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Abstract-Human sleep is divided into two segments, Rapid 

Eye Movement (REM) sleep and Non-REM (NREM) sleep. 

NREM sleep is further divided into 4 stages. Sleep staging 

attempts to identify these stages based on the signals collected 

in PSG. Significant information can be derived from the EEG 

signals collected during PSG. Wavelet coefficients are extracted 

from EEG signals. In order to reduce the amount of data set, 

the statistical features are calculated from wavelet coefficients. 

For performing decision making, six ANFIS classifiers and 

SVM classifier are used to differentiate between REM and 

Non-REM sleep stages. That is to say, pattern varies under the 

different sleep stages. Therefore, healthy humans with a 

regular night's sleep will follow these sleep stages in a 

particular pattern. 

I. INTRODUCTION 

S
leep staging, perfonned in a test called polysomnogram 
(PSG), is a common and important procedure for the 

diagnosis of sleep disorders. PSG studies a series of 
biomedical signals ranging from heart beat, blood oxygen 
concentration, muscle movements, to brain activity. The 
most important signal and also the most difficult to analyze 
is the electroencephalogram (EEG), which shows the brain's 
activities [1, 2]. 

Currently, trained technicians manually analyze the 
relevant biomedical signals to generate a sleep stage 
classification for every 30 seconds of data, called an epoch. 
While various algorithms have been implemented to provide 
additional infonnation on each epoch of data, such as 
frequency content and peak-to-peak voltage, no algorithm 
have been commercially used for computerized sleep 
staging. This automation would drastically reduce the 
amount of manual tasks, thereby making the process more 
reliable and cost efficient. 

Much research has been dedicated to PSG interpretation. 
In particular, many studies focus on the analysis of EEG 
signals. Human analysis follow a set of rules defmed in a 
manual by Rechtschaffen and Kales[3].These rules define 

Manuscript received February 7, 2010. 
Maryam.Vatankhah is with the Islamic Azad University, Mashhad 

Branch,ungyo researcher club members,(vatankhahrnaryam@ gmail.com). 
Mohamrnad-R. Akbarzadeh-T. is with the Center for Applied Research 

on Intelligent Systems and Soft Computing, Departments of Electrical 
Engineering and Computer Engineering, Ferdowsi University of Mashhad, 
(akbarzadeh@ieee.org). 

Ali Moghimi is with the Dept. of Biology, Faculty of Sciences, Ferdowsi 
University of Mashhad (FUM), Iran (moghimi@um.ac.ir). 

978-1-4244-8126-2/101$26.00 ©2010 IEEE 

frequency, amplitude, and contextual parameters. Therefore, 
EEG analysis algorithms must take into consideration both 
the time and the frequency domain infonnation. One method 
suggested in research is using a time-frequency 
representation called spectrogram. 

Time frequency representation of EEG has been used in 
numerous researches as a tool to understand EEG's 
behavior. Nayak[4]used time-frequency analysis to 
demonstrate alpha blocking by anesthesia. Van Hese[5] used 
scalograms to analyze the practicality of using wavelet 
analysis for sleep staging. Scheuer[ 6]used spectrograms to 
demonstrate certain transient activities that can predict 
epileptic attacks. In a review on spectral analysis of 
biomedical signals, Muthuswamy[7] indicated wavelet 
analysis as being one of the most useful utility. 

In this study, wavelet coefficients are extracted from each 
EEG segment, and in order to reduce the feature space, 
statistical features are extracted from wavelet coefficients. 6 
ANFIS classifiers and SVM are used to differentiate different sleep 
stages. 

II. DATA COLLECTION 

A. Sleeping staging 

Human sleep is divided into two segments, Rapid Eye 
Movement (REM) sleep and Non-REM (NREM) sleep. 
REM sleep is best characterized by the occurrence of 
dreams. During REM sleep, the person receives 
psychological rest and the brain actively reorganizes itself 
into a better state. NREM sleep provides the person with 
physiological rest and the brain's activities slow down. 
NREM sleep is further divided into 4 stages I, II, III, and 
IV[8]. Therefore, common practice recognizes 5 sleep 
stages. Healthy humans with a regular night's sleep will 
follow these sleep stages in a particular pattern. 
Traditionally, to complete the set of stages, Awake and 
Movement Time (MT - Movement Time represents the 
periods of time when the PSG signals are obscured by body 
movement) are added[9]. 

Sleep staging attempts to identify these stages based on the 
signals collected in PSG. Significant infonnation can be 
derived from the EEG signals collected during PSG[8]. EEG 
analysis looks primarily at the 6 key features, which are 
listed along with their characteristics below. 



Table I: Frequency, amplitude, temporal characteristic of EEG 
features 

feature frequency amplitude temporal 
Alpha 8-13 HZ 20-60 IlV Present in 

Activity awake,stage I and 
REM 

Beta 13+ HZ 2-20 IlV Dominant in 
Activity awake 

Theta 4-8 HZ 50-75 IlV Present in stage 
Activity I,Il,1ll and IV 

Delta 0-4 HZ 75+llv Present in stage III 
Activity and IV 

Sleep 12-14 HZ Present in stage II 
spindels 

B. Data 

This paper is based on a set of 8 hour sleep study data 
provided by the PhysioBank (physiologic signal archives for 
biomedical research). The PhysioBank stores the sleep study 
data in the European Data Format (EDF). The recordings 
were obtained from Caucasian males and females (21 - 35 
years old) without any medication; they contain horizontal 
EOG, FpzCz and PzOz EEG, each sampled at 100 Hz. 
Hypnograms are manually scored according to 
Rechtschaffen & Kales based on Fpz-Cz / Pz-Oz EEG 
instead of C4-AI / C3-A2 EEG [10]. 
After filtering the signals from 0.5 to 100 HZ, two dataset 
with 10 hour sleep records are used. Each of this data set 
contains 1200 epoch which evaluate with an expert. Table 2 
shows the number of epoch in two stages. Each set of 
epochs are stored in Matlab data files. 

f Table 2: The number 0 epochs In each stage 
Sc4012eO Sc4002eO Data set/stal!e 
176 255 Awake 

92 59 I 
660 373 II 
80 94 III 
16 203 IV 
176 215 REM 
0 I MT 

III. METHODS 

Decision making contains two stages: feature extraction and 
classification. wavelet coefficients are the extracted features 
(20 extracted features as ANFIS inputs). The ANFIS 
classifiers with the backpropagation gradient descent 
method in combination with the least squares method for 
differentiating 6 levels of sleep and SVM with RBF kernel 
for classifying REM and Non-REM levels are used. Six 
stages of the dataset are used here. 

A. Wavelet 

The WT is an extension form of classic Fourier transform, 
except that it works on both time and frequency scales. 
The multi-scale characteristic of the WT allows the signal 
decomposition into a different number of scales, in which 

each scale represents a special structure of the signal under 
study. The multiresolution decomposition procedure of a 
signal x[n] s shown in Fig 1. This is called the Mal\at 
algorithm or Mallat-tree decomposition[II]. 

XIn] 

Fig 1. The wavelet decomposition tree[ll] 

The low pass filter is indicated by G and the high pass filter 
is indicated by H. At each level, the Righ pass filter produces 
detail information; d[n], while the low pass filter associated 
with scaling function produces coarse approximations, a[n]. 
With this approach, the time resolution at high frequencies 
becomes arbitrarily good and the frequency resolution 
becomes good at low frequencies. [12-14] 

B. The SVM classifier 

Support Vector Machines (SVM) are basically binary 
classification algorithms [IS]. When the data are linearly 
separable, SVM computes the hyper plane that maximizes 
the margin between the training examples and the class 
boundary. When the data are not linearly separable, the 
examples are mapped to a high dimensional space where 
such a separating hyperplane can be found. The mechanism 
that defines this mapping process is called the kernel 
function. SVM are powerful classifiers with good 
performance in the domain of EEG signals[16, 17]. 

One of the key elements of a SVM classifier concerns the 
choice of its kernel. In our study, we have chosen to use the 
RBF kernel. We also experimented with Gaussian, MLP and 
polynomial kernels. For polynomial kernels, the main 
difficulty is to determine an appropriate polynomial degree 
while the results we obtained with the Gaussian kernels are 
not satisfactory. 

C. Adaptive Neuro-Fuzzy System 

ANFIS is a fuzzy Sugeno model put in the framework of 
adaptive systems to facilitate learning and adaptation [18, 
19]. Such framework makes ANFIS modeling more 
systematic and less reliant on expert knowledge. ANFIS 
architecture to implement these two rules is shown in Fig. 2, 
in which a circle indicates a fixed node, whereas a square 
indicates an adaptive node. 

x 

y 



Fig 2. ANFIS architecture 

In the first layer, all the nodes are adaptive nodes. The 
outputs of layer 1 are the fuzzy membership grade of the 
inputs, which are given by: 

(1) 

Where pA; (x) and J.1l3;-2 (x) can adopt any fuzzy 

membership function. In the second layer, the nodes are 
fixed nodes. They are labeled with M, indicating that they 
perform as a simple multiplier. The outputs of this layer can 
be represented as: 

0; = Wi = pA;(X)J.1l3i(Y) (2) 

Which are the so-called firing strengths of the rules. In the 
third layer, the nodes are also fixed nodes. They are labeled 
with N, indicating that they play a normalization role to the 
firing strengths from the previous layer. The outputs of this 
layer can be represented as 

3 _ WI (3) 
0; = w; = 

WI +W2 
Which are the so-called normalized firing strengths. In the 
fourth layer, the nodes are adaptive nodes. The output of 
each node in this layer is simply the product of the 
normalized firing strength and a first order polynomial (for a 
first order Sugeno model). Thus, the outputs of this layer are 
given by 

0: =wJ; = w;(p;x+q;y+rJ (4) 

In the fifth layer, there is only one single fixed node labeled 
with S. This node performs the summation of all incoming 
signals. Hence, the overall output of the model is given by 

(5) 

It can be observed that there are two adaptive layers in this 
ANFIS architecture, namely the first layer and the fourth 
layer. In the first layer, there are three modifiable parameters 
{ai, bi, ci }, which are related to the input membership 
functions. These parameters are the so-called premise 
parameters. In the fourth layer, there are also three 
modifiable parameters {Pi, qi, ri }, pertaining to the first 
order polynomial. These parameters are so-called 
consequent parameters [19]. 

The task of the learning algorithm for this architecture is to 
tune all the modifiable parameters, namely {ai, bi, ci } and 
{Pi, qi, ri }, to make the ANFIS output match the training 
data. When the premise parameters ai , bi , and ci of the 

membership function are fixed, the output of the ANFIS 
model can be written as 

(6) 

Substituting Eq. (11) into Eq. (14) yields 

(7) 

Substituting the fuzzy if-then rules into Eq. (16), it becomes 

After rearrangement, the output can be expressed as 

f = (WIX)PI + (wly)ql + (wl)rl + (W2X)P2 + (9) 

(W2y)q2 + (w2)r2 

This is a linear combination of the modifiable consequent 
parameters pI, ql, rI, p2, q2, and r2. The least squares 
method can be used to identify the optimal values of these 
parameters easily. When the premise parameters are not 
fixed, the search space becomes larger and the convergence 
of the training becomes slower. A hybrid algorithm 
combining the least squares method and the gradient descent 
method is adopted to solve this problem. The hybrid 
algorithm is composed of a forward pass and a backward 
pass. The least squares method (forward pass) is used to 
optimize the consequent parameters with the premise 
parameters fixed. Once the optimal consequent parameters 
are found, the backward pass starts immediately. The 
gradient descent method (backward pass) is used to adjust 
optimally the premise parameters corresponding to the fuzzy 
sets in the input domain. The output of the ANFIS is 
calculated by employing the consequent parameters found in 
the forward pass. The output error is used to adapt the 
premise parameters by means of a standard back 
propagation algorithm. It has been proven that this hybrid 
algorithm is highly efficient in training the ANFIS [18-20]. 

IV. RESULTS 

One of the most important notices in analyzing signals using 
WT is appropriate wavelet and the number of decomposition 
levels. According to signal dominant frequency Component, 
the number of decomposition levels is considered. The 
levels are chosen based on the different frequencies of EEG 
signal required for classification[14]. 



In this study, EEG 4 decomposition levels are considered. 
Thus, the EEG signals were decomposed into the details 
DI-D4 and one approximation, A4. 
In order to find the best wavelet, different types of those are 
tested. B-Spline is suitable for detecting EEG changes. 
Therefore in this study, the wavelet coefficients are 
computed using B-Spline. MA TLAB software package is 
used for computing wavelet coefficients. 
Using computed wavelet coefficients shows a good 
representation of the signal Time and frequency energy 
distribution. Therefore, the computed wavelet coefficients of 
EEG signals are used as the feature vectors. The EEG signal 
considered to be stationary using a rectangular window. 
Wavelet coefficients are computed for each EEG segment. 
These Computations for each segment and each subject, led 
to a large feature space. In order to reduce the feature space 
dimensionality, statistical methods are used over the wavelet 
coefficients of the each subject[11]. 
In order to cover the special characteristic of EEG signal, 
following statistical features are used. 

(1) Maximum of the wavelet coefficients in each subband. 
(2) Minimum of the wavelet coefficients in each subband. 
(3) Mean of the wavelet coefficients in each subband. 
(4) Standard deviation of the wavelet coefficients in each 
subband. 
The six ANFIS classifiers were trained with the 
backpropagation gradient descent method in combination 
with the least squares method when 24 features (dimension 
of the extracted feature vectors) representing the EEG 
signals were used as inputs. To improve classification 
accuracy, the SVM classifier was trained using the outputs 
of the six ANFIS classifiers as input data 
The EEG signals have different subbands with special 
information. Separating and sorting the EEG structure is one 
purpose of wavelet analysis. 
Each sleep stage of the EEG signals with 4 statistical 
features (24 features) was used as the 6 ANFIS classifiers 
inputs. 
Confusion matrix is used to display the classification results 
(Table 3). In a confusion matrix, each cell contains the raw 
number of exemplars classified for the corresponding 
combination of desired and actual network outputs. 
In this study 10 times cross validation is used and the data 
set is separated into two sets with 75% and 25% parts. The 
training dataset with 75% of the total data is used to train the 
ANFIS model, whereas the testing data set was used to 
verify the accuracy and the effectiveness of the trained 
ANFIS model for classification of the classes of EEG 
signals. 

Table 3 Confusion matrix 

Awake I II III IV REM 
Awake 250 5 0 0 0 0 
I 7 51 1 0 0 0 
II 0 0 369 3 1 0 
III 0 0 6 88 0 0 

I� I� I� I !
98 

1
5 

According to the confusion matrix, seven EEG segments 
from awake stage were classified incorrectly by the ANFIS 
model as segments from stage I. Five segments from stage I 
were classified as segments from awake stage. one segments 
from stage II was classified as segments from stage I. three 
segment from stage III were classified as a segment from 
stage II. One segment from stage IV was classified as 
segments from stage II and nine segments from REM stage. 
Five segments from REM stage were classified as segments 
from IV stage. 
As mentioned before, human's sleep is divided into two 
segments, Rapid Eye Movement (REM) sleep and Non­
REM (NREM) sleep. To differentiate between REM and 
NREM stages, SVM with RBF kernel is used. To classify 
REM and Non-REM stages, the 6 ANFIS outputs are used 
as SVM inputs and the SVM output shows the accuracy rate. 

The classification rate between REM and Non-REM is 
98%. using SVM. 

V. CONCLUSION 

Wavelet coefficients differentiate Awake and REM states 
based on the sleep staging manual's feature mixed 
frequency. Wavelet coefficients are shown to be the best in 
terms of performance dealing with Awake from REM 
differentiation, with 98% which is much better than reported 
in [21]. Also, ANFIS has a good performance in 
differentiating 6 sleep stages from adjacent stages. 

In our study, statistical features improved classification 
rate and reducing the computational load as a necessary 
component. Summarily, through the feature space 
constructed by WT, different stages of EEG signals can be 
recognized from each other expressly. That is to say, pattern 
varies under the different sleep stages. Therefore healthy 
humans with a regular night's sleep will follow these sleep 
stages in a particular pattern. 
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