Acridine-benzene-1,3,5-tricarboxylic acid (3/1)

Hossein Aghabozorg, Saba Goodarzi, Masoud Mirzaei and Behrouz Notash

Acta Cryst. (2011). E67, o126

Abstract

This open-access article is distributed under the terms of the Creative Commons Attribution Licence http://creativecommons.org/licenses/by/2.0/uk/legalcode, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Acta Crystallographica Section E: Structure Reports Online is the IUCr's highly popular open-access structural journal. It provides a simple and easily accessible publication mechanism for the growing number of inorganic, metal-organic and organic crystal structure determinations. The electronic submission, validation, refereeing and publication facilities of the journal ensure very rapid and high-quality publication, whilst key indicators and validation reports provide measures of structural reliability. In 2007, the journal published over 5000 structures. The average publication time is less than one month.

Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Acridine-benzene-1,3,5-tricarboxylic acid (3/1)

Hossein Aghabozorg, ${ }^{\text {a* }}$ Saba Goodarzi, ${ }^{\text {a }}$ Masoud Mirzaei ${ }^{\text {b }}$ and Behrouz Notash ${ }^{\text {c }}$

${ }^{\text {a }}$ Faculty of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran,
${ }^{\mathbf{b}}$ Department of Chemistry, School of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran, and ${ }^{\text {c }}$ Department of Chemistry, Shahid Beheshti University, G.C.,
Evin, Tehran 1983963113, Iran
Correspondence e-mail: haghabozorg@yahoo.com
Received 3 October 2010; accepted 1 December 2010
Key indicators: single-crystal X-ray study; $T=298 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$; R factor $=0.059 ; w R$ factor $=0.218 ;$ data-to-parameter ratio $=13.9$.

In the title adduct, $3 \mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~N} \cdot \mathrm{C}_{9} \mathrm{H}_{6} \mathrm{O}_{6}$ or $(\mathrm{acr})_{3}(\mathrm{btc})$, associations of one btc and three acr molecules linked by $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds occur. $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions also occur, resulting in a cyclic hydrogen-bonded synthon $R_{2}^{1}(6)$. The acr molecules and the btc molecules also form slipped or offset $\pi-$ π stacking interactions [centroid-centroid distances of 3.5212 (17) \AA for btc rings and 3.703 (2) and 3.731 (2) \AA for acr rings]. Together these interactions lead to a threedimensional network.

Related literature

For background to proton-transfer compounds including acridine, see: Tabatabaee et al. (2009); Eshtiagh-Hosseini et al. (2010). For background to co-crystals, see: Dale et al. (2004).

Experimental

Crystal data
$3 \mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~N} \cdot \mathrm{C}_{9} \mathrm{H}_{6} \mathrm{O}_{6}$
Triclinic, $P \overline{1}$
$M_{r}=747.77$

$$
\begin{aligned}
& b=13.113(3) \AA \\
& c=13.220(3) \AA \\
& \alpha=77.44(3)^{\circ} \\
& \beta=71.43(3)^{\circ} \\
& \gamma=72.23(3)^{\circ} \\
& V=1865.9(8) \AA^{3}
\end{aligned}
$$

Data collection
Stoe IPDS II diffractometer Absorption correction: numerical (X-RED and X-SHAPE; Stoe \& Cie, 2005)
$T_{\text {min }}=0.964, T_{\text {max }}=0.980$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.059 \quad \mathrm{H}$ atoms treated by a mixture of
$w R\left(F^{2}\right)=0.218$
$S=0.95$
7305 reflections
526 parameters
$Z=2$
Mo $K \alpha$ radiation
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
$0.45 \times 0.3 \times 0.2 \mathrm{~mm}$

15233 measured reflections 7305 independent reflections 3826 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.088$ independent and constrained refinement
$\Delta \rho_{\max }=0.32 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.34$ e \AA^{-3}

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{~N} 1$	1.03 (4)	1.62 (4)	2.643 (4)	173 (4)
$\mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{~N} 2$	1.08 (6)	1.55 (6)	2.619 (4)	166 (5)
$\mathrm{O} 5-\mathrm{H} 5 \cdots \mathrm{~N} 3$	1.10 (5)	1.57 (5)	2.659 (4)	171 (6)
C14-H14 $\cdots \mathrm{O}^{\text {i }}$	0.93	2.44	3.266 (5)	147
C16-H16 \cdots O6 ${ }^{\text {i }}$	0.93	2.55	3.355 (5)	145
$\mathrm{C} 18-\mathrm{H} 18 \cdots \mathrm{O} 2^{\text {ii }}$	0.93	2.54	3.389 (5)	151
$\mathrm{C} 24-\mathrm{H} 24 \cdots \mathrm{O} 5^{\text {iii }}$	0.93	2.53	3.278 (5)	138
C27-H27 . $\mathrm{O}^{\text {4 }}{ }^{\text {iv }}$	0.93	2.59	3.435 (5)	151
$\mathrm{C} 47-\mathrm{H} 47 \cdots{ }^{\text {O }} 3^{\text {iii }}$	0.93	2.56	3.345 (5)	143

Symmetry codes: (i) $x+1, y, z-1$; (ii) $-x+1,-y,-z-1$; (iii) $-x,-y,-z$; (iv) $-x-1,-y+1,-z$.

Data collection: X-AREA (Stoe \& Cie, 2005); cell refinement: X $A R E A$; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

We are grateful to the Islamic Azad University, North Tehran Branch, for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2368).

References

Dale, S. H., Elsegood, M. R. J. \& Coombs, A. E. L. (2004). CrystEngComm, 6, 328-335.
Eshtiagh-Hosseini, H., Aghabozorg, H. \& Mirzaei, M. (2010). Acta Cryst. E66, m882.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Stoe \& Cie (2005). X-AREA, X-RED and X-SHAPE. Stoe \& Cie, Darmstadt, Germany.
Tabatabaee, M., Aghabozorg, H., Attar Gharamaleki, J. \& Sharif, M. A. (2009). Acta Cryst. E65, m473-m474.

supplementary materials

Acta Cryst. (2011). E67, o126 [doi:10.1107/S1600536810050233]

Acridine-benzene-1,3,5-tricarboxylic acid (3/1)

H. Aghabozorg, S. Goodarzi, M. Mirzaei and B. Notash

Comment

Acridine is structurally related to anthracene wherein one of the central CH group is replaced by nitrogen. It is a raw material used for the production of dyes and some valuable drugs. Our research group has recently reported two proton transfer complexes with acridine (Tabatabaee et al., 2009; Eshtiagh-Hosseini et al., 2010). Recently, Dale et al. reported the structure of btc with three pyridines as a cocrystal (Dale et al., 2004). In this article, we report the crystal structure of a new cocrystal system containing acridine and benzenetricarboxylic acid, for the first time.

The title cocrystal structure contains acridine and benzene-1,3,5-tricarboxylic acid in 3:1 molar ratio in the asymmetric unit (Fig. 1). These three bases and one acid formed a cocrystal without any proton transfer. Hence, the acr molecules interact with the carboxylic acid groups of the respective btc molecule through $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1). The latter formed a cyclic hydrogen-bonded synthon $R_{2}^{1}(6)$. The acr molecules and also btc molecules form slipped or offset $\pi-\pi$ stacking interactions [with centroid \cdots centroid distances of 3.5212 (17) \AA for btc rings and 3.703 (2) and 3.731 (2) \AA for acr rings]. The dihedral angle of the plane of three carboxylate groups with respect to plane of the central benzene ring in btc are equal to $3.17,6.46$ and 6.52°. Indeed, the crystal structure is stabilized by an extensive series of intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and $\pi-\pi$ stacking interactions, forming a three-dimensional network (Fig. 2).

Experimental

The reaction between a solution of benzenetricarboxylic acid ($70 \mathrm{mg}, 0.30 \mathrm{mmol}$) in 5 ml ethanol and acridine ($180 \mathrm{mg}, 1.0$ mmol) in 5 ml ethanol in 1:3 molar ratio at 298 K for 4 hr gave orange block crystals of $(\mathrm{acr})_{3}(\mathrm{btc})$ after slow evaporation of the solvent at room temperature (m.p. $>260^{\circ} \mathrm{C}$).

Refinement

The hydrogen atoms of the carboxylic part of btc molecule were found in a diference Fourier map and refined isotropically without restraint. All of the other H atoms were positioned geometrically and refined as riding atoms, with $\mathrm{C}-\mathrm{H}=0.93$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Figures

Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at 30% probability level.

Fig. 2. The crystal packing of the title compound along b axis. The figure shows the parallel arrangements between centro-symmetry related aromatic rings [symmetry code: (i) $1-\mathrm{x},-\mathrm{y},-1-$ z; (ii)-1-x, 1-y, -z; (iii) -x, -1-y, 1-z; (iv) -x,-y,-z].

Acridine-benzene-1,3,5-tricarboxylic acid (3/1)

Crystal data

$3 \mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~N} \cdot \mathrm{C}_{9} \mathrm{H}_{6} \mathrm{O}_{6}$
$M_{r}=747.77$
Triclinic, $P \mathrm{~T}$
Hall symbol: -P 1
$a=12.031$ (2) \AA
$b=13.113$ (3) \AA
$c=13.220(3) \AA$
$\alpha=77.44$ (3) ${ }^{\circ}$
$\beta=71.43$ (3) ${ }^{\circ}$
$\gamma=72.23(3)^{\circ}$
$V=1865.9(8) \AA^{3}$
$Z=2$
$F(000)=780$
$D_{\mathrm{x}}=1.331 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 7305 reflections
$\theta=2.1-26.0^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Block, orange
$0.45 \times 0.3 \times 0.2 \mathrm{~mm}$

Data collection

Stoe IPDS II
diffractometer
Radiation source: fine-focus sealed tube graphite
Detector resolution: 0.15 mm pixels mm^{-1}
φ scans
Absorption correction: numerical
(X-RED and X-SHAPE; Stoe \& Cie, 2005)
$T_{\text {min }}=0.964, T_{\text {max }}=0.980$
7305 independent reflections
3826 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.088$
$\theta_{\text {max }}=26.0^{\circ}, \theta_{\text {min }}=2.1^{\circ}$
$h=-14 \rightarrow 14$
$k=-16 \rightarrow 16$
$l=-16 \rightarrow 15$

15233 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.059$
$w R\left(F^{2}\right)=0.218$
$S=0.95$
7305 reflections
526 parameters
0 restraints

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.1227 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2{F_{\mathrm{c}}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=0.32 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.34 \mathrm{e}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
C1	$0.1489(2)$	$0.0445(2)$	$-0.0245(2)$	$0.0366(6)$
C2	$0.0715(3)$	$0.1475(3)$	$-0.0249(2)$	$0.0401(7)$
H2	0.0842	0.1982	-0.0859	0.048^{*}
C3	$-0.0247(2)$	$0.1761(2)$	$0.0643(2)$	$0.0373(7)$
C4	$-0.0432(3)$	$0.1001(3)$	$0.1548(2)$	$0.0401(7)$
H4	-0.1069	0.1189	0.2151	0.048^{*}
C5	$0.0317(2)$	$-0.0032(2)$	$0.1564(2)$	$0.0373(7)$
C6	$0.1281(2)$	$-0.0312(2)$	$0.0661(2)$	$0.0356(6)$
H6	0.1786	-0.1009	0.0668	0.043^{*}
C7	$0.2493(3)$	$0.0184(3)$	$-0.1247(2)$	$0.0420(7)$
C8	$-0.1130(3)$	$0.2841(3)$	$0.0637(3)$	$0.0475(8)$
C9	$0.0045(3)$	$-0.0833(3)$	$0.2553(2)$	$0.0441(7)$
C10	$0.5826(3)$	$-0.0662(3)$	$-0.3125(2)$	$0.0487(8)$
C11	$0.5902(3)$	$-0.0260(4)$	$-0.2253(3)$	$0.0663(11)$
H11	0.5339	-0.0329	-0.1587	0.080^{*}
C12	$0.6791(4)$	$0.0227(4)$	$-0.2379(4)$	$0.0787(12)$
H12	0.6841	0.0483	-0.1795	0.094^{*}

supplementary materials

C13	0.7643 (4)	0.0348 (4)	-0.3387 (4)	0.0803 (13)
H13	0.8239	0.0694	-0.3461	0.096*
C14	0.7611 (3)	-0.0025 (3)	-0.4240 (3)	0.0653 (10)
H14	0.8181	0.0066	-0.4897	0.078*
C15	0.6707 (3)	-0.0561 (3)	-0.4144 (3)	0.0483 (8)
C16	0.6635 (3)	-0.0974 (3)	-0.4987 (3)	0.0517 (9)
H16	0.7199	-0.0916	-0.5653	0.062*
C17	0.5721 (3)	-0.1480 (3)	-0.4846 (2)	0.0479 (8)
C18	0.5598 (4)	-0.1925 (3)	-0.5674 (3)	0.0668 (11)
H18	0.6151	-0.1898	-0.6350	0.080*
C19	0.4684 (4)	-0.2389 (4)	-0.5491 (4)	0.0779 (12)
H19	0.4611	-0.2674	-0.6046	0.094*
C20	0.3842 (4)	-0.2449 (4)	-0.4480 (4)	0.0741 (12)
H20	0.3231	-0.2791	-0.4369	0.089*
C21	0.3901 (3)	-0.2020 (3)	-0.3663 (3)	0.0641 (10)
H21	0.3317	-0.2043	-0.3004	0.077*
C22	0.4859 (3)	-0.1532 (3)	-0.3814 (2)	0.0466 (8)
C23	-0.3427 (3)	0.4865 (3)	-0.1242 (3)	0.0475 (8)
C24	-0.2966 (3)	0.3906 (3)	-0.1741 (3)	0.0592 (9)
H24	-0.2266	0.3405	-0.1626	0.071*
C25	-0.3548 (4)	0.3724 (4)	-0.2383 (3)	0.0709 (11)
H25	-0.3227	0.3106	-0.2724	0.085*
C26	-0.4632 (4)	0.4455 (4)	-0.2545 (3)	0.0705 (11)
H26	-0.5022	0.4309	-0.2981	0.085*
C27	-0.5107 (3)	0.5364 (3)	-0.2070 (3)	0.0610 (10)
H27	-0.5827	0.5837	-0.2176	0.073*
C28	-0.4514 (3)	0.5604 (3)	-0.1410 (3)	0.0494 (8)
C29	-0.4945 (3)	0.6528 (3)	-0.0911 (3)	0.0523 (8)
H29	-0.5658	0.7025	-0.1000	0.063*
C30	-0.4323 (3)	0.6719 (3)	-0.0280 (3)	0.0509 (8)
C31	-0.4709 (4)	0.7652 (3)	0.0253 (3)	0.0649 (10)
H31	-0.5416	0.8172	0.0183	0.078*
C32	-0.4067 (4)	0.7791 (4)	0.0856 (4)	0.0781 (13)
H32	-0.4333	0.8404	0.1201	0.094*
C33	-0.2995 (4)	0.7015 (4)	0.0969 (4)	0.0741 (12)
H33	-0.2558	0.7130	0.1383	0.089*
C34	-0.2582 (3)	0.6102 (3)	0.0489 (3)	0.0643 (10)
H34	-0.1877	0.5593	0.0583	0.077*
C35	-0.3234 (3)	0.5934 (3)	-0.0155 (3)	0.0491 (8)
C36	-0.0443 (3)	-0.2948 (3)	0.5167 (3)	0.0533 (9)
C37	0.0199 (4)	-0.2314 (4)	0.5384 (3)	0.0764 (12)
H37	0.0789	-0.2055	0.4830	0.092*
C38	-0.0040 (5)	-0.2087 (4)	0.6387 (4)	0.0904 (15)
H38	0.0384	-0.1664	0.6514	0.108*
C39	-0.0916 (6)	-0.2472 (4)	0.7246 (4)	0.0945 (16)
H39	-0.1058	-0.2311	0.7935	0.113*
C40	-0.1547 (5)	-0.3071 (4)	0.7077 (3)	0.0828 (14)
H40	-0.2131	-0.3316	0.7650	0.099*
C41	-0.1338 (4)	-0.3341 (3)	0.6033 (3)	0.0595 (10)

sup-4

C42	$-0.1932(4)$	$-0.3969(3)$	$0.5801(3)$	$0.0737(12)$
H42	-0.2517	-0.4239	0.6351	0.088^{*}
C43	$-0.1683(4)$	$-0.4208(3)$	$0.4771(3)$	$0.0607(10)$
C44	$-0.2255(5)$	$-0.4863(4)$	$0.4478(4)$	$0.0911(15)$
H44	-0.2853	-0.5145	0.4999	0.109^{*}
C45	$-0.1941(6)$	$-0.5077(4)$	$0.3462(4)$	$0.0977(17)$
H45	-0.2323	-0.5506	0.3285	0.117^{*}
C46	$-0.1043(5)$	$-0.4659(4)$	$0.2667(4)$	$0.0879(14)$
H46	-0.0807	-0.4843	0.1974	0.106^{*}
C47	$-0.0512(4)$	$-0.3994(4)$	$0.2888(3)$	$0.0697(11)$
H47	0.0040	-0.3684	0.2338	0.084^{*}
C48	$-0.0789(3)$	$-0.3769(3)$	$0.3947(3)$	$0.0507(8)$
N1	$0.4920(2)$	$-0.1125(2)$	$-0.2986(2)$	$0.0495(7)$
N2	$-0.2812(2)$	$0.5027(2)$	$-0.0623(2)$	$0.0495(7)$
N3	$-0.0211(3)$	$-0.3142(2)$	$0.4155(2)$	$0.0538(7)$
O1	$0.3136(2)$	$-0.08203(19)$	$-0.12033(18)$	$0.0543(6)$
H1	$0.378(3)$	$-0.092(3)$	$-0.193(3)$	$0.063(10)^{*}$
O2	$0.2668(3)$	$0.0870(2)$	$-0.20116(19)$	$0.0759(9)$
O3	$-0.0948(2)$	$0.3460(2)$	$-0.02961(19)$	$0.0640(7)$
H3	$-0.173(5)$	$0.414(5)$	$-0.032(4)$	$0.128(19)^{*}$
O4	$-0.1941(3)$	$0.3119(2)$	$0.1420(2)$	$0.0805(9)$
O5	$0.0707(2)$	$-0.1822(2)$	$0.24783(18)$	$0.0573(6)$
H5	$0.041(5)$	$-0.239(4)$	$0.319(4)$	$0.116(17)^{*}$
O6	$-0.0735(2)$	$-0.0553(2)$	$0.33509(19)$	$0.0731(8)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0283(14)$	$0.0458(17)$	$0.0357(14)$	$-0.0116(13)$	$-0.0035(11)$	$-0.0106(12)$
C2	$0.0337(15)$	$0.0490(19)$	$0.0381(15)$	$-0.0152(14)$	$-0.0055(12)$	$-0.0061(13)$
C3	$0.0296(14)$	$0.0428(17)$	$0.0389(15)$	$-0.0075(13)$	$-0.0070(11)$	$-0.0101(13)$
C4	$0.0311(14)$	$0.0497(19)$	$0.0384(15)$	$-0.0122(14)$	$-0.0004(12)$	$-0.0144(13)$
C5	$0.0313(14)$	$0.0481(18)$	$0.0349(14)$	$-0.0162(13)$	$-0.0047(11)$	$-0.0080(12)$
C6	$0.0289(13)$	$0.0354(16)$	$0.0398(15)$	$-0.0067(12)$	$-0.0046(11)$	$-0.0088(12)$
C7	$0.0345(15)$	$0.0481(19)$	$0.0378(15)$	$-0.0114(14)$	$-0.0020(12)$	$-0.0050(14)$
C8	$0.0370(16)$	$0.0484(19)$	$0.0491(18)$	$-0.0041(14)$	$-0.0037(14)$	$-0.0119(15)$
C9	$0.0385(16)$	$0.053(2)$	$0.0386(16)$	$-0.0161(15)$	$-0.0015(13)$	$-0.0081(14)$
C10	$0.0364(16)$	$0.057(2)$	$0.0453(17)$	$-0.0110(15)$	$0.0000(13)$	$-0.0088(15)$
C11	$0.053(2)$	$0.089(3)$	$0.054(2)$	$-0.018(2)$	$-0.0018(16)$	$-0.023(2)$
C12	$0.067(3)$	$0.106(4)$	$0.074(3)$	$-0.025(3)$	$-0.018(2)$	$-0.031(2)$
C13	$0.061(3)$	$0.103(4)$	$0.089(3)$	$-0.035(3)$	$-0.021(2)$	$-0.015(3)$
C14	$0.0436(19)$	$0.081(3)$	$0.066(2)$	$-0.0226(19)$	$-0.0032(17)$	$-0.007(2)$
C15	$0.0354(16)$	$0.053(2)$	$0.0468(18)$	$-0.0074(15)$	$-0.0010(13)$	$-0.0073(15)$
C16	$0.0401(17)$	$0.055(2)$	$0.0438(17)$	$-0.0079(16)$	$0.0042(14)$	$-0.0023(15)$
C17	$0.0476(18)$	$0.0427(18)$	$0.0438(17)$	$-0.0060(15)$	$-0.0047(14)$	$-0.0053(14)$
C18	$0.076(3)$	$0.067(3)$	$0.053(2)$	$-0.017(2)$	$-0.0090(19)$	$-0.0157(18)$
C19	$0.097(3)$	$0.074(3)$	$0.073(3)$	$-0.029(3)$	$-0.023(2)$	$-0.021(2)$
C20	$0.079(3)$	$0.067(3)$	$0.088(3)$	$-0.035(2)$	$-0.024(2)$	$-0.006(2)$

supplementary materials

C21	0.056 (2)	0.065 (2)	0.065 (2)	-0.0260 (19)	-0.0015 (18)	-0.0029 (19)
C22	0.0426 (17)	0.0456 (18)	0.0438 (17)	-0.0107 (15)	-0.0036 (13)	-0.0032 (14)
C23	0.0431 (17)	0.0467 (19)	0.0439 (17)	-0.0102 (15)	-0.0034 (14)	-0.0027 (14)
C24	0.052 (2)	0.054 (2)	0.061 (2)	-0.0074 (17)	-0.0059 (17)	-0.0097 (17)
C25	0.073 (3)	0.073 (3)	0.066 (2)	-0.025 (2)	-0.002 (2)	-0.024 (2)
C26	0.067 (3)	0.084 (3)	0.066 (2)	-0.025 (2)	-0.011 (2)	-0.022 (2)
C27	0.053 (2)	0.068 (3)	0.059 (2)	-0.0140 (19)	-0.0180 (17)	-0.0020 (19)
C28	0.0446 (17)	0.051 (2)	0.0447 (17)	-0.0136 (16)	-0.0037 (14)	0.0000 (15)
C29	0.0459 (18)	0.049 (2)	0.0515 (18)	-0.0075 (16)	-0.0098 (15)	0.0019 (15)
C30	0.0497 (19)	0.0432 (19)	0.0512 (18)	-0.0106 (16)	-0.0060 (15)	-0.0018 (15)
C31	0.063 (2)	0.047 (2)	0.080 (3)	-0.0069 (18)	-0.018 (2)	-0.0091 (19)
C32	0.081 (3)	0.057 (3)	0.100 (3)	-0.018 (2)	-0.018 (3)	-0.027 (2)
C33	0.074 (3)	0.069 (3)	0.091 (3)	-0.025 (2)	-0.024 (2)	-0.022 (2)
C34	0.054 (2)	0.063 (3)	0.077 (2)	-0.0126 (19)	-0.0213 (19)	-0.009 (2)
C35	0.0477 (18)	0.049 (2)	0.0477 (18)	-0.0162 (16)	-0.0076 (14)	-0.0026 (15)
C36	0.064 (2)	0.052 (2)	0.0419 (17)	-0.0191 (18)	-0.0093 (15)	-0.0019 (15)
C37	0.095 (3)	0.081 (3)	0.066 (3)	-0.045 (3)	-0.019 (2)	-0.005 (2)
C38	0.124 (4)	0.090 (4)	0.077 (3)	-0.043 (3)	-0.035 (3)	-0.019 (3)
C39	0.141 (5)	0.093 (4)	0.055 (2)	-0.032 (4)	-0.025 (3)	-0.019 (2)
C40	0.111 (4)	0.079 (3)	0.048 (2)	-0.030 (3)	-0.004 (2)	-0.004 (2)
C41	0.077 (2)	0.053 (2)	0.0423 (18)	-0.025 (2)	-0.0042 (17)	0.0015 (15)
C42	0.086 (3)	0.075 (3)	0.055 (2)	-0.045 (2)	0.0024 (19)	0.0052 (19)
C43	0.070 (2)	0.057 (2)	0.057 (2)	-0.028 (2)	-0.0150 (18)	0.0029 (17)
C44	0.108 (4)	0.091 (4)	0.095 (3)	-0.062 (3)	-0.034 (3)	0.010 (3)
C45	0.136 (5)	0.096 (4)	0.098 (4)	-0.064 (4)	-0.062 (4)	0.005 (3)
C46	0.112 (4)	0.100 (4)	0.072 (3)	-0.033 (3)	-0.046 (3)	-0.014 (3)
C47	0.075 (3)	0.085 (3)	0.054 (2)	-0.025 (2)	-0.0218 (19)	-0.006 (2)
C48	0.057 (2)	0.0462 (19)	0.0466 (18)	-0.0124 (16)	-0.0155 (15)	-0.0001 (15)
N1	0.0382 (14)	0.0564 (17)	0.0419 (14)	-0.0114 (13)	0.0045 (11)	-0.0060 (12)
N2	0.0426 (15)	0.0472 (17)	0.0515 (15)	-0.0077 (13)	-0.0094 (12)	-0.0022 (13)
N3	0.0585 (17)	0.0560 (18)	0.0450 (15)	-0.0226 (15)	-0.0069 (13)	-0.0018 (13)
O1	0.0431 (12)	0.0534 (15)	0.0454 (12)	-0.0039 (11)	0.0081 (10)	-0.0060 (10)
O2	0.0754 (17)	0.0670 (17)	0.0472 (13)	-0.0086 (14)	0.0170 (12)	0.0053 (12)
O3	0.0534 (14)	0.0623 (16)	0.0524 (14)	0.0052 (13)	-0.0057 (11)	-0.0006 (12)
O4	0.0723 (17)	0.0653 (18)	0.0621 (16)	0.0051 (14)	0.0163 (14)	-0.0081 (13)
O5	0.0611 (15)	0.0496 (15)	0.0467 (13)	-0.0168 (12)	0.0058 (11)	-0.0040 (11)
O6	0.0686 (16)	0.0710 (18)	0.0470 (13)	-0.0110 (14)	0.0193 (12)	-0.0040 (12)

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{C} 1-\mathrm{C} 2$	$1.388(4)$
$\mathrm{C} 1-\mathrm{C} 6$	$1.389(4)$
$\mathrm{C} 1-\mathrm{C} 7$	$1.501(4)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.389(4)$
$\mathrm{C} 2-\mathrm{H} 2$	0.9300
$\mathrm{C} 3-\mathrm{C} 4$	$1.386(4)$
$\mathrm{C} 3-\mathrm{C} 8$	$1.488(4)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.379(4)$
$\mathrm{C} 4-\mathrm{H} 4$	0.9300

$\mathrm{C} 25-\mathrm{C} 26$	$1.411(6)$
$\mathrm{C} 25-\mathrm{H} 25$	0.9300
$\mathrm{C} 26-\mathrm{C} 27$	$1.350(6)$
$\mathrm{C} 26-\mathrm{H} 26$	0.9300
$\mathrm{C} 27-\mathrm{C} 28$	$1.422(5)$
$\mathrm{C} 27-\mathrm{H} 27$	0.9300
$\mathrm{C} 28-\mathrm{C} 29$	$1.386(5)$
$\mathrm{C} 29-\mathrm{C} 30$	$1.386(5)$
$\mathrm{C} 29-\mathrm{H} 29$	0.9300

sup-6

supplementary materials

C5-C6	1.397 (4)	C30-C31	1.424 (5)
C5-C9	1.503 (4)	C30-C35	1.430 (5)
C6-H6	0.9300	C31-C32	1.345 (6)
C7-O2	1.208 (4)	C31-H31	0.9300
C7-O1	1.308 (4)	C32-C33	1.405 (6)
C8-O4	1.208 (4)	C32-H32	0.9300
C8-O3	1.316 (4)	C33-C34	1.360 (6)
C9-O6	1.207 (4)	C33-H33	0.9300
C9-O5	1.304 (4)	C34-C35	1.414 (5)
C10-N1	1.349 (4)	C34-H34	0.9300
C10-C11	1.406 (5)	C35-N2	1.344 (4)
C10-C15	1.433 (4)	C36-N3	1.341 (4)
C11-C12	1.356 (6)	C36-C37	1.416 (5)
C11-H11	0.9300	C36-C41	1.426 (5)
C12-C13	1.411 (6)	C37-C38	1.344 (6)
C12-H12	0.9300	C37-H37	0.9300
C13-C14	1.337 (6)	C38-C39	1.403 (7)
C13-H13	0.9300	C38-H38	0.9300
C14-C15	1.427 (5)	C39-C40	1.339 (7)
C14-H14	0.9300	C39-H39	0.9300
C15-C16	1.377 (5)	C40-C41	1.425 (6)
C16-C17	1.395 (5)	C40-H40	0.9300
C16-H16	0.9300	C41-C42	1.376 (6)
C17-C18	1.412 (5)	C42-C43	1.382 (5)
C17-C22	1.430 (4)	C42-H42	0.9300
C18-C19	1.346 (6)	C43-C48	1.426 (5)
C18-H18	0.9300	C43-C44	1.427 (6)
C19-C20	1.400 (6)	C44-C45	1.343 (7)
C19-H19	0.9300	C44-H44	0.9300
C20-C21	1.351 (6)	C45-C46	1.401 (7)
C20-H20	0.9300	C45-H45	0.9300
C21-C22	1.424 (5)	C46-C47	1.350 (6)
C21-H21	0.9300	C46-H46	0.9300
$\mathrm{C} 22-\mathrm{N} 1$	1.348 (4)	C47-C48	1.407 (5)
$\mathrm{C} 23-\mathrm{N} 2$	1.348 (4)	C47-H47	0.9300
C23-C28	1.420 (5)	C48-N3	1.344 (4)
C23-C24	1.423 (5)	$\mathrm{O} 1-\mathrm{H} 1$	1.03 (4)
C24-C25	1.355 (6)	O3-H3	1.08 (6)
C24-H24	0.9300	O5-H5	1.10 (5)
C2-C1-C6	119.1 (2)	C27-C26-C25	120.5 (4)
C2-C1-C7	118.1 (3)	C27-C26-H26	119.7
C6-C1-C7	122.7 (3)	C25-C26-H26	119.7
C1-C2-C3	121.0 (3)	C26-C27-C28	120.4 (4)
C1-C2-H2	119.5	C26-C27-H27	119.8
C3-C2-H2	119.5	C28- $227-\mathrm{H} 27$	119.8
C4-C3-C2	119.2 (3)	C29-C28-C23	117.6 (3)
C4-C3-C8	118.7 (2)	C29-C28-C27	123.3 (3)
C2-C3-C8	122.0 (3)	C23-C28-C27	119.1 (3)
C5-C4-C3	120.8 (3)	C28-C29-C30	120.6 (3)

supplementary materials

C5-C4-H4	119.6
C3-C4-H4	119.6
C4-C5-C6	119.6 (3)
C4-C5-C9	118.3 (2)
C6-C5-C9	122.0 (3)
C1-C6-C5	120.3 (3)
C1-C6-H6	119.8
C5-C6-H6	119.8
O2-C7-O1	124.5 (3)
O2-C7- ${ }^{\text {C1 }}$	121.0 (3)
O1-C7-C1	114.5 (3)
O4-C8-O3	123.3 (3)
O4-C8-C3	122.9 (3)
O3-C8-C3	113.9 (3)
O6-C9-O5	123.8 (3)
O6-C9-C5	120.8 (3)
O5-C9-C5	115.4 (2)
N1-C10-C11	119.2 (3)
N1-C10-C15	121.6 (3)
C11-C10-C15	119.3 (3)
C12-C11-C10	120.3 (3)
C12-C11-H11	119.9
C10-C11-H11	119.9
C11-C12-C13	120.6 (4)
C11-C12-H12	119.7
C13-C12-H12	119.7
C14-C13-C12	121.3 (4)
C14-C13-H13	119.3
C12-C13-H13	119.3
C13-C14-C15	120.3 (3)
C13-C14-H14	119.9
C15-C14-H14	119.9
C16-C15-C14	123.1 (3)
C16-C15-C10	118.6 (3)
C14-C15-C10	118.3 (3)
C15-C16-C17	120.4 (3)
C15-C16-H16	119.8
C17-C16-H16	119.8
C16-C17-C18	123.3 (3)
C16-C17-C22	117.8 (3)
C18-C17-C22	118.8 (3)
C19-C18-C17	120.4 (4)
C19-C18-H18	119.8
C17-C18-H18	119.8
C18-C19-C20	121.1 (4)
C18-C19-H19	119.4
C20-C19-H19	119.4
C21-C20-C19	121.1 (4)
C21-C20-H20	119.4

C28-C29-H29	119.7
C30-C29-H29	119.7
C29-C30-C31	123.7 (3)
C29-C30-C35	118.2 (3)
C31-C30-C35	118.1 (3)
C32-C31-C30	120.9 (4)
C32-C31-H31	119.6
C30-C31-H31	119.6
C31-C32-C33	120.4 (4)
C31-C32-H32	119.8
C33-C32-H32	119.8
C34-C33-C32	121.6 (4)
C34-C33-H33	119.2
C32-C33-H33	119.2
C33-C34-C35	119.4 (4)
C33-C34-H34	120.3
C35-C34-H34	120.3
N2-C35-C34	118.6 (3)
N2-C35-C30	121.9 (3)
C34-C35-C30	119.5 (3)
N3-C36-C37	119.3 (3)
N3-C36-C41	122.0 (3)
C37-C36-C41	118.6 (3)
C38-C37-C36	120.3 (4)
C38-C37-H37	119.8
C36-C37-H37	119.8
C37-C38-C39	121.5 (5)
C37-C38-H38	119.2
C39-C38-H38	119.2
C40-C39-C38	120.1 (4)
C40-C39-H39	119.9
C38-C39-H39	119.9
C39-C40-C41	121.1 (4)
C39-C40-H40	119.4
C41-C40-H40	119.4
C42-C41-C40	124.5 (3)
C42-C41-C36	117.3 (3)
C40-C41-C36	118.2 (4)
C41-C42-C43	121.7 (3)
C41-C42-H42	119.1
C43-C42-H42	119.1
C42-C43-C48	117.4 (3)
C42-C43-C44	124.6 (4)
C48-C43-C44	118.0 (4)
C45-C44-C43	120.9 (4)
C45-C44-H44	119.5
C43-C44-H44	119.5
C44-C45-C46	120.4 (4)
C44-C45-H45	119.8

sup-8

supplementary materials

C19-C20-H20	119.4
C20-C21-C22	119.8 (3)
C20-C21-H21	120.1
C22-C21-H21	120.1
N1-C22-C21	119.2 (3)
N1-C22-C17	122.2 (3)
C21-C22-C17	118.7 (3)
N2-C23-C28	122.9 (3)
N2-C23-C24	118.3 (3)
C28-C23-C24	118.8 (3)
C25-C24-C23	120.0 (4)
C25-C24-H24	120.0
C23-C24-H24	120.0
C24-C25-C26	121.2 (4)
C24-C25-H25	119.4
C26-C25-H25	119.4
C6-C1-C2-C3	1.0 (4)
C7- $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	178.6 (3)
C1-C2-C3-C4	-0.1 (4)
C1-C2-C3-C8	-176.5 (3)
C2-C3-C4-C5	-0.7 (4)
C8-C3-C4-C5	175.8 (3)
C3-C4-C5-C6	0.6 (4)
C3-C4-C5-C9	-177.8 (3)
C2- $\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	-1.2 (4)
C7- $12-\mathrm{C} 6-\mathrm{C} 5$	-178.7 (3)
C4-C5-C6-C1	0.4 (4)
C9-C5-C6-C1	178.7 (3)
C2- $\mathrm{C} 1-\mathrm{C} 7-\mathrm{O} 2$	4.4 (5)
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 7-\mathrm{O} 2$	-178.1 (3)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{O} 1$	-176.0 (3)
C6-C1-C7-O1	1.6 (4)
C4-C3-C8-O4	6.9 (5)
C2-C3-C8-O4	-176.7 (3)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 8-\mathrm{O} 3$	-173.1 (3)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 8-\mathrm{O} 3$	3.3 (4)
C4-C5-C9-O6	-7.2 (5)
C6-C5-C9-O6	174.5 (3)
C4-C5-C9-O5	173.2 (3)
C6-C5-C9-O5	-5.1 (4)
N1-C10-C11-C12	-178.8 (4)
C15-C10-C11-C12	0.7 (6)
C10-C11-C12-C13	0.7 (7)
C11-C12-C13-C14	-1.0 (8)
C12-C13-C14-C15	-0.2 (7)
C13-C14-C15-C16	-179.1 (4)
C13-C14-C15-C10	1.5 (6)
N1-C10-C15-C16	-1.7 (5)
C11-C10-C15-C16	178.9 (3)

C46-C45-H45	119.8
C47-C46-C45	121.1 (4)
C47-C46-H46	119.4
C45-C46-H46	119.4
C46-C47-C48	120.4 (4)
C46-C47-H47	119.8
C48-C47-H47	119.8
N3-C48-C47	119.3 (3)
N3-C48-C43	121.7 (3)
C47-C48-C43	119.0 (3)
C22-N1-C10	119.3 (2)
C35-N2-C23	118.8 (3)
C36-N3-C48	119.7 (3)
C7-O1-H1	108 (2)
C8-O3-H3	111 (3)
C9-O5-H5	112 (3)
N2-C23-C28-C27	-179.6 (3)
C24-C23-C28-C27	-0.1 (4)
C26-C27-C28-C29	179.2 (3)
C26-C27-C28-C23	-1.0 (5)
C23-C28-C29-C30	0.5 (4)
C27-C28-C29-C30	-179.7 (3)
C28-C29-C30-C31	179.8 (3)
C28-C29-C30-C35	-0.4 (4)
C29-C30-C31-C32	179.9 (4)
C35-C30-C31-C32	0.1 (5)
C30-C31-C32-C33	0.2 (6)
C31-C32-C33-C34	-0.8(7)
C32-C33-C34-C35	1.0 (6)
C33-C34-C35-N2	180.0 (3)
C33-C34-C35-C30	-0.7 (5)
C29-C30-C35-N2	-0.3 (4)
C31-C30-C35-N2	179.5 (3)
C29-C30-C35-C34	-179.6 (3)
C31-C30-C35-C34	0.1 (5)
N3-C36-C37-C38	178.3 (4)
C41-C36-C37-C38	-0.4 (7)
C36-C37-C38-C39	0.6 (8)
C37-C38-C39-C40	-0.8 (9)
C38-C39-C40-C41	0.7 (8)
C39-C40-C41-C42	178.7 (5)
C39-C40-C41-C36	-0.5 (7)
N3-C36-C41-C42	2.4 (6)
C37-C36-C41-C42	-178.9 (4)
N3-C36-C41-C40	-178.4 (4)
C37-C36-C41-C40	0.3 (6)
C40-C41-C42-C43	-179.6 (4)
C36-C41-C42-C43	-0.4 (6)
C41-C42-C43-C48	-0.6 (6)

supplementary materials

$\mathrm{N} 1-\mathrm{C} 10-\mathrm{C} 15-\mathrm{C} 14$	$177.7(3)$
$\mathrm{C} 11-\mathrm{C} 10-\mathrm{C} 15-\mathrm{C} 14$	$-1.8(5)$
$\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 17$	$-179.3(3)$
$\mathrm{C} 10-\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 17$	$0.0(5)$
$\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 17-\mathrm{C} 18$	$-179.8(3)$
$\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 17-\mathrm{C} 22$	$1.2(5)$
$\mathrm{C} 16-\mathrm{C} 17-\mathrm{C} 18-\mathrm{C} 19$	$-179.0(4)$
$\mathrm{C} 22-\mathrm{C} 17-\mathrm{C} 18-\mathrm{C} 19$	$0.0(6)$
$\mathrm{C} 17-\mathrm{C} 18-\mathrm{C} 19-\mathrm{C} 20$	$-0.5(7)$
$\mathrm{C} 18-\mathrm{C} 19-\mathrm{C} 20-\mathrm{C} 21$	$1.7(7)$
$\mathrm{C} 19-\mathrm{C} 20-\mathrm{C} 21-\mathrm{C} 22$	$-2.4(7)$
$\mathrm{C} 20-\mathrm{C} 21-\mathrm{C} 22-\mathrm{N} 1$	$-178.8(4)$
$\mathrm{C} 20-\mathrm{C} 21-\mathrm{C} 22-\mathrm{C} 17$	$1.9(6)$
$\mathrm{C} 16-\mathrm{C} 17-\mathrm{C} 22-\mathrm{N} 1$	$-0.9(5)$
$\mathrm{C} 18-\mathrm{C} 17-\mathrm{C} 22-\mathrm{N} 1$	$180.0(3)$
$\mathrm{C} 16-\mathrm{C} 17-\mathrm{C} 22-\mathrm{C} 21$	$178.4(3)$
$\mathrm{C} 18-\mathrm{C} 17-\mathrm{C} 22-\mathrm{C} 21$	$-0.7(5)$
$\mathrm{N} 2-\mathrm{C} 23-\mathrm{C} 24-\mathrm{C} 25$	$-178.9(3)$
$\mathrm{C} 28-\mathrm{C} 23-\mathrm{C} 24-\mathrm{C} 25$	$1.6(5)$
$\mathrm{C} 23-\mathrm{C} 24-\mathrm{C} 25-\mathrm{C} 26$	$-2.0(5)$
$\mathrm{C} 24-\mathrm{C} 25-\mathrm{C} 26-\mathrm{C} 27$	$0.9(6)$
$\mathrm{C} 25-\mathrm{C} 26-\mathrm{C} 27-\mathrm{C} 28$	$0.7(6)$
$\mathrm{N} 2-\mathrm{C} 23-\mathrm{C} 28-\mathrm{C} 29$	$0.2(4)$
$\mathrm{C} 24-\mathrm{C} 23-\mathrm{C} 28-\mathrm{C} 29$	$179.7(3)$

$\mathrm{C} 41-\mathrm{C} 42-\mathrm{C} 43-\mathrm{C} 44$	$179.2(4)$
$\mathrm{C} 42-\mathrm{C} 43-\mathrm{C} 44-\mathrm{C} 45$	$-178.5(5)$
$\mathrm{C} 48-\mathrm{C} 43-\mathrm{C} 44-\mathrm{C} 45$	$1.4(7)$
$\mathrm{C} 43-\mathrm{C} 44-\mathrm{C} 45-\mathrm{C} 46$	$0.0(9)$
$\mathrm{C} 44-\mathrm{C} 45-\mathrm{C} 46-\mathrm{C} 47$	$-3.1(9)$
$\mathrm{C} 45-\mathrm{C} 46-\mathrm{C} 47-\mathrm{C} 48$	$4.7(8)$
$\mathrm{C} 46-\mathrm{C} 47-\mathrm{C} 48-\mathrm{N} 3$	$177.2(4)$
$\mathrm{C} 46-\mathrm{C} 47-\mathrm{C} 48-\mathrm{C} 43$	$-3.2(6)$
$\mathrm{C} 42-\mathrm{C} 43-\mathrm{C} 48-\mathrm{N} 3$	$-0.3(6)$
$\mathrm{C} 44-\mathrm{C} 43-\mathrm{C} 48-\mathrm{N} 3$	$179.8(4)$
$\mathrm{C} 42-\mathrm{C} 43-\mathrm{C} 48-\mathrm{C} 47$	$-180.0(4)$
$\mathrm{C} 44-\mathrm{C} 43-\mathrm{C} 48-\mathrm{C} 47$	$0.2(6)$
$\mathrm{C} 21-\mathrm{C} 22-\mathrm{N} 1-\mathrm{C} 10$	$-180.0(3)$
$\mathrm{C} 17-\mathrm{C} 22-\mathrm{N} 1-\mathrm{C} 10$	$-0.7(5)$
$\mathrm{C} 11-\mathrm{C} 10-\mathrm{N} 1-\mathrm{C} 22$	$-178.6(3)$
$\mathrm{C} 15-\mathrm{C} 10-\mathrm{N} 1-\mathrm{C} 22$	$2.0(5)$
$\mathrm{C} 34-\mathrm{C} 35-\mathrm{N} 2-\mathrm{C} 23$	$-179.7(3)$
$\mathrm{C} 30-\mathrm{C} 35-\mathrm{N} 2-\mathrm{C} 23$	$1.0(4)$
$\mathrm{C} 28-\mathrm{C} 23-\mathrm{N} 2-\mathrm{C} 35$	$-1.0(4)$
$\mathrm{C} 24-\mathrm{C} 23-\mathrm{N} 2-\mathrm{C} 35$	$179.5(3)$
$\mathrm{C} 37-\mathrm{C} 36-\mathrm{N} 3-\mathrm{C} 48$	$178.0(4)$
$\mathrm{C} 41-\mathrm{C} 36-\mathrm{N} 3-\mathrm{C} 48$	$-3.3(5)$
$\mathrm{C} 47-\mathrm{C} 48-\mathrm{N} 3-\mathrm{C} 36$	$-178.1(3)$
$\mathrm{C} 43-\mathrm{C} 48-\mathrm{N} 3-\mathrm{C} 36$	$2.2(5)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	D - H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{~N} 1$	1.03 (4)	1.62 (4)	2.643 (4)	173 (4)
$\mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{~N} 2$	1.08 (6)	1.55 (6)	2.619 (4)	166 (5)
O5-H5 \cdots N	1.10 (5)	1.57 (5)	2.659 (4)	171 (6)
C14-H14 $\cdots \mathrm{O}^{\text {i }}$	0.93	2.44	3.266 (5)	147
C16-H16 ${ }^{\text {O }} 6^{\text {i }}$	0.93	2.55	3.355 (5)	145
C18-H18 $\cdots \mathrm{O} 2{ }^{\text {ii }}$	0.93	2.54	3.389 (5)	151
$\mathrm{C} 24-\mathrm{H} 24 \cdots \mathrm{O} 5^{\text {iii }}$	0.93	2.53	3.278 (5)	138
$\mathrm{C} 27-\mathrm{H} 27 \cdots \mathrm{O} 4^{\text {iv }}$	0.93	2.59	3.435 (5)	151
$\mathrm{C} 47-\mathrm{H} 47 \cdots \mathrm{O} 3^{\text {iii }}$	0.93	2.56	3.345 (5)	143

Symmetry codes: (i) $x+1, y, z-1$; (ii) $-x+1,-y,-z-1$; (iii) $-x,-y,-z$; (iv) $-x-1,-y+1,-z$.

Fig. 1

Fig. 2

