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In this paper a two level supply chain system is studied, in which the final demand is assumed to be 

fuzzy with triangular membership function. The inventory control policy of (r,Q) is followed for this 

system and unsatisfied demand is assumed to be back ordered. The objective is to minimize the total 

cost of the system, including ordering, holding and shortage costs. The model happens to be a 

nonlinear programming. Considering the complexity arising from the model, we also develop a 

genetic algorithm to obtain a near-optimal solution. The method is illustrated through some 

numerical examples. 

Keywords: Supply chain; inventory control; fuzzy set; genetic algorithm. 

1. Introduction 

Uncertainty is rooted in the nature of supply chain and caused by its expansive network.  

A supply chain consists of all stages involved, directly or indirectly, to fulfill a customer 

request. “The supply chain includes not only manufacturers and suppliers, but 

transporters, warehouses, retailers, and customers themselves.
1
” Obviously, in such an 

expansive network, managing uncertainty is a major challenge. “There are three different 

sources of uncertainty that plague supply chain networks: supplier performance (late 

delivery), manufacturing process (machine breakdown, transportation reliability) and 

customer demand (volume and mix).
2
”   

To manage uncertainty in a supply chain system, different approaches such as 

stochastic process or fuzzy sets concepts can be applied. Expressing uncertain data as 

random variables is discussed in the literature previously; see Refs. 3, 4 and 5. However, 

in many cases stochastic process can not be used, due to the lack of sufficient historical 
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data to derive distribution function of random variables. A probability distribution is 

usually derived from the past information. This requires a valid hypothesis that evidence 

collected are complete and unbiased, and that the stochastic mechanism generating the 

data recorded continues in force on an unchanged basis, see Ref. 6. If all these 

requirements are not satisfied, then the conventional probabilistic reasoning methods are 

not appropriate. As an example, in the case of launching a new product, no previous 

information exists and thus probabilistic models can not be developed. Therefore, in 

these situations another practical approach is to express uncertain data as fuzzy numbers. 

In other words, uncertain parameters can be specified based on managerial experience 

and subjective judgment only. It may be convenient to express these uncertainties by 

using various imprecise linguistic expressions. For example, an expert can estimate the 

average demand for a product as dm, while stating that it is not less than dt and not greater 

than du. Similarly, a supplier can be evaluated as very reliable, in terms of the percentage 

of a raw material orders that can deliver, or lead time is predicted to be most likely in the 

interval [Ll,Lu].  

 In this paper, we apply fuzzy set approach to model a two-level supply chain system, 

where demand is uncertain and its probability distribution function is not known. The 

final demand is assumed to be fuzzy with triangular membership function. The triangular 

membership function is utilized because of its simplicity. The inventory control policy of 

each level is continuous review, (r,Q).  

We review the models developed in the literature regarding inventory policies in 

supply chain networks with fuzzy demand, briefly. Petrovic et al.
7
 developed fuzzy 

modeling and also simulated a supply chain in an uncertain environment. In his model, 

discrete fuzzy sets are used to represent various kinds of uncertainties of demand or 

uncertainties of external supplies. Inventories are reviewed at fixed periods and the policy 

of up-to level order is adopted. The objective is to determine the stock levels as well as 

order quantities for each inventory in a supply chain, during a finite time horizon in order 

to obtain an acceptable delivery performance at a reasonable total cost. Petrovic et al.
8
 

developed a serial supply chain model with fuzzy demand and lead time to reach an 

acceptable service level of the supply chain and at a reasonable total cost. In this model, 

each inventory in the supply chain is controlled based on a periodic review policy. 

SCSIM introduced by Petrovic,
6
 analyzes supply chain behavior and performance in the 

presence of uncertainty. SCSIM treats a supply chain which includes raw materials, a 

number of in-process inventories and final-products as well as production facilities. Main 

sources of uncertainty inherent in the serial supply chain and its environment are 

identified, including customer demand, external supply of raw material and lead times. 

Two types of models are included in SCSIM: (1) supply chain fuzzy analytical models to 

determine the optimal order-up-to levels for all inventories in a fuzzy environment and 

(2) a supply chain simulation model to evaluate supply chain performance achieved over 

time by applying order-up-to levels recommended by the fuzzy models. Giannoccaro      

et al.
9
 presented a methodology based on the concept of echelon stock and fuzzy set 

theory. Fuzzy set theory is used to model the uncertainty associated with both market 
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demand and inventory costs properly. They also applied periodic-review control policy 

based on the echelon stock concept. According to the echelon periodic-review control 

policy, at each stage, the echelon stock is reviewed at constant time intervals and an order 

is issued to the upstream stage to raise the echelon stock up to a target level. Wang and 

Shu
2
 developed a fuzzy decision methodology that provides an alternative framework to 

handle supply chain uncertainties and to determine supply chain inventory strategies. A 

fuzzy supply chain model based on possibility theory is developed to evaluate supply 

chain performances. Based on the proposed fuzzy supply chain model, a genetic 

algorithm approach is developed to determine the order-up-to levels of stock-keeping 

units in the supply chain to minimize the supply chain inventory cost subject to the 

restriction of fulfilling the target fill rate of the finished product. Xie et al.
10

 considered a 

two-level supply chain consist of a production and a number of inventory units. Each 

facility applies periodic inventory control policy. It is supposed that the supply chain 

operates under uncertainty in customer demand, which is described by imprecise terms 

and modeled by fuzzy sets. 

Although this research considers the inventory system of supply chain, we mention 

some similar works in single level inventory systems. Gen et al.
11

 examine an inventory 

control problem, in which input data such as set up cost, holding and shortage costs are 

triangular fuzzy numbers. They consider continuous review policy and assume the 

reorder point is pre-determined. They determine the maximal ordering cycles which 

results in the minimal total cost. Chang et al.
12

 consider a single level inventory problem 

with backorder, and constant demand.  Due to the uncertainty of inputs, such as 

transportation time they consider backorder quantity as a triangular fuzzy number. They 

obtain an economic order quantity and an economic backorder quantity in fuzzy sense. 

Ouyang and Yao
13

 investigate a continuous review inventory model in which order 

quantity and lead time are decision variables. They consider two fuzziness of annual 

demand, i.e., fuzzy number of annual demand and statistic-fuzzy number of annual 

demand and give an algorithm procedure to obtain the optimal ordering strategy for each 

case. Modarres and Pirayesh
14

 study continuous review and periodic review inventory 

policies in which demand is a triangular fuzzy number. The unsatisfied demands are back 

ordered. The objective is to minimize the total cost of the system consists of ordering; 

holding and shortage costs. 

Up to our knowledge, no paper is yet published which deals with continuous review 

inventory control policy (r,Q) in a centralized fuzzy supply chain. In our model, each 

firm in the supply chain applies (r,Q) policy. 

This paper is organized as follows. In the next section, the problem is defined. 

Section 3 describes problem formulation. Section 4 is devoted to solution approach. 

Section 5 gives a numerical example. Finally, Sec. 6 presents the conclusions and 

suggestions for further researches in this area. 

2. Problem   

In this section the problem is introduced with more details. 
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2.1. Model definition 

A two-level supply chain, such as in Fig. 1, is assumed. The customer provides his/her 

demand through firm B. while firm B replenishes through firm A, according to its own 

inventory control policy. Firm A also a business unit, follows its inventory control policy 

and replenishes its required inventory from an external supplier. This model is a typical 

one in a supply chain, called single-vendor single-buyer system (see Refs. 15, 16 and 17). 

Although in all these papers the demand is assumed to be deterministic. 

The objective of this model is to determine an inventory control policy for both firms 

A and B so as to minimize the total system cost. 

2.1.1.  Inventory control policy for firms B and A 

Firm B follows the continuous rule of (rB,QB); i.e., whenever the inventory level 

decreases to rB, then an amount of QB is ordered.  

Since the orders issued by firm B are the demands entering firm A, it can be 

concluded that within any time interval between two successive orders of firm B the 

demand for firm A is a constant and deterministic value of QB. Hence, inventory level in 

firm A varies discretely, as shown in Fig. 2. 
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Fig. 1. A two-level supply chain. 
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Fig. 2. Inventory level changes at firm A and B. 
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If firm A's inventory is less than the demanded amount by firm B then the total 

demand (QB) is backordered. In other words, lot-splitting is not allowed. Thus, it can be 

concluded that QA=K1QB and rA=K2QB, where K1 and K2 are nonnegative integers. 

2.2.  Assumptions  

The assumptions of the model are as follow: 

 

(1) Demand entering firm B during the lead time is a fuzzy number and its membership 

function is as follows. 
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To analysis average annual cost at firm B we need to average annual demand in firm 

B, denoted by DB. We assume that DB is an input data which is defuzzified value of 

annual demand using centroid method. 

(2) Customer demand is confined to a single product 

(3) The transportation time of each order placed by firm B as well as the lead time for 

replenishing the orders of firm A from an external supplier is assumed to be 

deterministic and given 

(4) Both firms inventory follow the control policy of (r,Q) 
(5) Shortage for both firms is back ordered 

(6) If the inventory of firm A is less than the amount requested by B, then the whole 

demand is back ordered; i.e., there is no lot-splitting at firm A 

(7) The external supplier has unlimited capacity 

2.3. Objective function 

The objective function is to minimize the total system cost which is sum of the ordering, 

holding and shortage cost of both firms, A and B.  

2.4. Decision variables 

Since both firms follow the inventory control policy of (r,Q), the reorder point (r) and 

quantity order (Q) of each firm have to be decision variables. By this policy, an inventory 

order of (Q) is placed when the inventory level declines to a predetermined amount of (r). 
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2.5. Notation 

The notations used in the formulation are: 

 

Parameters: 

• AA: Ordering cost in firm A, 

• AB: Ordering cost in firm B, 

• hA: Holding cost per unit per unit time at firm A, 

• hB: Holding cost per unit per unit time at firm B, 

• π:A: Shortage cost per unit in firm A, 

• πB: Shortage cost per unit in firm B, 

• LA: Lead time for delivery to firm A, 

• LB: Lead time for delivery to firm B, 

• DA : Average annual demand in firm A, 

• DB: Average annual demand in firm B, 

• ),( BB rQI : Average inventory level within each cycle at firm B, 

• ),( BB rQY : Mean inventory on-hand at firm B, 

• λB: Average demand during lead time period in firm B, 

• λA: Average demand during lead time period in firm A, 

• b: Amount of shortage during lead time at firm B, 

• bA: Amount of shortage during lead time at firm A, 

• )(~ b
B

µ : Membership function of b, 

• TB: Interval between two successive orders of firm B, 

• 
BT : Average of TB, 

Decision Variables:  

• QA: Order quantity of firm A, 

• QB: Order quantity of firm B, 

• rA: Reorder point of firm A, 

• rB: Reorder point of firm B, 

As a usual notation in the literature, a fuzzy number, say x, is represented by X
~

and its 

membership function as )(~ x
X

µ . 

3. Problem Formulation 

In this problem, the annual inventory cost for each firm is also determined. One should 

consider the fact that orders placed by firm B are demands for firm A.  

3.1. Inventory analysis at Firm B 

As mentioned before, Firm B follows the continuous rule of (rB,QB). The total cost of this 

firm which includes holding cost, shortage cost and ordering cost are calculated as 

follows. 



 Modeling (r,Q) Policy in a Two-Level Supply Chain System with Fuzzy Demand 825 

3.1.1.  Mean holding cost during an inter arrival time at firm B 

Average inventory level within each cycle, ),( BB rQI , depends on reorder point (rB) and 

order quantity (QB). It is also known that QB/DB is the mean inter arrival time. Thus, the 

average cost per this interval is, 

),( BB

B

B

B rQI
D

Q
h  

During each cycle, inventory is at its minimum level just before the order receipt and 

at its maximum level just after that. Then, at these two points the average inventory level 

is rB– λB and  rB–λB+QB, respectively, where λB is the average demand during lead time 

period. If ),( BB rQY  is the mean inventory on-hand (while there is no shortage) and 

demand occurs linearly, then,  
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On the other hand, it can be considered that ),( BB rQI and ),( BB rQY are 

approximately equal, because the shortage period is short enough compared with the total 

time interval. Therefore, the average inventory level is as follows. 
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3.1.2. Shortage cost during an inter arrival time at firm B 

Shortage happens whenever demand is greater than reorder point during lead time.  Let b 

be the amount of shortage during lead time, then,   

BBBB rxrxb >−= ;  

Therefore, b is also a fuzzy number. Its membership function for a1<rB<a2 and 

a2<rB<a3 is as follows. 
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Defuzzified b  in Case 2: 
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Therefore, the mean shortage cost during a given period is: 
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M is a sufficiently large positive number, and yB is a binary variable. 

 

3.1.3.  Annual inventory cost of firm B 

The total cost of each cycle, by considering the above calculations is as follows. 
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annual cost is, 
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3.2. Annual inventory cost of Firm A 

As mentioned in Sec. 2.1.1 within any interval between two successive orders of firm B 

the demand for firm A is a constant and deterministic value of QB. On the other hand, 

since lot-splitting is not allowed, it can be concluded that QA=K1QB and rA=K2QB, where 

K1 and K2 are nonnegative integers. 

Holding cost for firm A is approximated by assuming that average duration between 

two successive demands is identical for all intervals, and denoted by 
BT . To calculate 

inventory on hand, this value is approximated by net inventory value based on the 

assumption that shortage period duration is short enough in comparison with the whole 

planning period time. 

Inventory level is at its maximum level just after receiving orders and at minimum 

point just before order is received, or rA-λA+QA and rA-λA, respectively, where λA 

represents the average demand for A during lead time. 

To calculate λA, it is possible to assume that there exists a demand (equal to QB) 

during
BT . Thus, the average number of demands during LA is 

B

A

T

L  and  

B

A

A
A Q

T

L
=λ                                                             (1) 

Inventory holding costs during each cycle is calculated based on the fact that the 

inventory level reduces discretely from rA-λA+QA to rA-λA. Then, 
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Relations (1) and (4) yield  
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To calculate the shortage costs, it is required to calculate defuzzified 
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 in both 

cases. 
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In this case, the defuzzified shortage value is def(bA)=γ(k2,QB).QB . 

To calculate the shortage cost within an interval, πA should be multiplied by the 

defuzzified shortage. Since there are two cases, a binary variable is introduced to model 

it. Hence, the shortage cost within an interval is as follows. 
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We need to point out that DA, the average annual demand for firm A is equal to that of 

firm B, i.e.  DA=DB. 

3.3. Objective function  

In this model, we intend to minimize total system cost. So, the sum of both firms cost 

function yields the objective function. There are a binary variable in each average annual 

cost of firms, yA and yB. Depending on the values of these variables four situations can be 
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made for the objective function. Thus, the objective function can be written as the 

following four sub problems. One of these sub problems which has the minimum total 

cost is the overall optimal solution. 

The decision variables are rA, QA, rB and QB. Since QA=K1.QB and rA=K2.QB, we 

substitute K1.QB and K2.QB for QA  and rA , respectively. Thus, the objective function is 

presented in respect of rB, QB, K1 and K2. 
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4. Solution Approach 

The model is obviously so complicated that an optimal solution can not be obtained by 

any analytical approach.  To solve this model, it is required to apply a metaheuristic 

method. Hence, we develop a genetic algorithm to solve this problem.  

Genetic algorithm (GA) is a stochastic global search which operates on a population 

of solutions applying the principle of survival of the fittest solutions. GA is a procedure 

to search the population in parallel and its search direction is influenced with the 

objective function. The algorithm is independent of the complexity of the considered 

Sub problem3 

Sub problem4 
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performance index. It suffices to specify the objective function and finite bounds of 

optimized variables.
18

 For more details regarding genetic algorithm, the reader is referred 

to Refs. 19, 20 and 21. 

The GA used in this research paper is similar to the ones used in standard literature, 

see Ref. 20. This is known as the simple genetic algorithm. The principles of genetic 

algorithm can be written as follows: 

Step 1. Randomly initialize a population. 

Step 2. Compute the fitness of each individual of the population. 

Step 3. Generate new population by using genetic operators. 

Step 4. Compute the fitness of each individual in the new generation. 

Step 5. If the convergence condition is satisfied, stop, otherwise return to Step 3. 

The main elements of GA of our proposed algorithm are described next. 

4.1. String representation 

Each individual (chromosome) in the population, which is a candidate solution, 

corresponds to a specific value of decision variables. The structure of the chromosomes is 

shown in Fig. 3. The chromosomes consist of substrings whose number is equal to the 

number of decision variables. The decision variables are rB, QB, K1 and K2. In GAs, the 

search process operates on the encoded decision variables rather than the decision 

variables themselves. How to translate the decision variables to a GA chromosome is a 

major issue. The binary, integer, real-valued, messy and tree structure representations are 

the most important and widely used by many genetic and evolutionary algorithms.
22

 

Goldberg
20

 proposed principle of minimal alphabets for encodings, that is, the 

alphabet of the encoding should be as small as possible while still allowing a natural 

representation of solutions. The principle of minimal alphabets advises us to use bit string 

representation. Also, binary string is simple to implement.
23

 Hence, Binary encodings are 

the most commonly used and nature-inspired representations for genetic algorithms, see 

Ref. 20. 

The binary encoding has the effect that genotypes of some phenotypical neighbors are 

completely different. The gray encoding was designed to overcome this problem, see  

Ref. 24. In the gray encoding, every neighbor of a phenotype is also a neighbor of the 

corresponding genotype. Hence, in this paper each variable is encoded as a binary 

representation in type of gray encoding.  

Depending on the desired precision, the encoding is performed using the different 

gene lengths. Here, the gene length of QB , rB , K1 and K2  are 10, 10, 4 and 4 respectively.  

 

 
K2 K1 rB QB 

    

Fig. 3. GA chromosome structure. 
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4.2. Objective and fitness functions 

Fitness function (FF) is the evaluation function used to determine the degree of 

appropriateness of each solution candidate in the solution domain. The fitness values are 

derived from objective function, through a ranking function. The objective function 

values of the individuals are first sorted in an ascending order. A fitness value is then 

assigned to each individual, depending on its position in the sorted population. The 

assigned fitness value is calculated as follows: 









−
−

×−−=
1

)22()( maxmax

ind

ind

N

nN
FFFFnFF  

where, n is the position of the chromosome, Nind is the number of chromosomes in the 

population, and FFmax is the maximum assigned fitness value. In this study, FFmax is 

assumed to be 2. 

4.3. GA operators 

Three basic genetic operators are employed to generate the new population from the 

initial population of chromosomes: selection, crossover, and mutation. The operators are 

used to make genetic evolution during solving process. Before proceeding to introduce 

the genetic operators, it should be noted that while creating a new generation, some of the 

fit individuals are propagated through to successive generation. The fraction of the 

population that is replaced in each cycle is named as generation gap. 

4.3.1.  Selection 

Selection selects the chromosomes in the population based on their fitness for 

reproduction. The fitter the individual the more it is chosen for reproduction. Roulette 

wheel selection method (see Ref. 20) used in our algorithm, is among the most popular 

selection methods. In this selection method, the probability of the individual n to be 

selected is 

∑
=

=
indN

i

iFF

nFF
nP

1

)(

)(
)(  

The fitness function values (FFs) should be nonnegative. 

4.3.2.  Crossover 

Crossover is responsible for data exchange between distinct solutions. A uniform 

crossover is employed in this algorithm. In this type of crossover, at first, a random mask 

string whose length is the length of chromosome is generated. The bits of this string 

determine the parent whose corresponding bit will supply the offspring. This process is 

illustrated in Fig. 4 (this figure shows just part of strings). The offspring 1 is generated by 

taking the bits from parent 1 if the corresponding mask bit is 1 and the bits from parent 2 
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if the corresponding mask bit is 0. Offspring 2 is created using the inverse of the mask 

string. 
 

 

 

 

 

 

 
Fig. 4. Example of uniform crossover. 

4.3.3.  Mutation  

Mutation is responsible for the injection of new information and ensures that the 

probability of searching a particular subspace of the solution domain is never zero. New 

chromosome is created by a random change of every bit of the old one from 0 to 1 or 

vice-versa, as is shown in Fig. 5.  

 
 

Fig. 5. Example of mutation operator. 

 

4.4. Values for the parameters of the GA 

In this paper we set the parameters based on the general conclusions which there are in 

this area. In the following, we state these conclusions and determine values for the 

parameters of the GA. 

4.4.1. Population size 

The population size affects performance of GAs. GAs generally do poorly with very 

small populations.
25

 In other word, if a larger population size is used, it has higher 

probability to obtain better results. But, it takes much computation time and reduces the 

efficiency of the algorithm.
26

 The population size used in earlier researches usually is in 

range of 10 to 200 (see Refs. 25−29). Since we are not sensitive to computation time so 

we use a large population size equal to 200.  

4.4.2. Crossover rate 

The crossover rate controls the frequency with which the crossover operator is applied. 

The higher the crossover rate, the more quickly new structures are introduced into the 

population. If the crossover rate is too high, high-performance structures are discarded 

faster than selection can produce improvements. If the crossover rate is too low, the 

search may stagnate due to the lower exploration rate.
25

 The suitable ranges of crossover 

rate have been suggested in some articles, see Refs. 25 and 27. Based on the suggested 

1 0 1 1 0 1 1 0 0 1 Parent 1: 

1 0 0 0 1 1 1 1 0 0 Parent 2: 

0 0 0 0 1 1 0 0 1 1 Mask: 

1 0 0 0 0 1 1 1 0 1 Offspring 1: 

1 0 1 1 1 1 1 0 0 0 Offspring 2: 

1 0 1 0 0 1 1 0 0 1 Original string: 

1 0 1 0 0 1 0 0 0 1 Mutated string: 

Mutation 
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values and some trials, the suitable range of crossover rate is 0.7–0.9, see Ref. 26. In this 

paper crossover rate is set to 0.7. 

4.4.3. Mutation rate 

Mutation increases the variability of the population. A low level of mutation serves to 

prevent any given bit position from remaining forever converged to a single value in- the 

entire population. A high level of mutation yields an essentially random search.
25

 De 

Jong
27

 states that the mutation rate as 1/pop_size seems to be about the best setting. Thus, 

in this paper we set the mutation rate equal to 1/pop_size which is 0.005. 

 

4.5. Termination criteria 

Generally, specifying a convergence criterion for a genetic algorithm is difficult. A 

common criterion that is used in this GA is to terminate genetic algorithm after a 

predetermined number of iterations. In this study the algorithm is terminated after 150 

iterations. 

 

5. Numerical Example 

In this section we give a numerical example and run the proposed genetic algorithm for 

10 times. The minimum total cost of these runs is considered as the optimal solution.  

 

The data for the designed numerical example: 

a1=10, a2=13, a3=25, AA=10, AB=5, hA=2, hB=6, πA=4, πB=4, LA=1/12, LB=1/48, DB=360 

 

Table 1. Results of genetic algorithm for the example. 

Minimum Cost 
Run 

No. Sub problem1 Sub problem2 Sub problem3 Sub problem4 

Minimum 

Total  System 

Cost 

1 418.18 303.18 493.29 360.32 303.18 

2 418.18 303.18 484.01 357.93 303.18 

3 418.18 302.18 493.29 357.93 302.18 

4 418.18 302.18 493.29 357.93 302.18 

5 418.18 303.18 484.01 359.01 303.18 

6 419.02 302.18 484.01 360.32 302.18 

7 418.18 302.18 484.01 357.93 302.18 

8 418.18 302.18 484.01 357.93 302.18 

9 418.18 303.18 484.01 360.32 303.18 

10 418.18 302.18 493.29 360.32 302.18 

 

From Table 1 it is concluded that the proposed genetic algorithm converges to a near 

optimal solution. For this example the minimum cost is 302.18 and the solution 

associated with this cost is: QB = 26.27, rB = 25, K1 = 3 and K2 = 2. 
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5.1. Sensitivity analysis 

To investigate the impact of different parameters of firm B on the total system cost, 

sensitivity analysis is performed for a1, a2 and a3, by starting from the data of this 

example. Table 2 shows how the total system cost changes with respect to a1 which 

represents the minimum demand in firm B during a lead time. Obviously, the larger a1, 

the less total system cost is resulted. Similarly, the effect of changing a3, the maximum 

demand in firm B during a lead time, on the total system cost is shown in Table 3. In this 

case, the total system cost increases when a3 is getting larger. It can be concluded that the 

larger variation (difference between a1 and a3) results in higher cost which is reasonable.  

Finally, Table 4 represents the sensitivity of a2, the demand in firm B during a lead 

time with membership of one. It is implied that the best value for a2 is 16, if a1 = 10 and 

a3 = 25. In other words, the most appropriate shape for the fuzzy triangle is to have equal 

sides.  

 
Table 2. Results of sensitivity. 

 

Analysis on a1 

 

 

 

 

 

 

 

 

 
 

 

Table 3. Results of sensitivity. 

Analysis on a3 

a3 Total  System Cost 

16 271.82 

17 274.70 

18 278.07 

19 282.90 

20 285.49 

21 288.72 

22 292.02 

23 295.36 

24 298.75 

25 302.18 

 

 
 

a1 Total System Cost 

1 581.01 

2 452.67 

3 400.64 

4 371.05 

5 351.22 

6 335.08 

7 322.44 

8 312.09 

9 306.58 

10 302.18 
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Table 4. Results of sensitivity. 

Analysis on a2 

a2 Total System Cost 

11 308.05 

12 304.87 

13 302.18 

14 298.92 

15 295.74 

16 294.08 

17 294.35 

18 295.46 

19 297.26 

20 297.36 

6. Conclusions and Suggestions for Further Research 

This paper deals with continuous review inventory control policy (r,Q)  in a two level 

fuzzy supply chain. Fuzzy numbers are applied to present customer demand. The 

objective is to derive and minimize the total cost of two levels including ordering, 

holding and shortage cost. Considering the complexity arising from the model, we 

developed a genetic algorithm to obtain the optimal solution. The model developed in 

this paper involves three fields of supply chains, inventory control, and fuzzy sets. Each 

area is potentially expansible for further research. For example; in the field of supply 

chains one can extend this model to a single-vendor multi-buyer system. In the field of 

inventory control the comparison of effectiveness of our model with the common models 

which assume stochastic demand is a subject for future research. In the field of fuzzy sets 

one might consider different shapes of membership function; e.g. trapezoidal, bell-

shaped, etc. More sensitivity analysis and effect of different parameters of the model on 

the optimal solution are interesting topics for further research.  
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