term. We are not going to use this
formalism in this Letter. Using the property of the Gamma function, x�(x) = �(x + 1), one can write the amplitude as

A ∼ AYM F (3)

where the field theory amplitude is

AYM = K (ζ1, ζ2, ζ3, ζ4)

4α′2k1 · k4k1 · k2
Tr(λ1λ2λ3λ4) (4)

and the string form factor is

F = �(1 + 2α′k1 · k4)�(1 + 2α′k1 · k2)

�(1 + 2α′k1 · k4 + 2α′k1 · k2)
(5)

At low energy, α′ki · k j → 0, the string form factor reduces to one.
The adjacent BCFW shifts is

ki → k̂i = ki + qz, ki+1 → k̂i+1 = ki+1 − qz (6)

In order to keep the on-shell conditions, q must satisfy the relations q ·q = ki ·q = ki+1 ·q = 0. At the ER limit, one takes
√

α′k j ∼ O(ε) for

all j where ε is a small number,
√

α′q ∼ O(ε−1) so that q · k j ∼ 1, and then takes z → ∞. In this limit then α′k̂i · k j is large and α′k̂i · k̂ j ,

α′ki · k j are small. This reduces the form factor to one. However, for non-adjacent BCFW shift, e.g., k̂1, k̂3, the form factor does not reduce
to one.

There are two different terms in the kinematic factor (2). Terms in which the polarizations are contract only with each other and terms
in which some of the polarizations are contract with momentum. The Yang–Mills theory produce all of them. In the six-point function
there are too many terms of the second type and there are 15 terms of the first type. The string form factors for both type of terms are
similar, so for ease of calculation we consider only terms of the first type. On the other hand, the S-matrix element of these terms are the
same as the S-matrix element of six transverse scalar vertex operators. So in this Letter we only calculate the S-matrix elements of the
scalar fields.

3. Six-point functions

The S-matrix element of six gauge bosons for arbitrary Mandelstam variables has been calculated in [10]. The result is in terms of triple
Hypergeometric functions. However, we will show that the complicated triple Hypergeometric functions do not appear in the amplitude
if one sets to zero three of the Mandelstam variables. In this case the amplitude can be written in terms of only Gamma function. So let
us calculate the amplitude for six scalar fields.
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The color-ordered disk level S-matrix element of six scalar vertex operators is given by the following correlation function:

A ∼
∫

dx1 · · ·dx6

〈
6∏

i=1

V i(2ki, xi)

〉
Tr(λ1λ2λ3λ4λ5λ6) (7)

The position of the vertices are −∞ < x1 < x2 < x3 < x4 < x5 < x6 < ∞. Since the background charge of the world-sheet with topology of
a disk is Q φ = 2 one has to choose two of the vertex operators to be in −1 picture and the rest to be in 0 picture. These vertex operators
are

V −1
i (2ki, xi) = :ζi · e−φψe2ki ·X :, V 0

i (2ki, xi) = :ζi · (∂ X + 2iki · ψψ)e2ki ·X : (8)

where ζi is the polarization of the scalar fields in the transverse space. Using the standard world-sheet propagators

〈
Xμ(x)Xν(y)

〉 = −α′

2
ημν log(x − y),

〈
ψμ(x)ψν(y)

〉 = −α′

2

ημν

x − y
,

〈
φ(x)φ(y)

〉 = − log(x − y) (9)

one can calculate the correlators in (7). The result should be invariant under SL(2, R), the conformal symmetry of the disk. Removing this
symmetry by fixing the position of three vertex operators, one would find a triple integral which in general can be written in terms of
the triple Hypergeometric functions. We will see that the triple integral simplifies greatly if one sets three of the Mandelstam variables to
zero, e.g.,

k2 · k4 = k2 · k5 = k3 · k5 = 0 (10)

or any other set under cyclic permutation of (1,2,3,4,5,6). Since the amplitude has no pole in (k2 + k4)
2, (k2 + k5)

2 and (k3 + k5)
2

channels, we are allowed to restrict the Mandelstam variables to the above values. Moreover, for the adjacent BCFW shift k̂6, k̂1, the ER
limit takes α′k2 · k4,α

′k2 · k5,α
′k3 · k5 → 0 which is consistent with the above constraint.

Under the restriction (10), one can set to one the expression x2α′k2·k4
24 x2α′k2·k5

25 x2α′k3·k5
35 which results from the correlation of

∏6
i=1 e2iki ·X

in the amplitude (7). This simplifies the triple integral that one finds at the end. Moreover, the calculation become more easier, i.e., the
final result is in terms of only the Gamma functions, when the correlator of the other parts of the amplitude does not produce terms like
x−n24

24 x−n25
25 x−n35

35 where nij are some integer number. This happens when one restricts the contraction of the polarization of the scalars to
those which does not include

ζ2 · ζ4, ζ2 · ζ5, ζ3 · ζ5 (11)

The final result for amplitude involving the above contractions will be in terms of more complicated functions.
We choose the following pictures for the vertex operators in (7):〈

V 0(2k1, x1)V −1(2k2, x2)V −1(2k3, x3)V 0(2k4, x4)V 0(2k5, x5)V 0(2k6, x6)
〉

(12)

Since the scalar polarizations are in the normal space and momenta are in the world volume space, one can perform the correlator of the
exponential factors and write the amplitude (7) in the following form:

A ∼
∫

dx1 · · ·dx6 ζ1iζ2 jζ3kζ4lζ5mζ6n Tr(λ1λ2λ3λ4λ5λ6)x−1
23

×
6∏

i< j

x
−si j

i j

〈(
∂ Xi + 2ik1 · ψψ i)ψ jψk(∂ Xl + 2ik4 · ψψ l)(∂ Xm + 2ik5 · ψψm)(

∂ Xn + 2ik6 · ψψn)〉 (13)

where xij = xi − x j and si j = −α′(ki + k j)
2 = −2α′ki · k j are the Mandelstam variables. For the scattering amplitude of N particles,

there are N(N − 3)/2 independent variables [15] and the rest can be written in terms of the independent ones using conserva-
tion of momentum. In the present case there are 15 Mandelstam variables of which 9 are independent. We choose them to be
s12, s13, s23, s24, s25, s34, s35, s45, s56. The restriction (10) sets s24 = s25 = s35 = 0. The other six dependent variables can be written in
terms of the six nonzero independent variables as

s14 = s56 − s12 − s13 − s23 − s34, s15 = −s45 − s56, s16 = s23 + s34 + s45

s26 = −s12 − s23, s36 = −s12 − s23 − s34, s46 = s12 + s13 + s23 − s45 − s56 (14)

Note that the amplitude has 9 channels. Six of them are s12, s23, s34, s45, s56, s61 and the other three are (k1 + k2 + k3)
2, (k2 + k3 + k4)

2

and (k3 + k4 + k5)
2. The restriction (10) does not produce singularity in any of these channels.

The correlator in the second line of (13) gives different contractions of the scalar polarizations. There are 15 contractions of which 8
involve the contractions (11). The other contractions do not produce terms like x−n24

24 x−n25
25 x−n35

35 .
Let us consider the contraction ζ1 · ζ2 ζ3 · ζ4 ζ5 · ζ6. The appropriate terms in the second line of (13) are

−s14(1 + s56)x−1
12 x−1

34 x−1
14 x−2

56 + s15s46x−1
12 x−1

34 x−1
15 x−1

56 x−1
46 − s16s45x−1

12 x−1
34 x−1

16 x−1
56 x−1

45

Inserting this into the amplitude (13), one can easily verifies that the integrand is SL(2, R) invariant. Removing this symmetry by fixing
x1 = 0, x5 = 1, x6 = ∞ which has the Jacobian J ∼ x2

6, one finds
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A1 ∼ ζ1 · ζ2 ζ3 · ζ4 ζ5 · ζ6 Tr(λ1λ2λ3λ4λ5λ6)

×
1∫

0

dx4

x4∫
0

dx3

x3∫
0

dx2
(−s14(1 + s56)x−s12−1

12 x−s13
13 x−s14−1

14 x−s23−1
23 x−s34−1

34 x−s45
45

+ s15s46x−s12−1
12 x−s13

13 x−s14
14 x−s23−1

23 x−s34−1
34 x−s45

45 − s16s45x−s12−1
12 x−s13

13 x−s14
14 x−s23−1

23 x−s34−1
34 x−s45−1

45

)
(15)

Changing the variables x2 = uvx4, x3 = vx4 with the Jacobian J = vx2
4, one can write the above amplitude as

A1 ∼ ζ1 · ζ2 ζ3 · ζ4 ζ5 · ζ6 Tr(λ1λ2λ3λ4λ5λ6)

×
1∫

0

dx4

1∫
0

du

1∫
0

dv
(−s14(1 + s56)x−s56−2

4 (1 − x4)
−s45 u−s12−1(1 − u)−s23−1 v−s12−s13−s23−1(1 − v)−s34−1

+ s15s46 x−s56−1
4 (1 − x4)

−s45 u−s12−1(1 − u)−s23−1 v−s12−s13−s23−1(1 − v)−s34−1

− s16s45 x−s56−1
4 (1 − x4)

−s45−1u−s12−1(1 − u)−s23−1 v−s12−s13−s23−1(1 − v)−s34−1) (16)

where we have used the relation s12 + s13 + s14 + s23 + s34 = s56 which can be checked from the relations in (14). Have not restricted
the Mandelstam variables to (10), one would find term (x4(1 − uv))−s24 (1 − uvx4)

−s25 (1 − vx4)
−s35 in each line which makes the integral

complicated. Using the definition of the beta function

1∫
0

dx xα−1(1 − x)β−1 = B(α,β) (17)

one can write the result in terms of three beta functions. The result is

A1 ∼ ζ1 · ζ2 ζ3 · ζ4 ζ5 · ζ6
�(−s56)�(1 − s45)�(−s12)�(1 − s23)�(−s12 − s13 − s23)�(−s34)

�(−s56 − s45)�(−s12 − s23)�(−s12 − s13 − s23 − s34)

where we have also used the relation s14 + s16 + s46 = s23. There is also the color factor Tr(λ1λ2λ3λ4λ5λ6) in the above amplitude.
Doing the same calculation for the other contractions of the polarizations, one finds the following results:

A2 ∼ ζ1 · ζ5 ζ2 · ζ6 ζ3 · ζ4
�(1 − s56)�(1 − s45)�(1 − s12)�(1 − s23)�(1 − s12 − s13 − s23)�(−s34)

�(1 − s56 − s45)�(1 − s12 − s23)�(1 − s12 − s13 − s23 − s34)

A3 ∼ ζ1 · ζ5 ζ2 · ζ3 ζ4 · ζ6
�(1 − s56)�(1 − s45)�(1 − s12)�(−s23)�(−s12 − s13 − s23)�(1 − s34)

�(1 − s56 − s45)�(−s12 − s23)�(1 − s12 − s13 − s23 − s34)

A4 ∼ ζ1 · ζ2 ζ3 · ζ6 ζ4 · ζ5
�(1 − s56)�(−s45)�(−s12)�(1 − s23)�(−s12 − s13 − s23)�(1 − s34)

�(−s56 − s45)�(−s12 − s23)�(1 − s12 − s13 − s23 − s34)

A5 ∼ ζ1 · ζ3 ζ2 · ζ6 ζ4 · ζ5
�(1 − s56)�(−s45)�(1 − s12)�(1 − s23)�(−s12 − s13 − s23)�(1 − s34)

�(−s56 − s45)�(1 − s12 − s23)�(1 − s12 − s13 − s23 − s34)

A6 ∼ ζ1 · ζ4 ζ2 · ζ3 ζ5 · ζ6
�(−s56)�(1 − s45)�(1 − s12)�(−s23)�(−s12 − s13 − s23)�(1 − s34)

�(−s56 − s45)�(−s12 − s23)�(1 − s12 − s13 − s23 − s34)

A7 ∼ ζ1 · ζ6 ζ2 · ζ3 ζ4 · ζ5
�(1 − s56)�(−s45)�(1 − s12)�(−s23)�(−s12 − s13 − s23)�(1 − s34)

�(−s56 − s45)�(−s12 − s23)�(1 − s12 − s13 − s23 − s34)

Each amplitude includes the color factor Tr(λ1λ2λ3λ4λ5λ6) as well.
To double check the above results, we examine the symmetry under the cyclic permutation of (1,2,3,4,5,6). From the contraction of

the polarizations, one realizes that the amplitude A1 should be reduced to the amplitude A7 under the permutation (1,2,3,4,5,6) →
(6,1,2,3,4,5). Since we already restrict the Mandelstam variables to (10), we have to set to zero the other Mandelstam variables which
map to s24, s25, s35. Under the above permutation one finds

(s24, s25, s35, s46, s36) → (s13, s14, s24, s35, s25) (18)

So we have to set to zero s13, s14, s36, s46 as well. Now again we have to set to zero the Mandelstam variables which map to
s13, s14, s36, s46, and so on. In this way we find that to check this symmetry we have to set s13 = s14 = s46 = s36 = s26 = s15 = 0. This
makes only s56 to be nonzero. Using the relations in (14), one can then easily verify that A1 maps to A7 under this permutation. Similarly
A2 maps to A3 under (1,2,3,4,5,6) → (6,1,2,3,4,5), A2 maps to A5 under (1,2,3,4,5,6) → (2,3,4,5,6,1) and A4 maps to A6 under
(1,2,3,4,5,6) → (5,6,1,2,3,4).

The calculation for the other contractions involves a triplet integral like the one in (16) which includes also the factor (x4(1 −
uv))−n24 (1−uvx4)

−n25 (1− vx4)
−n35 where at least one of n24, n25 or n35 is nonzero. The contractions ζ1 ·ζ3ζ2 ·ζ4ζ5 ·ζ6 and ζ1 ·ζ5ζ2 ·ζ4ζ3 ·ζ6

include the factor (x4(1 − uv))−1. In this case the integral over dx4 gives the beta function and integral over du dv is of the following
form:
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1∫
0

du

1∫
0

dv ua vb(1 − u)c(1 − v)d(1 − uv)−1 (19)

This integral can be written in terms of Gamma function and Hypergeometric function 3 F2 (see e.g., [10]),

�(1 + a)�(1 + b)�(1 + c)�(1 + d)

�(2 + a + c)�(2 + b + d)
3 F2

[
1 + a, 1 + b, 1

2 + a + c, 2 + b + d
; 1

]
(20)

The result for the above contractions are

A8 ∼ ζ1 · ζ3 ζ2 · ζ4 ζ5 · ζ6 Tr(λ1λ2λ3λ4λ5λ6) 3 F2

[
1 − s12, −s12 − s13 − s23, 1

1 − s12 − s23, 1 − s12 − s13 − s23 − s34
; 1

]

× �(−s56)�(1 − s45)�(1 − s12)�(1 − s23)�(−s12 − s13 − s23)�(1 − s34)

�(−s56 − s45)�(1 − s12 − s23)�(1 − s12 − s13 − s23 − s34)

A9 ∼ ζ1 · ζ5 ζ2 · ζ4 ζ3 · ζ6 Tr(λ1λ2λ3λ4λ5λ6) 3 F2

[
1 − s12, 1 − s12 − s13 − s23, 1

1 − s12 − s23, 2 − s12 − s13 − s23 − s34
; 1

]

× �(1 − s56)�(1 − s45)�(1 − s12)�(1 − s23)�(1 − s12 − s13 − s23)�(1 − s34)

�(1 − s56 − s45)�(1 − s12 − s23)�(2 − s12 − s13 − s23 − s34)

where we have only used the relation x�(x) = �(x + 1) and s14 + s16 + s46 = s23. Note that the above two terms are not related to each
other under the cyclic permutations. Both amplitudes have massless pole in (k2 + k3 + k4)

2-channel which are coming from the pole of
the Hypergeometric function.

The contractions ζ1 · ζ2ζ3 · ζ5ζ4 · ζ6 and ζ1 · ζ4ζ3 · ζ5ζ2 · ζ6 include the factor (1 − x4 v)−1. In this case the integral over du gives the beta
function and integral over dx4 dv is of the following form:

1∫
0

dx4

1∫
0

dv xa
4 vb(1 − x4)

c(1 − v)d(1 − x4 v)−1 (21)

which again can be written in terms of the Gamma function and Hypergeometric function 3 F2. The result in this case is

A10 ∼ ζ1 · ζ2 ζ3 · ζ5 ζ4 · ζ6 Tr(λ1λ2λ3λ4λ5λ6) 3 F2

[
1 − s56, −s12 − s13 − s23, 1

1 − s45 − s56, 1 − s12 − s13 − s23 − s34
; 1

]

× �(1 − s56)�(1 − s45)�(−s12)�(1 − s23)�(−s12 − s13 − s23)�(1 − s34)

�(1 − s56 − s45)�(−s12 − s23)�(1 − s12 − s13 − s23 − s34)

A11 ∼ ζ1 · ζ4 ζ3 · ζ5 ζ2 · ζ6 Tr(λ1λ2λ3λ4λ5λ6) 3 F2

[
1 − s56, 1 − s12 − s13 − s23, 1

1 − s45 − s56, 2 − s12 − s13 − s23 − s34
; 1

]

× �(1 − s56)�(1 − s45)�(1 − s12)�(1 − s23)�(1 − s12 − s13 − s23)�(1 − s34)

�(1 − s56 − s45)�(1 − s12 − s23)�(2 − s12 − s13 − s23 − s34)

In this case to find the above result we have used the following relation:

(d − a − 1) 3 F2

[
a, b, 1

c, d
; 1

]
+ (a + b − d − c + 2) 3 F2

[
a + 1, b, 1

c, d
; 1

]
+ (c − 1)(c − b)

c
3 F2

[
a + 1, b, 1

c + 1, d
; 1

]
= 0 (22)

where it can easily be checked for the special case of b = d, using the identity 2 F1
[ a, 1

c
; 1

] = (1 − c)/(1 + a − c). It can also be verified
by the Mathematica by expanding the left-hand side at a,b, c,d → 0. One can also find the above result for A10, A11, without using the
above identity, if one uses the vertex operators V (x4), V (x5) in −1 picture and the others in 0 picture. The amplitudes A10 and A11
are not related to each other under the cyclic permutations. The pole of the Hypergeometric function indicates that both amplitudes have
massless pole in (k3 +k4 +k5)

2-channel. The amplitude A8 maps to A10 under the cyclic permutation of (1,2,3,4,5,6) → (3,4,5,6,1,2),
and A9 maps to A11 under the cyclic permutation of (1,2,3,4,5,6) → (3,4,5,6,1,2).

The contractions ζ1 · ζ3ζ2 · ζ5ζ4 · ζ6, ζ1 · ζ4ζ2 · ζ5ζ3 · ζ6 and ζ1 · ζ6ζ2 · ζ5ζ3 · ζ4 include the factor (1 − uvx4)
−1. In this case, the integral

over dx4 du dv can be written in terms of the Gamma function and the Hypergeometric function 4 F3 (see e.g., [10]). The last contraction
ζ1 · ζ6ζ2 · ζ4ζ3 · ζ5 includes the factor (1 − vx4)

−1(1 − uv)−1. In this case, the integral over dx4 du dv is even more complicated and can be
written in terms of the triple Hypergeometric function [10]. One can again work out to find the final results which are more complicated
than those in A1, . . . , A11. We note that if one chooses to set to zero three other Mandelstam variables other than those in (10), the result
would be much easier. For example if one sets s13 = s14 = s24 = 0 and releases the constraint (10), the result for ζ1 · ζ3ζ2 · ζ5ζ4 · ζ6 and
ζ1 · ζ6ζ2 · ζ5ζ3 · ζ4 would be in terms of only Gamma function as in A1, . . . , A7, and the result for ζ1 · ζ6ζ2 · ζ4ζ3 · ζ5 would be in terms of
3 F2 as in A8, . . . , A11. This would happened if one fixes the SL(2, R) symmetry as x6 = 0, x4 = 1, x5 = ∞.

It would be interesting to study the low energy expansion of the above amplitudes and find the corresponding field theory couplings.
In comparing with the field theory one should, of course, use the same constraint (10) on the Mandelstam variables. This makes the study
much more easier than the more general case [16,17,10]. This study helps one to find (Dφ)6 terms of the effective action, hence, using the
T-duality transformation (Dφ)6 → F 6, one would be able to find the corrections to the symmetrized trace nonabelian DBI action [18,19].
We postpone this study to the future works and focus here in the next section to the ER limit of these amplitudes.
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3.1. The ER limit

The adjacent BCFW shift that is consistent with the constraint (10) is

k6 → k̂6 = k6 + qz, k1 → k̂1 = k1 − qz (23)

where q satisfies q · q = k1 · q = k6 · q = 0. In the ER limit, one finds s12, s13, s56 are large and s23, s34, s45, s24, s25, s35 are small.
To study the amplitudes A1, . . . , A7 in this limit, we write them as

A1 ∼ ζ1 · ζ2 ζ3 · ζ4 ζ5 · ζ6 Tr(λ1λ2λ3λ4λ5λ6)
(−s45 − s56)(−s12 − s23)(−s12 − s13 − s23 − s34)

(−s56)(−s12)(−s12 − s13 − s23)(−s34)
F

A2 ∼ ζ1 · ζ5 ζ2 · ζ6 ζ3 · ζ4 Tr(λ1λ2λ3λ4λ5λ6)
1

(−s34)
F

A3 ∼ ζ1 · ζ5 ζ2 · ζ3 ζ4 · ζ6 Tr(λ1λ2λ3λ4λ5λ6)
(−s12 − s23)

(−s23)(−s12 − s13 − s23)
F

A4 ∼ ζ1 · ζ2 ζ3 · ζ6 ζ4 · ζ5 Tr(λ1λ2λ3λ4λ5λ6)
(−s45 − s56)(−s12 − s23)

(−s45)(−s12)(−s12 − s13 − s23)
F

A5 ∼ ζ1 · ζ3 ζ2 · ζ6 ζ4 · ζ5 Tr(λ1λ2λ3λ4λ5λ6)
(−s45 − s56)

(−s45)(−s12 − s13 − s23)
F

A6 ∼ ζ1 · ζ4 ζ2 · ζ3 ζ5 · ζ6 Tr(λ1λ2λ3λ4λ5λ6)
(−s45 − s56)(−s12 − s13)

(−s56)(−s23)(−s12 − s13 − s23)
F

A7 ∼ ζ1 · ζ6 ζ2 · ζ3 ζ4 · ζ5 Tr(λ1λ2λ3λ4λ5λ6)
(−s45 − s56)(−s12 − s23)

(−s45)(−s23)(−s12 − s13 − s23)
F (24)

where the string form factor F includes the Gamma functions

F = �(1 − s56)�(1 − s45)�(1 − s12)�(1 − s23)�(1 − s12 − s13 − s23)�(1 − s34)

�(1 − s56 − s45)�(1 − s12 − s23)�(1 − s12 − s13 − s23 − s34)
(25)

At low energy region, si j → 0, the factor F reduces to one and the rest should be reproduced by the field theory coupling Tr(Dμφi Dμφi).
We have checked explicitly that for example A2 is reproduced by the following Feynman amplitude:

V (612φ)G(φ)V (φ345) + V (612φ)G(φ)V (φ5A)G(A)V (A34)

where our notation is such that V (612φ) is the vertex for four scalars in which the particles 6, 1, 2 are on-shell and the particle φ is
off-shell, and G(φ) is the propagators of the scalar field.

At the ER limit, s12, s13, s56 → ∞ and s23, s34, s45 → 0, so the string form factor F again reduces to one.
To analyze the large z behavior of the amplitudes A8, A9, we note that these amplitudes have no massless pole in s23-channel. So to

simplify the discussion we set s23 = 0. In this case these amplitudes can be written as

A8 ∼ ζ1 · ζ3 ζ2 · ζ4 ζ5 · ζ6 Tr(λ1λ2λ3λ4λ5λ6)
(−s56 − s45)(−s12 − s13 − s34)

(−s56)(−s34)(−s12 − s13)
F

A9 ∼ ζ1 · ζ5 ζ2 · ζ4 ζ3 · ζ6 Tr(λ1λ2λ3λ4λ5λ6)
1

(−s34)
F

where F is the same form factor (25) in which s23 = 0. Note that the massless pole in s34-channel in the above amplitudes is in fact
the massless pole in (k2 + k3 + k4)

2-channel. The form factor reduces to one at the ER limit and the rest are the amplitudes which are
reproduced by the nonabelian kinetic term of the scalar field.

The amplitudes A10, A11 have no massless pole in s45-channel. So it is consistent to set s45 = 0. In this case they simplify to

A10 ∼ ζ1 · ζ2 ζ3 · ζ5 ζ4 · ζ6 Tr(λ1λ2λ3λ4λ5λ6)
(−s12 − s23)(−s12 − s13 − s23 − s34)

(−s12)(−s34)(−s12 − s13 − s23)
F

A11 ∼ ζ1 · ζ4 ζ3 · ζ5 ζ2 · ζ6 Tr(λ1λ2λ3λ4λ5λ6)
1

(−s34)
F

where F is the same form factor (25) in which s45 = 0. Here again the massless pole in s34-channel is in fact the massless pole in
(k3 + k4 + k5)

2-channel. The form factor reduces to one at the ER limit and the rest are the amplitudes which are reproduced by the field
theory.

The string form factors in the amplitudes A12, . . . , A15 are more complicated for the constraint (10). However, if one uses another
constraint the result would be much simpler, as in A1, . . . , A11. We note that in other constraint the adjacent BCFW shift are changed and
the form factors are again reduce to one at the ER limit, e.g., the adjacent BCFW shift for the constraint s13 = s14 = s24 = 0 is k̂5, k̂6.
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4. Eight-point functions

We have done the calculation for the six-point function in the case that the vertex operators V (x2), V (x3) are in −1 picture and the
rest are in 0 picture. This makes the calculation to have no terms proportional to s24, s25 or s35 as in (15). To simplify this calculation we
note that the amplitude has no channel in s24, s25 or s35. So one can use another arrangement for the vertex operators in which some of
the correlators are proportional to s24, s25 or s35. They are then zero under the constraint (10). The arrangement in which V (x1), V (x6)

are in −1 picture only one correlator survives the constraint (10), instead of three terms in (15). The calculation becomes much more
easier to perform, and the final result is unchanged. Hence, for the eight-point functions we choose the vertex operators V (x1), V (x8) to
be in −1 picture and the rest in 0 picture, that is

A ∼
∫

dx1 · · ·dx8
〈
V −1(x1)V 0(x2) · · · V 0(x7)V −1(x8)

〉
Tr(λ1λ2λ3λ4λ5λ6λ7λ8)

The position of the vertices are −∞ < x1 < x2 < x3 < x4 < x5 < x6 < x7 < x8 < ∞.
There are 20 independent Mandelstam variables in the eight-point function. We restrict the amplitude to the case that

s24 = s25 = s26 = s27 = s35 = s36 = s37 = s46 = s47 = s57 = 0 (26)

Note that the above constraint does not change the number of channels. There are 8 adjacent channels in s12, s23, s34, s45, s56, s67, s78, s81,
8 channels in (k1 +k2 +k3)

2, (k2 +k3 +k4)
2, (k3 +k4 +k5)

2, (k4 +k5 +k6)
2, (k5 +k6 +k7)

2, (k6 +k7 +k8)
2, (k7 +k8 +k1)

2, (k8 +k1 +k2)
2,

and the other 4 channels are in (k1 + k2 + k3 + k4)
2, (k2 + k3 + k4 + k5)

2, (k3 + k4 + k5 + k6)
2, (k4 + k5 + k6 + k7)

2. The above restriction
does no produce any singularity in these channels.

There are 105 different contractions of the scalar polarization. Some of them can be written in terms of only Gamma functions as in
A1, . . . , A7 and the rest in terms of the Gamma and some more complicated functions. However, there are always a particular constraint
as in (26) in which a given contraction can be written in terms of only Gamma functions. In the constraint (26), the contractions of the
scalar polarizations which do not include

ζ2 · ζ4, ζ2 · ζ5, ζ2 · ζ6, ζ2 · ζ7, ζ3 · ζ5, ζ3 · ζ6, ζ3 · ζ7, ζ4 · ζ6, ζ4 · ζ7, ζ5 · ζ7 (27)

can be written in terms of only the Gamma functions. Since there are many terms of this type, we only consider the adjacent contraction,
i.e., ζ1 · ζ2ζ3 · ζ4ζ5 · ζ6ζ7 · ζ8.

Using the constraint (26) there is only one nonzero term. The integrand is invariant under the SL(2, R). Removing this symmetry by
fixing x1 = 0, x7 = 1 and x8 = ∞, one finds

A ∼ ζ1 · ζ2ζ3 · ζ4ζ5 · ζ6ζ7 · ζ8 Tr(λ1λ2λ3λ4λ5λ6λ7λ8)

×
1∫

0

dx6

x6∫
0

dx5

x5∫
0

dx4

x4∫
0

dx3

x3∫
0

dx2 s23s45s67
(
x−s12−1

12 x−s13
13 x−s14

14 x−s15−1
15 x−s16−1

16 x−s23−1
23 x−s34−1

34 x−s45−1
45 x−s56−1

56 xs67−1
67

)

We take the Mandelstam variables that appear in the above equation, i.e., s12, s13, s14, s15, s16, s23, s34, s45, s56, s67 as the independent
variables. Note that these 10 variables and the 10 variables in the constraint (26) make the total Mandelstam variables of the eight-point
function. Changing the variables as x5 = αx6, x4 = αβx6, x3 = αβux6, and x2 = αβuvx6 which has the Jacobian J = uβ2α3x4

6, one finds
that the four integrals are separated and each one can be written in terms of the beta function. The result is

A ∼ ζ1 · ζ2ζ3 · ζ4ζ5 · ζ6ζ7 · ζ8 Tr(λ1λ2λ3λ4λ5λ6λ7λ8)

×�(−s12 − s13 − s14 − s15 − s16 − s23 − s34 − s45 − s56)�(1 − s67)

�(−s12 − s13 − s14 − s15 − s16 − s23 − s34 − s45 − s56 − s67)

× �(−s12 − s13 − s14 − s15 − s23 − s34 − s45)�(−s56)

�(−s12 − s13 − s14 − s15 − s23 − s34 − s45 − s56)

�(−s12 − s13 − s14 − s23 − s34)�(1 − s45)

�(−s12 − s13 − s14 − s23 − s34 − s45)

× �(−s12 − s13 − s23)�(−s34)

�(−s12 − s13 − s23 − s34)

�(−s12)�(1 − s23)

�(−s12 − s23)
(28)

Note that using the first relation in (14), one observes that A1 in the previous section has a structure as above. One may try to find a
similar result for the other contractions of the polarizations, as in Section 3.

To study the above amplitude at the ER limit we write the amplitude as the following:

A ∼ AYM F (29)

where the field theory amplitude is

AYM = ζ1 · ζ2ζ3 · ζ4ζ5 · ζ6ζ7 · ζ8 Tr(λ1λ2λ3λ4λ5λ6λ7λ8)

× (−s12 − s13 − s14 − s15 − s16 − s23 − s34 − s45 − s56 − s67)

(−s12 − s13 − s14 − s15 − s16 − s23 − s34 − s45 − s56)

(−s12 − s13 − s14 − s15 − s23 − s34 − s45 − s56)

(−s12 − s13 − s14 − s15 − s23 − s34 − s45)(−s56)

× (−s12 − s13 − s14 − s23 − s34 − s45)

(−s12 − s13 − s14 − s23 − s34)

(−s12 − s13 − s23 − s34)

(−s12 − s13 − s23)(−s34)

(−s12 − s23)

(−s12)
(30)

and the string form factor is
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F = �(1 − s12 − s13 − s14 − s15 − s16 − s23 − s34 − s45 − s56)�(1 − s67)

�(1 − s12 − s13 − s14 − s15 − s16 − s23 − s34 − s45 − s56 − s67)

× �(1 − s12 − s13 − s14 − s15 − s23 − s34 − s45)�(1 − s56)

�(1 − s12 − s13 − s14 − s15 − s23 − s34 − s45 − s56)

× �(1 − s12 − s13 − s14 − s23 − s34)�(1 − s45)

�(1 − s12 − s13 − s14 − s23 − s34 − s45)

× �(1 − s12 − s13 − s23)�(1 − s34)

�(1 − s12 − s13 − s23 − s34)

�(1 − s12)�(1 − s23)

�(1 − s12 − s23)

The adjacent BCFW shift which is consistent with the constraint (26) is

k8 → k̂8 = k8 + qz, k1 → k̂1 = k1 − qz (31)

At the ER limit s23, s34, s45, s56, s67 → 0. Hence, the form factor reduces to one at the ER limit.

5. 2n-point functions

One can easily extend the above calculation to the general case of 2n-point functions. The amplitude is given by the following correla-
tion function:

A ∼
∫

dx1 · · ·dx2n
〈
V −1(x1)V 0(x2) · · · V 0(x2n−1)V −1(x2n)

〉
Tr(λ1λ2 · · ·λ2n)

The appropriate constraint is⎛
⎜⎜⎜⎜⎜⎝

s24 s25 s26 · · · s2,2n−1

s35 s36 · · · s3,2n−1

s46 · · · s4,2n−1

. . .
...

s2n−3,2n−1

⎞
⎟⎟⎟⎟⎟⎠ = 0 (32)

or any other set under cyclic permutation of (1,2, . . . ,2n). This makes (2n − 3)(2n − 4)/2 out of the total 2n(2n − 3)/2 independent
Mandelstam variables to be zero. The remaining 2(2n − 3) variables are chosen to be

s12, s13, . . . , s1,2n−2, s23, s34, . . . , s2n−2,2n−1 (33)

There is no channel in the si j ’s in the constraint (32), so the multiple integral has no singularity after imposing the constraint (32). The
SL(2, R) symmetry of the integrand is fixed as x1 = 0, x2n−1 = 1 and x2n = ∞. The amplitude for the contractions of the scalar polarizations
which do not include the following contractions:⎛

⎜⎜⎜⎜⎜⎝

ζ2 · ζ4 ζ2 · ζ5 ζ2 · ζ6 · · · ζ2 · ζ2n−1

ζ3 · ζ5 ζ3 · ζ6 · · · ζ3 · ζ2n−1

ζ4 · ζ6 · · · ζ4 · ζ2n−1

. . .
...

ζ2n−3 · ζ2n−1

⎞
⎟⎟⎟⎟⎟⎠ (34)

can be written in terms of only the Gamma functions. The result for the adjacent contractions of the scalar polarizations is

A ∼ AYM F (35)

where the field theory amplitude is

AYM = Tr(λ1λ2 · · ·λ2n)

2n∏
j=2

ζ2 j−3 · ζ2 j−2
(−s12 − · · · − s1,2 j−2 − s23 − · · · − s2 j−2,2 j−1)

(−s12 − · · · − s1,2 j−2 − s23 − · · · − s2 j−3,2 j−2)

× (−s12 − · · · − s1,2 j−3 − s23 − · · · − s2 j−3,2 j−2)

(−s12 − · · · − s1,2 j−3 − s23 − · · · − s2 j−4,2 j−3)(−s2 j−3,2 j−2)
(36)

and the string form factor is

F =
2n∏
j=2

�(1 − s12 − · · · − s1,2 j−2 − s23 − · · · − s2 j−3,2 j−2)�(1 − s2 j−2,2 j−1)

�(1 − s12 − · · · − s1,2 j−2 − s23 − · · · − s2 j−2,2 j−1)

× �(1 − s12 − · · · − s1,2 j−3 − s23 − · · · − s2 j−4,2 j−3)�(1 − s2 j−3,2 j−2)

�(1 − s12 − · · · − s1,2 j−3 − s23 − · · · − s2 j−3,2 j−2)
(37)

The adjacent BCFW shift which is consistent with the constraint (32) is
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k2n → k̂2n = k2n + qz, k1 → k̂1 = k1 − qz (38)

At the ER limit s23, s34, . . . , s2n−2,2n−1 → 0. Hence, the form factor reduces to one at the ER limit.
There are many other contraction of the scalar polarizations which can be written in a closed form in terms of the Gamma functions

as in Section 3 for six-point functions. By explicit calculation, it should be easy to show that the form factor for all of them reduce to
one in the ER limit, as in Section 3. For those contractions that their form factor involves more complicated functions, one may choose
another set of constraint, instead of (32). The form factors would then be in terms of only the Gamma functions. Hence, the form factor
for all contractions of the scalar polarizations should reduce to one at the ER limit. We expect similar discussion should be valid in the
scattering amplitude of gluons in which the gluon polarizations contract with momentum and with the other gluon polarizations.
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