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Abstract- The Vehicle Routing Problem (VRP) is an NP-hard 
combinatorial optimization problem, seeking to serve a number of 
customers with a fleet of available vehicles. VRP is an important 
optimization problem in the field of transportation, distribution 
and logistics. To date, several exact and approximate approaches 
have been proposed to solve VRP. Here, we apply a population 
based algorithm to VRP by imitating the natural flow of water 
drops. The "Intelligent Water Drops" or IWD algorithm solves 
the VRP by modeling how water drops collectively modify their 
environment by picking up dirt from river bottoms during 
moving downhill and leaving sediments (such as on beaches) when 
slowing down. The computational results for fourteen benchmark 
VRP problems are reported and compared to several other meta­
heuristic approaches. 

I. INTRODUCTION 

Finding efficient vehicle routes is an important logistics 
problem which has been studied for several decades. When a 
firm is able to reduce the length of its delivery routes or is able 
to decrease its number of vehicles, it is able to provide better 
service to its customers, operate in a more efficient manner and 
possibly increase its market share. A typical vehicle routing 
problem includes simultaneously determining the routes for 
several vehicles from a central supply depot to a number of 
customers and returning to the depot without exceeding the 
capacity constraints of each vehicle. This problem is of 
economic importance to businesses because of the time and 
costs associated with providing a fleet of delivery vehicles to 
transport products to a set of geographically dispersed 
customers. Additionally, such problems are also significant in 
the public sector where vehicle routes must be determined for 
bus systems, postal carriers, and other public service vehicles. 
In each of the above instances, the problem typically involves 
finding the minimum cost of the combined routes for a number 
of vehicles in order to facilitate delivery from a supply location 
to a number of customer locations. Since cost is closely 
associated with distance, a company might attempt to fmd the 
minimum distance traveled by a number of vehicles in order to 
satisfy its customer demand. In doing so, the firm attempts to 
minimize costs while increasing or at least maintaining an 
expected level of customer service. The process of selecting 
vehicle routes allows the selection of any combination of 
customers in determining the delivery route for each vehicle. 
Therefore, the vehicle routing problem is a combinatorial 
optimization problem where the number of feasible solutions 
for the problem increases exponentially with the number of 
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customers to be served. In addition, the vehicle routing 
problem is closely related to the traveling salesman problem 
where an out and back tour from a central location is 
determined for each vehicle. Since there is no known 
polynomial algorithm that will fmd the optimal solution in 
every instance, the vehicle routing problem is considered NP­
hard. For such problems, the use of heuristics is considered a 
reasonable approach in finding solutions. 
Heuristic algorithms such as simulated annealing (SA) 
[1,2,3,4], genetic algorithms (GAs) [5,6], tabu search (TS) 
[7,8] and ant colony optimization [9,10,11,12,13] are widely 
used for solving the VRP. 

Recently, the new meta-heuristic algorithm "Intelligent Water 
Drops," has been introduced in the literature and used for 
solving the traveling salesman problem (TSP) and multiple 
knapsack problem [14,15].This paper tries to solve the VRP 

using an IWD-based algorithm. The IWD algorithm is a 
population-based optimization algorithm that uses the 
constructive approach to fmd the optimal solution( s) of a given 
problem. Its ideas are based on the water drops that flow in 
nature such that each water drop constructs a solution by 
traversing in the search space of the problem and modifying its 
environment. 

II. VEHICLE ROUTING PROBLEM 

The vehicle routing problem has been an important problem in 
the field of distribution and logistics since at least the early 
1960s [16]. It is described as finding the minimum distance or 
cost of the combined routes of a number of vehicles m that 
must service a number of customers n. Mathematically, this 
system is described as a weighted graph G =(V, A, d) where the 
vertices are represented by V={vo,vj,.,vn}, and the arcs are 
represented by A={(v;, v): #j}. A central depot where each 
vehicle starts its route is located at Vo and each of the other 
vertices represents the n customers. The distances associated 
with each arc are represented by the variable dij which is 
measured using Euclidean computations. Each customer is 
assigned a non-negative demand q;, and each vehicle is given a 
capacity constraint, Q. The problem is solved under the 
following constraints. 

• Each customer is visited only once by a single 
vehicle. 
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• Each vehicle must start and end its route at the depot, 

Vo· 
• Total demand serviced by each vehicle can't exceed 

Q. 

III. INTELLIGENT WATER DROPS 

The IWD [14] have been designed to imitate the prominent 
properties of the natural water drops that flow in the beds of 
rivers. Each IWD is assumed to have an amount of the soil it 
carries, soil{lWD), and its current velocity, velocity{lWD). 
The environment in which IWDs are moving is assumed to be 
discrete. This environment may be considered to be composed 
of Nc nodes and each IWD needs to move from one node to 
another. Every two nodes are linked by an arc which holds an 
amount of soil. Based on the activities of the IWDs flowing in 
the environment, the soil of each arc may be increased or 
decreased. 
Consider an IWD is in the node i and wants to move to the next 
node j. The amount of the soil on the arc between these two 
nodes, represented by soil(i, j), is used for updating the 
velocity vefWD(t) of the IWD by: 

Where vefWD (t + 1) represents the updated velocity of the IWD 
at the next node j. Moreover, av, bv, and Cv are some constant 
velocity parameters that are set for the given problem. 
Consider that a local heuristic function RUD(.,.) has been 
defined for a given problem to measure the undesirability of an 
IWD to move from one node to another . The time taken for an 
IWD having the velocity velIWD(t + 1) to move from the 
current node i to its next node j, denoted by time(i, j; 
vefWD (t+ 1)), is calculated by: 

• ( . .  [IUTD) HUD(i,j') tzme z r ve ", = ---.....;...;.-=::::=--, , 
max(e, vefWD) (2) 

The constant parameter e is a small positive value. Here, e = 

0.001. The function HUD(i, j) denotes the heuristic 
undesirability of moving from node i to node j. 
For the VRP, the form of the RUD(i, j) denoted by HUDVRP(i, 
j) has been suggested as follows: 

HUD(i,j) = HUDVRP(i,j) = Ilc(i)- C(j)11 (3) 

Where c(k) represents the two dimensional positional vector 
for the city k. The function II . II calculates the Euclidean norm. 
As a result, when two nodes (cities) i and j are near to each 
other, the heuristic undesirability measure RUD(i, j) becomes 
small which reduces the time taken for the IWD to pass from 
city i to city j. 

As an IWD moves from the current node i to its next node j, it 
removes an amount of soil from the path (arc) joining the two 
nodes. The amount of the soil being removed depends on the 
velocity of the moving IWD. For the VRP, the amount of the 
soil taken from the path is related with the inverse of the time 
that the IWD needs to pass the arc or path between the two 
nodes. So, a fast IWD removes more soil from the path it flows 
on than a slower IWD. This mechanism is an imitation of what 
happens in the natural rivers. Fast rivers can make their beds 
deeper because they remove more soil from their beds in a 
shorter time while slow flowing rivers lack such strong soil 
movements. Moreover, even in a single river, parts of the river 
that water drops flow faster often has deeper beds than the 
slower parts. 
For the VRP, the amount of the soil that the IWD removes 
from its current path from node i to node j is calculated by: 

Moil(i,j) = as (4) 
b + C Jime(i j" vefWD) s s , , 

where �soil(i, j) is the soil which the IWD with velocity velIWD 

removes from the path between node i and j. The lis, b., and c. 
are constant velocity parameters that their values depend on the 
given problem. The value time(i, j; velIWD) was defined in 
equation (2) and represents the time taken for the IWD to flow 
from i toj. 
After an IWD moves from node i to node j, the soil(i, j) on the 
path between the two nodes is reduced by: 

soil(i,j) = Po.soil(i,j)- Pn.&oil(i,j) (5) 

Where Po and Pn are positive numbers that should be chosen 
between zero and one. In the original algorithm for the TSP 

[14], Po = 1- Pn' 
The IWD that has moved from node i to j, increases the soil 
soifwD it carries by: 

soifWD = soifwD + &oil (i, j) (6) 

Where Asoil(i,j) is obtained from equation (4). Therefore, the 
movement of an IWD between two nodes reduces the soil on 
the path between the two nodes and increases the soil of the 
moving IWD. 
One important mechanism that each IWD must contain is to 
how to select its next node. An IWD prefers a path that 
contains less amount of soil rather than the other paths. This 
preference is implemented by assigning a probability to each 
path from the current node to all valid nodes which do not 
violate constraints of the given problem. Let an IWD be at the 
node i, then the probability p/WD (j) of going from node i to 
node j is calculated by: 
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IWD( .) _ f(soil(i,j)) 
p } - =----=�-��--I LkEVC(IWD)f(soil(i,k)) 

(7) 

Such that f(soil(i,j)), computes the inverse of the soil 

between node i andj. specifically: 

f(soil(i,j)) = 1 
Cs + g(soil(i,j)) 

(8) 

The constant parameter Bs is a small positive number to prevent 
a possible division by zero in the function f(.). It is suggested 
to use Bs= 0.01. g(soil(i, j)) is used to shift the soil(i, j) on the 
path joining nodes i and j toward positive values and is 
computed by: 

{SOil(i,j) if min (soil(i, I)) � 0 lEvc(IWD) 
g(soil(i,j))= soil(i,j)- min (soil(i,l)) else lEvc(IWD) 

(9) 

The function min(.) returns the mInImum value of its 
arguments. The set vc(IWD) denotes the nodes that the IWD 
should not visit to keep satisfied the constraints of the problem. 
Every IWD that has been created in the algorithm moves from 
its initial node to next nodes till it completes its solution. For 
the given problem, an objective or quality function is needed to 
measure the fitness of solutions. Consider the quality function 
of a problem to be denoted by q(.). Then, the quality of a 
solution T IWD found by the IWD is given by q(T �. One 
iteration of the IWD algorithm is said to be complete when all 
IWDs have constructed their solutions. At the end of each 
iteration, the best solution T ffi of the iteration found by the 
IWDs is obtained by: 

T IB = arg max q (T IWD ) (10) '<IT1WD 

Therefore, the iteration-best solution T IB is the solution that 
has the highest quality over all solutions TIWD. 
Based on the quality of the iteration-best solution, q(T ffi), only 
the paths of the solution T IB are updated. This soil updating 
should include the amount of quality of the solution. 
Specifically: 

soil(i,j) = Ps·soil(i,j)+ PIWD.k(N ).SOil/IB
WD s 

(11) 
'r:/(i,j) E TIB 

Where soihlWD represents the soil of the iteration-best IWD. 
The best-iteration IWD is the IWD that has constructed the 
best-iteration solution T ffi. k(Nc) denotes a positive coefficient 
which is dependent on the number of nodes Nc. Here, k(Nc) 

=1/(Nc-l) is used. Ps should be a constant positive value 
whereas the constant parameter Prwo should be a negative 
value. The first term on the right-hand side of equation (11) 
represents the amount of the soil that remains from the 
previous iteration. In contrast, the second term on the right­
hand side of equation (11) reflects the quality of the current 
solution, obtained by the IWD. Therefore, in equation (11), a 
proportion of the soil gathered by the IWD is reduced from the 
total soil soil(i, j) of the path between node i and j. 
This way, the best-iteration solutions are gradually reinforced 
and they lead the IWDs to search near the good solutions in the 
hope of fmding the globally optimal solution. 
At the end of each iteration of the algorithm, the total best 
solution T TB is updated by the current iteration-best solution T 
ffi as follows: 

TTB = {TIB if q(TTB) � 
q(TIB) 

TTB otherwise 
(12) 

By doing this, it is guaranteed that T TB holds the best solution 
obtained so far by the IWD algorithm. 

IV. THE PROPOSED IWD ALGORITHM FOR THE VRP 

We resume here the main characteristics of our IWD algorithm 
for VRP. 

Initialization of parameters: in the beginning of IWD 
algorithm the following parameters must be initialized: number 
of water drops N1WD , the number of cities Nc . The number of 
cities is depend to the problem at hand, and here we the 
number of water drops equal to the number of vehicles. For 
velocity updating we use parameters av=1000, bv=O.OI and 
cv=1. For soil updating we use parameters as=1000, bs=O.OI 
and cs= I.Moreover the initial soil of each link is denoted by 
the constant Initsoil such that the soil of the link between every 
two cities is set by soil(i,j)= Initsoil. The initial velocity of 
IWDs is denoted by the constant Initvel. Both parameters of 
Initsoil and Initvel are user selected. In this paper, we choose 
Initsoil= 1 000 and Initvel= 1 00. 

Routes building: at each iteration of IWD algorithm each IWD 
builds a solution for the VRP, moving to next city according to 
selection rule based on a combination of the amount of soil at 
each arc and length of it (see (2) below). For every IWD, a 
visited node list Vc(lWD) is considered to include nodes just 
visited. 
Routes can be determined in two versions: 

sequential: each IWD start its solution determining the route 
for the first vehicle untill its capacity is complete. Then it 
continues with others vehicles till complete the solution . 
Parallel : each IWD designs the route for all vehicles at the 
same time. At each iteration of the algorithm only one city is 
chosen, according to selection rule. Then best tour is extended 
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in our experiments we have used parallel approach in order to 
build solutions. 

Selection rule: 

Next city is chosen according to probability p{WD (j) 
according to: 

IWD( .) = f(soil(i,j)) 
(13) Pi J "  f( "/(' k)) L.Jkevc(JWD) SOlI, 

Wberef(soi/(i,j)) is computed from equation (8). 

Soil and velocity updating: 

local updating: for each IWD moving from city i to next city j, 
its velocity veIIWD(t) must be updated according to : 

a veZIwD(t+l) = veZIWD(t) + v 
(14) 

bv +cv·soil(i,j) 

And the soil of the path that traversed byl the IWD, soil(i,j) and 
the soil that IWD carries, soifwD must be updated according 
to: 

soil(i,j) = Po·soil(i,j)- Pn·!!.soil(i,j) (15) 

soilIWD = soilIWD + !!.soil(i, j) (16) 

that ilsoil(i,j) is the amount of soil that current water drop 
loads from its current path between to nodes i and j and can be 
obtained from equation (4). 
global updating: after each iteration is completed , the soils of 
the paths that exist in the current best -solution TTB is updated 

using equation (12), by setting, Ps = 1- PIWD . 

soil(i,j) - Ps .soil(i,j) + PIWD·k(NJ.soil::D 
(17) 

"i(i,j) E TIB 

Stopping rules: IWD procedure stops when there is not 
improvement on the solution after several iterations or when n­
max number of iterations is reached. 

V. EXPERIMENTAL RESULTS 

In this section, we present computational results of our 
proposed algorithm, which was coded in Matlab 7.1 and 
executed on a pc computer with a Pentium processor running at 
1 GHZ. To evaluate validity of our proposed algorithm for the 
vehicle routing problem, the performance of our algorithms 
was tested on a set of 14 benchmark instances designed by 
Christo fides et al. and can be downloaded from the OR Library 

at the website with 
URL:httj2:llmscmga.ms.ic.ac.ukijeb/orlib/vrj2info.html. 

The information of the 14 problems is shown in columns 2-4 
in Table 1, which consists of the problem size n, the vehicle 
capacity Q and the well-known published results [17] and 
[18].We compare IWD with a number of the better methods 
available for the VRP, and the results of some problems are 
described in columns 5-8 of Table 1, where SA refers to 
Simulated Annealing by Osman[3], TS to Tabu Search by 
Osman[3], IACO to Improved Ant Colony by Yu.Bin [12] and 
IWD is the algorithm we proposed. The IWD algorithm has 
shown to be competitive with the best existing methods in 
terms of solution quality. 

TABLE 1 
Comparison of heuristics for the vehicle routing problem 

Prob. n Q Best SA TS IACO IWD 

CI 50 160 524.61 528 524 524.61 524.61 

C2 75 140 835.26 838 844 835.26 836.76 

C3 0 200 826.14 829 835 830.00 829.34 

C4 150 200 1028.42 1058 1052 1028.42 1054.26 

C5 199 200 1291.45 1376 1354 1305.5 1326.12 

C6 50 160 555.43 555 555 555.43 555.43 

C7 75 140 909.68 909 913 909.68 914.53 

C8 100 200 865.94 866 866 865.94 866.14 

C9 150 200 1162.55 1164 1188 1162.55 1163.76 

CIO 199 200 1395.85 1418 1422 1395.85 1408.47 

CII 120 200 1042.11 1176 1042 1042.11 1043.35 

CI2 100 200 819.56 826 819 819.56 819.75 

CI3 120 200 1541.14 1545 1547 1545.93 1544.65 

CI4 100 200 866.37 890 866 866.37 868.92 

Figure shows the relation of the length of minimum tour 
versus its iteration by the IWD algorithm for 51 city problem 
with 5 vehicles (Cl problem). Almost all part of the curve is 
descending, except for the iteration 30 and 35 which shows a 
slight increase in the length of minimum tour in contrast to 
their previous iteration. 
However, after these short ascending, the curve follows its 
general downward movement. This property shows that the 
IWD is able to go upward to get rid of some local optimum in 
order to get to better optimums. 
In order to have a correct evaluation and comparison of the 
quality of algorithms the computing times must be taken into 
account. As different researchers have used different kind of 
computers, correct evaluating and comparison of computing 
times is difficult. A very rough measure of computers' 
performance can be obtained using Dongarra's tables [19] 
where the number (in millions) of floating point operations per 
second (Mflop/seconds) executed by each computer was used, 
when solving standard linear equations, with UNPACK 
program. Regarding computational times, Osman used a V AX 
8600(about 2.48 MFlop/s), Yu Bin used Pentium 1 GHz 
(about75 MFlop/s). In this research Pentium 1 GHz running 
IWD has an estimated power of 75 MFlop/s. Table 2 shows the 
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TABLE 2. Computation times of several meta-heuristic approaches 

Prob. 

CI 

C2 

C3 

C4 

C5 

C6 

C7 

C8 

C9 

CIO 

CII 

CI2 

CI3 

CI4 

800 

750 

�700 
� 
� 650 f-

600 

550 

TS 
run 
times 

60 

48 

894 

1764 

1704 

60 

744 

1962 

2472 

4026 

780 

342 

1578 

582 

TS 
scaled 

2 

1.5 

29.5 

58.3 

56.3 

2 

24.6 

64.8 

81.8 

133 

25.8 

11.2 

52.1 

19.3 

SA SA IACO 
run scaled 
times 

6 0.2 2 

3564 117.8 II 

6174 204.1 30 

4296 142.1 211 

1374 45.4 677 

696 23 24 

312 10.4 20 

366 12.1 57 

59016 1951.5 307 

2418 79.9 840 

264 8.7 61 

48 1.5 31 

4572 151.l 127 

300 9.9 43 

�O��--� 10��15�����3�����35�-4�O--�45��50· 
Iteration 

IWD 

1.5 

2 

12 

25 

36 

2 

8 

15 

29 

58 

16 

12 

28 

8 

Figure I. The length of minimum tour versus the iteration 
found by the algorithm for the 51-city problem 

origin computation times and the scaled Computation times, 
which use Pentium I GHz as the baseline, of different 
approaches. The performance of IWD is competitive when 
compared with other meta-heuristic approaches, such as SA, TS 
and ACO.As it can be seen from Table 2 our proposed 
algorithm can find near optimal solution in a better 
computation time than the other algorithms. 

VI. CONCLUSION 

IWD, "Intelligent Water Drops" is a population based 
algorithm that imitates the flow of water in river banks and 
beaches. In this paper, we propose the use of this algorithm for 
solving vehicle routing problem, likening loads/tasks to 
sediments that are left behind or picked up by the water drops 
in their natural motion in a river bed. The IWD algorithm is 

experimented on 14 bench mark VRP problems. The 
computational results of these problems reveal that the 
proposed IWD converges fast to the optimum solutions and 
finds good and promising results. Further researches on 
additional modifications of the IWD to extensions of the 
vehicle routing problem with time windows or with more 
depots are of interest. 
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