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1. Introduction

Approximate analytical and numerical methods are widely used to solve linear and

nonlinear problems. Recently, a new perturbation method has been proposed by

He.1,2 This technique does not require a small parameter in an equation, in fact a

coupling of the traditional perturbation method and homotopy as used in topol-

ogy called homotopy perturbation method (HPM).3 The HPM is used by scientists

for solving several applied problems, because the main purpose of this method is

that the continuously deforms a difficult problem into a simple one. He applied this

method in several of his papers to discuss nonlinear boundary value problem4 as

well as nonlinear problems on bifurcation,5 wave equation6 and oscillator with dis-

continuities.7 Because of the success of the HPM, Abbasbandy8 used it for Laplace

transforms, Siddiqui et al.,14–16 applied it to study some mechanics and physics

problems, Ganji et al.13,17,22 used HPM for solving some physics and applied math-

ematical problems, Ghorbani and Saberi-Nadjafi.11 applied it to calculate the Ado-

mian polynomials, and Li and Liu23 used HPM for some dynamical systems. Also,

Abbasbandy has used this method for solving linear Fredholm integral equations.9

In this paper, we propose a modified homotopy perturbation method (MHPM) for

solving integral equations with easier way than HPM, which we believed.
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Now, we consider the Fredholm integral equation of the second kind

u(x) = g(x) + λ

∫ b

a

k(x, t)u(t)dt . (1)

To remind the HPM, we suppose:

L(u) = u(x)− g(x)− λ

∫ b

a

k(x, t)u(t)dt . (2)

With solution f(x), we can select the convex homotopy by the following equation:

H(u, 0) = F (u) , H(u, 1) = L(u) ,

where F (u) is a functional operator with known solution v0, which can be obtained

easily. We choose convex homotopy by

H(u, p) = (1 − p)F (u) + pL(u) = 0 , 0 ≤ p ≤ 1 (3)

and continuously trace an implicitly defined curve from a starting point H(v0, 0) to

the solution function H(f, 1). The embedding parameter P monotonically increases

from zero to unit as a trivial problem. F (u) = 0 is continuously deformed to the

original problem L(u) = 0. The embedding parameter p ∈ [0, 1] is considered as an

expanding parameter.1

Now, the HPM uses the homotopy parameter as an expanding parameter24 to

obtain

u = v0 + pv1 + p2v2 + p3v3 + · · · . (4)

We substitute (4) into (3) and then by letting p → 1, the approximate solution of

(5), yields,

f = lim
p→1

u = v0 + v1 + v2 + · · · . (5)

The series (5) is convergent for most of the cases, and also the rate of convergence

depends upon L(u).1

2. Modified Homtopy Perturbation Method

We consider the following Fredholm integral equation of the second kind:

u(x) = g(x) + λ

∫ b

a

k(x, t)u(t)dt , a ≤ x ≤ b , (6)

and we let

g(x) = g1(x) + g2(x) . (7)

We define a convex homotopy by H(u, p) = (1−p)F (u)+pL(u), and we let F (u) =

u(x) − g1(x). Next we set it into Eq. (3) to get the solution. Now we solve several

examples with MPHM and then we compare the result with HPM.

Example 1. Let us consider a Fredholm integral equation as follows:

u(x) = e3x −
1

9
(2e3 + 1)x+

∫ 1

0

xtu(t)dt .
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This example is solved in Ref. 2 by the following way using HPM

H(u, p) = u(x)− g(x)− pλ

∫ 1

0

k(x, t)u(t)dt = 0 . (8)

Substituting (4) in (8), and equating the terms with identical powers of p, we have

p0 : v0(x) = g(x) ⇒ v0(x) = e3x −
1

9
(2e3 + 1)x ,

p1 : v1(x)− λ

∫ 1

0

k(x, t)v0(t)dt = 0 ⇒ v1(x) =

[

1

9
+

1

27
(4e3 − 1)

]

x ,

p2 : v2(x)− λ

∫ 1

0

k(x, t)v1(t)dt = 0 ⇒ v2(x) =
1

3

[

1

9
+

1

27
(4e3 − 1)

]

x ,

p3 : v3(x)− λ

∫ 1

0

k(x, t)v2(t)dt = 0 ⇒ v3(x) =
1

32

[

1

9
+

1

27
(4e3 − 1)

]

x ,

p4 : v4(x)− λ

∫ 1

0

k(x, t)v3(t)dt = 0 ⇒ v1(x) =
1

33

[

1

9
+

1

27
(4e3 − 1)

]

x ,

therefore, the approximate solution of this example can be readily obtained by

f(x) =

∞
∑

n=0

vn(x) = e3x −
1

9
(2e3 + 1)x+

[

1

9
+

1

27
(4e3 − 1)

]

x

×

{

1 +
1

3
+

1

9
+

1

27
+ · · ·

}

,

hence, f(x) = e3x, which is the same as the exact solution.

Now, we solve this example by MHPM, we let g1(x) = e3x and g2(x) =

−(1/9)(2e3 + 1)x, and we use Eq. (3) by letting

F (u) = u(x)− g(x) ,

we obtain

p0 : v0(x) = g(x) ⇒ v0(x) = e3x ,

p1 : v1(x) − λ

∫ 1

0

k(x, t)v0(t)dt = 0 ⇒ v1(x) = 0 ,

thus, vi(x) = 0 for all i ≥ 1, and

f(x) =

∞
∑

n=0

vn(x) = e3x ,

which is the same as the exact solution. One can easily see that the MHPM has

solved this example easier than the HPM.
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Example 2. Consider

u(x) = xex − x+

∫ 1

0

xu(t)dt .

Let us solve this example by HPM to get

p0 : v0(x) = g(x) ⇒ v0(x) = xex − x ,

p1 : v1(x) − λ

∫ 1

0

k(x, t)v0(t)dt = 0 ⇒ v1(x) =
x

2
,

p2 : v2(x) − λ

∫ 1

0

k(x, t)v1(t)dt = 0 ⇒ v2(x) =
x

4
,

p3 : v3(x) − λ

∫ 1

0

k(x, t)v2(t)dt = 0 ⇒ v3(x) =
x

8
,

p4 : v4(x) − λ

∫ 1

0

k(x, t)v3(t)dt = 0 ⇒ v1(x) =
x

16
,

therefore,

f(x) =

∞
∑

n=0

vn(x) = xex − x+ x

{

1 +
1

2
+

1

4
+

1

8
+ · · ·

}

x ,

thus, f(x) = xex. This solution is the same as the exact solution.

Now, we use the MHPM to solve this example by letting

g1(x) = xex and g2(x) = −x ,

in order to obtain

p0 : v0(x) = g(x) ⇒ v0(x) = xex ,

p1 : v1(x)− λ

∫ 1

0

k(x, t)v0(t)dt = 0 ⇒ v1(x) = 0 .

Hence,

f(x) =

∞
∑

n=0

vn(x) = xex ,

which is the exact solution.

The Voletrra integral equations can be solved similarly. We illustrate this by

the following example.

Example 3. We consider the following Voletrra integral equation of the second

kind:

u(x) = cosx+ (1 − esinx)x+ x

∫ x

0

esin tu(t)dt .



January 6, 2011 16:18 WSPC/140-IJMPB S0217979210056189

Modified HPM and Integral Equations 4745

To apply MHPM, we let g1(x) = cosx and g2(x) = (1 − esinx)x, and we set

F (u) = u(x)− g1(x) into (3) to get

p0 : v0(x) = g(x) ⇒ v0(x) = cosx ,

p1 : v1(x)− λ

∫ x

0

k(x, t)v0(t)dt = 0 ⇒ v1(x) = 0 .

As a result, vi(x) = 0 ∀i ≥ 1.

The solution is as follows:

f(x) =

∞
∑

n=0

vn(x) = cosx .

The solution which we obtained by the MHPM is the same as the solution which is

given in Ref. 10. We note that if we solve the integral equation given in Example 3

by HPM, we end up with a tedious calculation.

Remark. Selecting a suitable value for g1(x) results in fast convergent and perfect

accuracy. Therefore we suggest that g1(x) be selected as a monomial with lowest

degree and g2(x) be selected as the rest of the terms. In case we are dealing with

functions which are not polynomial, we use the McLaren expansion of the terms

for this purpose.

Example 4. We consider a nonlinear Voletrra integral equation as follows:

u(x) = −
1

4
sin 2x+ cosx−

1

2
x+

∫ x

0

u2(t)dt .

We use MHPM for solving this example, and we let g1(x) = cosx, g2(x) =

−(1/4) sinx − (1/2)x and we set F (u) = u(x) − g1(x). Putting these into (3),

we obtain

p0 : v0(x) = g1(x) ⇒ v0(x) = cosx ,

p1 : v1(x) − g2(x)−

∫ x

0

u2(t)dt = 0 ⇒ v2(x) = 0 .

Therefore, vi(x) = 0 ∀i ≥ 1. The solution is as follows:

f(x) =

∞
∑

n=0

vn(x) = cosx .

The obtained solution is the same as the solution which is given in Ref. 10.

3. Conclusion

In this article, we propose MHPM and use it for solving nonsingular Fredholm and

Volterra integral equations of the second kind. Moreover, comparison was made

with HPM. In conclusion, it has been shown that MHPM converges faster than

HPM.
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