
Intelligent Water Drops a new optimization

algorithm for solving the Vehicle Routing Problem

Iman Kamkarl Mohammad-R. Akbarzadeh-TI MahdiY aghoobi I

I Department of Artificial Intelligence, Islamic Azad University, Mashhad Branch, Iran
Emails:Kamkar.iman@gmail.com.Akbarzadeh@ieee.org.Yaghobiuv.mshdiau.ac.ir

Abstract- The Vehicle Routing Problem (VRP) is an NP-hard
combinatorial optimization problem, seeking to serve a number of
customers with a fleet of available vehicles. VRP is an important
optimization problem in the field of transportation, distribution
and logistics. To date, several exact and approximate approaches
have been proposed to solve VRP. Here, we apply a population
based algorithm to VRP by imitating the natural flow of water
drops. The "Intelligent Water Drops" or IWD algorithm solves
the VRP by modeling how water drops collectively modify their
environment by picking up dirt from river bottoms during
moving downhill and leaving sediments (such as on beaches) when
slowing down. The computational results for fourteen benchmark
VRP problems are reported and compared to several other meta
heuristic approaches.

I. INTRODUCTION

Finding efficient vehicle routes is an important logistics
problem which has been studied for several decades. When a
firm is able to reduce the length of its delivery routes or is able
to decrease its number of vehicles, it is able to provide better
service to its customers, operate in a more efficient manner and
possibly increase its market share. A typical vehicle routing
problem includes simultaneously determining the routes for
several vehicles from a central supply depot to a number of
customers and returning to the depot without exceeding the
capacity constraints of each vehicle. This problem is of
economic importance to businesses because of the time and
costs associated with providing a fleet of delivery vehicles to
transport products to a set of geographically dispersed
customers. Additionally, such problems are also significant in
the public sector where vehicle routes must be determined for
bus systems, postal carriers, and other public service vehicles.
In each of the above instances, the problem typically involves
finding the minimum cost of the combined routes for a number
of vehicles in order to facilitate delivery from a supply location
to a number of customer locations. Since cost is closely
associated with distance, a company might attempt to fmd the
minimum distance traveled by a number of vehicles in order to
satisfy its customer demand. In doing so, the firm attempts to
minimize costs while increasing or at least maintaining an
expected level of customer service. The process of selecting
vehicle routes allows the selection of any combination of
customers in determining the delivery route for each vehicle.
Therefore, the vehicle routing problem is a combinatorial
optimization problem where the number of feasible solutions
for the problem increases exponentially with the number of

978-1-4244-6588-0/10/$25.00 ©201 0 IEEE

customers to be served. In addition, the vehicle routing
problem is closely related to the traveling salesman problem
where an out and back tour from a central location is
determined for each vehicle. Since there is no known
polynomial algorithm that will fmd the optimal solution in
every instance, the vehicle routing problem is considered NP
hard. For such problems, the use of heuristics is considered a
reasonable approach in finding solutions.
Heuristic algorithms such as simulated annealing (SA)
[1,2,3,4], genetic algorithms (GAs) [5,6], tabu search (TS)
[7,8] and ant colony optimization [9,10,11,12,13] are widely
used for solving the VRP.

Recently, the new meta-heuristic algorithm "Intelligent Water
Drops," has been introduced in the literature and used for
solving the traveling salesman problem (TSP) and multiple
knapsack problem [14,15].This paper tries to solve the VRP

using an IWD-based algorithm. The IWD algorithm is a
population-based optimization algorithm that uses the
constructive approach to fmd the optimal solution(s) of a given
problem. Its ideas are based on the water drops that flow in
nature such that each water drop constructs a solution by
traversing in the search space of the problem and modifying its
environment.

II. VEHICLE ROUTING PROBLEM

The vehicle routing problem has been an important problem in
the field of distribution and logistics since at least the early
1960s [16]. It is described as finding the minimum distance or
cost of the combined routes of a number of vehicles m that
must service a number of customers n. Mathematically, this
system is described as a weighted graph G =(V, A, d) where the
vertices are represented by V={vo,vj,.,vn}, and the arcs are
represented by A={(v;, v): #j}. A central depot where each
vehicle starts its route is located at Vo and each of the other
vertices represents the n customers. The distances associated
with each arc are represented by the variable dij which is
measured using Euclidean computations. Each customer is
assigned a non-negative demand q;, and each vehicle is given a
capacity constraint, Q. The problem is solved under the
following constraints.

• Each customer is visited only once by a single
vehicle.

4142

• Each vehicle must start and end its route at the depot,

Vo·
• Total demand serviced by each vehicle can't exceed

Q.

III. INTELLIGENT WATER DROPS

The IWD [14] have been designed to imitate the prominent
properties of the natural water drops that flow in the beds of
rivers. Each IWD is assumed to have an amount of the soil it
carries, soil{lWD), and its current velocity, velocity{lWD).
The environment in which IWDs are moving is assumed to be
discrete. This environment may be considered to be composed
of Nc nodes and each IWD needs to move from one node to
another. Every two nodes are linked by an arc which holds an
amount of soil. Based on the activities of the IWDs flowing in
the environment, the soil of each arc may be increased or
decreased.
Consider an IWD is in the node i and wants to move to the next
node j. The amount of the soil on the arc between these two
nodes, represented by soil(i, j), is used for updating the
velocity vefWD(t) of the IWD by:

Where vefWD (t + 1) represents the updated velocity of the IWD
at the next node j. Moreover, av, bv, and Cv are some constant
velocity parameters that are set for the given problem.
Consider that a local heuristic function RUD(.,.) has been
defined for a given problem to measure the undesirability of an
IWD to move from one node to another . The time taken for an
IWD having the velocity velIWD(t + 1) to move from the
current node i to its next node j, denoted by time(i, j;
vefWD (t+ 1)), is calculated by:

• (. . [IUTD) HUD(i,j') tzme z r ve ", = ---.....;...;.-=::::=--, ,
max(e, vefWD) (2)

The constant parameter e is a small positive value. Here, e =

0.001. The function HUD(i, j) denotes the heuristic
undesirability of moving from node i to node j.
For the VRP, the form of the RUD(i, j) denoted by HUDVRP(i,
j) has been suggested as follows:

HUD(i,j) = HUDVRP(i,j) = Ilc(i)- C(j)11 (3)

Where c(k) represents the two dimensional positional vector
for the city k. The function II . II calculates the Euclidean norm.
As a result, when two nodes (cities) i and j are near to each
other, the heuristic undesirability measure RUD(i, j) becomes
small which reduces the time taken for the IWD to pass from
city i to city j.

As an IWD moves from the current node i to its next node j, it
removes an amount of soil from the path (arc) joining the two
nodes. The amount of the soil being removed depends on the
velocity of the moving IWD. For the VRP, the amount of the
soil taken from the path is related with the inverse of the time
that the IWD needs to pass the arc or path between the two
nodes. So, a fast IWD removes more soil from the path it flows
on than a slower IWD. This mechanism is an imitation of what
happens in the natural rivers. Fast rivers can make their beds
deeper because they remove more soil from their beds in a
shorter time while slow flowing rivers lack such strong soil
movements. Moreover, even in a single river, parts of the river
that water drops flow faster often has deeper beds than the
slower parts.
For the VRP, the amount of the soil that the IWD removes
from its current path from node i to node j is calculated by:

Moil(i,j) = as (4)
b + C Jime(i j" vefWD) s s , ,

where �soil(i, j) is the soil which the IWD with velocity velIWD

removes from the path between node i and j. The lis, b., and c.
are constant velocity parameters that their values depend on the
given problem. The value time(i, j; velIWD) was defined in
equation (2) and represents the time taken for the IWD to flow
from i toj.
After an IWD moves from node i to node j, the soil(i, j) on the
path between the two nodes is reduced by:

soil(i,j) = Po.soil(i,j)- Pn.&oil(i,j) (5)

Where Po and Pn are positive numbers that should be chosen
between zero and one. In the original algorithm for the TSP

[14], Po = 1- Pn'
The IWD that has moved from node i to j, increases the soil
soifwD it carries by:

soifWD = soifwD + &oil (i, j) (6)

Where Asoil(i,j) is obtained from equation (4). Therefore, the
movement of an IWD between two nodes reduces the soil on
the path between the two nodes and increases the soil of the
moving IWD.
One important mechanism that each IWD must contain is to
how to select its next node. An IWD prefers a path that
contains less amount of soil rather than the other paths. This
preference is implemented by assigning a probability to each
path from the current node to all valid nodes which do not
violate constraints of the given problem. Let an IWD be at the
node i, then the probability p/WD (j) of going from node i to
node j is calculated by:

4143

IWD(.) _ f(soil(i,j))
p } - =----=�-��--I LkEVC(IWD)f(soil(i,k))

(7)

Such that f(soil(i,j)), computes the inverse of the soil

between node i andj. specifically:

f(soil(i,j)) = 1
Cs + g(soil(i,j))

(8)

The constant parameter Bs is a small positive number to prevent
a possible division by zero in the function f(.). It is suggested
to use Bs= 0.01. g(soil(i, j)) is used to shift the soil(i, j) on the
path joining nodes i and j toward positive values and is
computed by:

{SOil(i,j) if min (soil(i, I)) � 0 lEvc(IWD)
g(soil(i,j))= soil(i,j)- min (soil(i,l)) else lEvc(IWD)

(9)

The function min(.) returns the mInImum value of its
arguments. The set vc(IWD) denotes the nodes that the IWD
should not visit to keep satisfied the constraints of the problem.
Every IWD that has been created in the algorithm moves from
its initial node to next nodes till it completes its solution. For
the given problem, an objective or quality function is needed to
measure the fitness of solutions. Consider the quality function
of a problem to be denoted by q(.). Then, the quality of a
solution T IWD found by the IWD is given by q(T �. One
iteration of the IWD algorithm is said to be complete when all
IWDs have constructed their solutions. At the end of each
iteration, the best solution T ffi of the iteration found by the
IWDs is obtained by:

T IB = arg max q (T IWD) (10) '<IT1WD

Therefore, the iteration-best solution T IB is the solution that
has the highest quality over all solutions TIWD.
Based on the quality of the iteration-best solution, q(T ffi), only
the paths of the solution T IB are updated. This soil updating
should include the amount of quality of the solution.
Specifically:

soil(i,j) = Ps·soil(i,j)+ PIWD.k(N).SOil/IB
WD s

(11)
'r:/(i,j) E TIB

Where soihlWD represents the soil of the iteration-best IWD.
The best-iteration IWD is the IWD that has constructed the
best-iteration solution T ffi. k(Nc) denotes a positive coefficient
which is dependent on the number of nodes Nc. Here, k(Nc)

=1/(Nc-l) is used. Ps should be a constant positive value
whereas the constant parameter Prwo should be a negative
value. The first term on the right-hand side of equation (11)
represents the amount of the soil that remains from the
previous iteration. In contrast, the second term on the right
hand side of equation (11) reflects the quality of the current
solution, obtained by the IWD. Therefore, in equation (11), a
proportion of the soil gathered by the IWD is reduced from the
total soil soil(i, j) of the path between node i and j.
This way, the best-iteration solutions are gradually reinforced
and they lead the IWDs to search near the good solutions in the
hope of fmding the globally optimal solution.
At the end of each iteration of the algorithm, the total best
solution T TB is updated by the current iteration-best solution T
ffi as follows:

TTB = {TIB if q(TTB) �
q(TIB)

TTB otherwise
(12)

By doing this, it is guaranteed that T TB holds the best solution
obtained so far by the IWD algorithm.

IV. THE PROPOSED IWD ALGORITHM FOR THE VRP

We resume here the main characteristics of our IWD algorithm
for VRP.

Initialization of parameters: in the beginning of IWD
algorithm the following parameters must be initialized: number
of water drops N1WD , the number of cities Nc . The number of
cities is depend to the problem at hand, and here we the
number of water drops equal to the number of vehicles. For
velocity updating we use parameters av=1000, bv=O.OI and
cv=1. For soil updating we use parameters as=1000, bs=O.OI
and cs= I.Moreover the initial soil of each link is denoted by
the constant Initsoil such that the soil of the link between every
two cities is set by soil(i,j)= Initsoil. The initial velocity of
IWDs is denoted by the constant Initvel. Both parameters of
Initsoil and Initvel are user selected. In this paper, we choose
Initsoil= 1 000 and Initvel= 1 00.

Routes building: at each iteration of IWD algorithm each IWD
builds a solution for the VRP, moving to next city according to
selection rule based on a combination of the amount of soil at
each arc and length of it (see (2) below). For every IWD, a
visited node list Vc(lWD) is considered to include nodes just
visited.
Routes can be determined in two versions:

sequential: each IWD start its solution determining the route
for the first vehicle untill its capacity is complete. Then it
continues with others vehicles till complete the solution .
Parallel : each IWD designs the route for all vehicles at the
same time. At each iteration of the algorithm only one city is
chosen, according to selection rule. Then best tour is extended

4144

in our experiments we have used parallel approach in order to
build solutions.

Selection rule:

Next city is chosen according to probability p{WD (j)
according to:

IWD(.) = f(soil(i,j))
(13) Pi J " f("/(' k)) L.Jkevc(JWD) SOlI,

Wberef(soi/(i,j)) is computed from equation (8).

Soil and velocity updating:

local updating: for each IWD moving from city i to next city j,
its velocity veIIWD(t) must be updated according to :

a veZIwD(t+l) = veZIWD(t) + v
(14)

bv +cv·soil(i,j)

And the soil of the path that traversed byl the IWD, soil(i,j) and
the soil that IWD carries, soifwD must be updated according
to:

soil(i,j) = Po·soil(i,j)- Pn·!!.soil(i,j) (15)

soilIWD = soilIWD + !!.soil(i, j) (16)

that ilsoil(i,j) is the amount of soil that current water drop
loads from its current path between to nodes i and j and can be
obtained from equation (4).
global updating: after each iteration is completed , the soils of
the paths that exist in the current best -solution TTB is updated

using equation (12), by setting, Ps = 1- PIWD .

soil(i,j) - Ps .soil(i,j) + PIWD·k(NJ.soil::D
(17)

"i(i,j) E TIB

Stopping rules: IWD procedure stops when there is not
improvement on the solution after several iterations or when n
max number of iterations is reached.

V. EXPERIMENTAL RESULTS

In this section, we present computational results of our
proposed algorithm, which was coded in Matlab 7.1 and
executed on a pc computer with a Pentium processor running at
1 GHZ. To evaluate validity of our proposed algorithm for the
vehicle routing problem, the performance of our algorithms
was tested on a set of 14 benchmark instances designed by
Christo fides et al. and can be downloaded from the OR Library

at the website with
URL:httj2:llmscmga.ms.ic.ac.ukijeb/orlib/vrj2info.html.

The information of the 14 problems is shown in columns 2-4
in Table 1, which consists of the problem size n, the vehicle
capacity Q and the well-known published results [17] and
[18].We compare IWD with a number of the better methods
available for the VRP, and the results of some problems are
described in columns 5-8 of Table 1, where SA refers to
Simulated Annealing by Osman[3], TS to Tabu Search by
Osman[3], IACO to Improved Ant Colony by Yu.Bin [12] and
IWD is the algorithm we proposed. The IWD algorithm has
shown to be competitive with the best existing methods in
terms of solution quality.

TABLE 1
Comparison of heuristics for the vehicle routing problem

Prob. n Q Best SA TS IACO IWD

CI 50 160 524.61 528 524 524.61 524.61

C2 75 140 835.26 838 844 835.26 836.76

C3 0 200 826.14 829 835 830.00 829.34

C4 150 200 1028.42 1058 1052 1028.42 1054.26

C5 199 200 1291.45 1376 1354 1305.5 1326.12

C6 50 160 555.43 555 555 555.43 555.43

C7 75 140 909.68 909 913 909.68 914.53

C8 100 200 865.94 866 866 865.94 866.14

C9 150 200 1162.55 1164 1188 1162.55 1163.76

CIO 199 200 1395.85 1418 1422 1395.85 1408.47

CII 120 200 1042.11 1176 1042 1042.11 1043.35

CI2 100 200 819.56 826 819 819.56 819.75

CI3 120 200 1541.14 1545 1547 1545.93 1544.65

CI4 100 200 866.37 890 866 866.37 868.92

Figure shows the relation of the length of minimum tour
versus its iteration by the IWD algorithm for 51 city problem
with 5 vehicles (Cl problem). Almost all part of the curve is
descending, except for the iteration 30 and 35 which shows a
slight increase in the length of minimum tour in contrast to
their previous iteration.
However, after these short ascending, the curve follows its
general downward movement. This property shows that the
IWD is able to go upward to get rid of some local optimum in
order to get to better optimums.
In order to have a correct evaluation and comparison of the
quality of algorithms the computing times must be taken into
account. As different researchers have used different kind of
computers, correct evaluating and comparison of computing
times is difficult. A very rough measure of computers'
performance can be obtained using Dongarra's tables [19]
where the number (in millions) of floating point operations per
second (Mflop/seconds) executed by each computer was used,
when solving standard linear equations, with UNPACK
program. Regarding computational times, Osman used a V AX
8600(about 2.48 MFlop/s), Yu Bin used Pentium 1 GHz
(about75 MFlop/s). In this research Pentium 1 GHz running
IWD has an estimated power of 75 MFlop/s. Table 2 shows the

4145

TABLE 2. Computation times of several meta-heuristic approaches

Prob.

CI

C2

C3

C4

C5

C6

C7

C8

C9

CIO

CII

CI2

CI3

CI4

800

750

�700
�
� 650 f-

600

550

TS
run
times

60

48

894

1764

1704

60

744

1962

2472

4026

780

342

1578

582

TS
scaled

2

1.5

29.5

58.3

56.3

2

24.6

64.8

81.8

133

25.8

11.2

52.1

19.3

SA SA IACO
run scaled
times

6 0.2 2

3564 117.8 II

6174 204.1 30

4296 142.1 211

1374 45.4 677

696 23 24

312 10.4 20

366 12.1 57

59016 1951.5 307

2418 79.9 840

264 8.7 61

48 1.5 31

4572 151.l 127

300 9.9 43

�O��--� 10��15�����3�����35�-4�O--�45��50·
Iteration

IWD

1.5

2

12

25

36

2

8

15

29

58

16

12

28

8

Figure I. The length of minimum tour versus the iteration
found by the algorithm for the 51-city problem

origin computation times and the scaled Computation times,
which use Pentium I GHz as the baseline, of different
approaches. The performance of IWD is competitive when
compared with other meta-heuristic approaches, such as SA, TS
and ACO.As it can be seen from Table 2 our proposed
algorithm can find near optimal solution in a better
computation time than the other algorithms.

VI. CONCLUSION

IWD, "Intelligent Water Drops" is a population based
algorithm that imitates the flow of water in river banks and
beaches. In this paper, we propose the use of this algorithm for
solving vehicle routing problem, likening loads/tasks to
sediments that are left behind or picked up by the water drops
in their natural motion in a river bed. The IWD algorithm is

experimented on 14 bench mark VRP problems. The
computational results of these problems reveal that the
proposed IWD converges fast to the optimum solutions and
finds good and promising results. Further researches on
additional modifications of the IWD to extensions of the
vehicle routing problem with time windows or with more
depots are of interest.

REFERENCES

[I] Chiang, W.C., Russell, R, 1996. Simulated annealing meta-heuristics for
the vehicle routing problem with time windows. Annals of Operations
Research 93, 3-27.

[2] Koulamas, C., Antony, S., Jaen, R, 1994. A survey of simulated annealing
applications to operations research problems. Omega 22 (1), 41-56.

[3] Osman, I.H., 1993. Metastrategy simulated annealing and tabu search
algorithms for the vehicle routing problem. Annals of Operations
Research 41, 421-451.

[4] Tavakkoli-Moghaddam, R, Safaei, N., Gholipour, Y, 2006. A hybrid
simulated annealing for capacitated vehicle routing problems with the
independent route length. Applied Mathematics and Computation 176,
445-454.

[5] Prins, C., 2004. A simple and effective evolutionary algorithm for the
vehicle routing problem. Computers & Operations Research 31, 1985-
2002.

[6] Geonwook Jeon, Herman R Leep and Jae Young Shim, 2008," A vehicle
routing problem solved by using a hybrid genetic algorithm", Journal of
Computers and Industrial Engineering, Elsevier.

[7] Renaud, J., Laporte, G., Boctor, F.F., 1996. A tabu search heuristic for the
multi-depot vehicle routing problem. Computers & Operations Research
23 (3), 229-235.

[8] Brandao, J., Mercer, A., 1997. A tabu search algorithm for the multi-trip
vehicle routing and scheduling problem. European Journal of Operational
Research 100,180-191.

[9] Doerner, K.F., Hartl, RF., Kiechle, G., Lucka, M., Reimann, M., 2004.
Parallel ant systems for the capacitated vehicle routing problem. In:
Evolutionary Computation in Combinatorial Optimization: 4th European
Conference,EvoCOP 2004, LNCS 3004, pp. 72-83.

[10] Reimann, M., Stummer, M., Doerner, K., 2002. A savings based ant
system for the vehicle routing problem. In: Langdon, W.B. et al. (Eds.),
GECCO 2002:Proceedings of the Genetic and Evolutionary Computation
Conference. Morgan Kaufmann, San Francisco.

[II] Peng, W., Tong, RF., Tang, M., Dong, J.x., 2005. Ant colony search
algorithms for optimal packing problem. ICNC 2005, LNCS 3611, pp.
1229-1238.

[12] Yu Bin ,Yang Zhong-Zhen , Yao Baozhen ,2008 .An improved ant colony
optimization routing problem, European Journal of Operational Research,
Elsevier.

[13] John E. Bell,Patrick R McMullen,2004. Ant colony optimization
techniques for the vehicle routing problem, Journal of Advanced
Engineering Informatics, Elsevier.

[14] Hamed Shahhosseini, 2007. Problem solving by Intelligent Water
Drops,IEEE 2007.

[15] Hamed Shahhosseini, 2008, "Intelligent Water Drops: A new optimization
method for solving the multiple knapsack problem" ,International journal
of Intelligent Computing and Cybernetics, Emerald.

[16] Clark G, Wright JW. Scheduling of vehicles from a central depot to a
number of delivery points. Oper Res 1964;12:568--81.

[17] Taillard, RE., 1993. Parallel iterative search methods for vehicle routing
problems.Networks 23, 661-673.

[18] Rochat, Y, Taillard, RE., 1995. Probabilistic diversification and
intensification in local search for vehicle routing. Journal of Heuristics I,
147-167.

[19] Dongarra, 1., 200 I. Performance of various computer using standard
linear equations software. Report CS-89-85, University of Tennessee.

4146

