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Abstract: In this paper, a novel control strategy for the load frequency control
(LFC) system is proposed. The developed method includes a genetic algorithm
(GA) based self-tuned PID controller for online application. The new method is
presented in order to regulate PID controller coefficients by a radial basis function
neural network (RBFN). Furthermore, a very short time load forecasting (VSTLF)
scheme is also employed as a novel approach for the system load variations to be
considered in the LFC system. For validation of the proposed method, several
comparative case studies are presented. The simulation results indicate that the
proposed strategy improves the system dynamics remarkably.
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1. Introduction

Load Frequency Control (LFC) systems ensure the balance between the gener-
ation and load in order to maintain the desired nominal frequency and tie-line
power exchanges in interconnected power systems. Presently, most LFC systems
are equipped with fixed gain integral controllers. The most common and funda-
mental method for designing such a controller is based on a trial and error pro-
cedure in order to improve the transient and dynamic response of the frequency
and interchanged power [1–3]. However, in the past years, with the aid of precise
and standard models available for generation units, power networks and two well
known indices such as ISE (Integral of the Square Error) and ITAE (Integral of
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Time multiplied Absolute value of Error), the desired parameters of integral con-
trollers could be specified more accurately and efficiently. These indices can be
defined as [1, 4], and [5]: ISE =

∫ ∞
0

E (t)2 dt,ITAE =
∫ ∞

0
t |E (t)| dt, where E(t)

is the area control error (ACE) of LFC system. In current industrial applications,
fixed gain integral controllers are mostly used. They are designed for a nominal op-
erating condition and may fail to operate appropriately during abnormal situations
[3, 6]. Furthermore, due to the non-linearity of power systems and unpredictabil-
ity of load variations, the operating point varies remarkably. Thus, to provide an
appropriate and efficient controller for the LFC system, several efforts have been
made, including its designing State feedback and adaptive optimal control strategy
is reported in [7–10]. In [11, 12] the variable structure control strategy is presented,
while the robust controller is also introduced in [13, 14]. These controllers require
the full data related to the system states, whose measurement or estimation is
not simple or might be impossible. Uncertainty and parameter variations decrease
the reliability of the above-mentioned methods. In addition, intelligent techniques
such as artificial neural network (ANN), fuzzy and genetic algorithm (GA) can
be seen in [15–21]. In these reports, authors tried to ensure the insensitivity of
the controller to the system parameters and the variations of the operating point
with respect to the nominal condition. The neural networks ability to deal with
inherent uncertainty of power system and their learning feature as well as their
fast response provide a useful implementation of ANNs to the LFC systems [14–
17]. However, the main drawbacks of commonly used multi-layer perceptron ANN
based controllers can be classified as:

a) the large size of the network,

b) remarkable long learning time,

c) requirement of a large number of parameters and input data, mostly depen-
dent on inaccessible states.

This paper presents a genetic algorithm based self-tuned PID controller for the
LFC system in a multi-area interconnected power system. In fact, in the pro-
posed control scheme, PID coefficients are not constants and an ANN is used for
online tuning of PID coefficients, which ensures optimum performance under dif-
ferent disturbances and operating conditions. The PID controller parameters are
optimized offline by GA at all possible operating conditions. Then this input-output
data pairs generated by the GA are used to train the ANN, which is also performed
in the offline situation. In this work, a newly implemented ANN named RBFN
(Radial Basis Function Network) is used to regulate the PID coefficients online.
The application of RBFN reduces the size of ANN as well as the long learning
time. To overcome the third problem, we used a scheme called VSTLF, which had
not previously been used in the LFC application; it was only recently employed for
very short time load forecasting [22–24]. In the present report, VSTLF associated
with RBFN is used to overcome the disadvantages of the conventional multi-layer
perceptron applied to PID control in the LFC systems. In fact, this approach,
which has not been seen previously in the LFC systems, is the main objective of
this paper. As mentioned before, GA is used to obtain the optimum values for the
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PID controller for all possible operating conditions and power system load vari-
ations in order to provide an input data pair for the RBFN training process in
the offline condition. In this paper, we also present a newly proposed performance
index, whose minimum value ensures zero steady-state error, minimum overshoot
and minimum settling time related to the dynamic response of the LFC system.
Thus, the trained RBFN associated with the VSTLF scheme can be used for online
application and automatic tuning of the proposed PID controller. The efficiency
of the proposed controller is verified by simulation of a two-area power system.

2. Power System Model

In this paper, two similar interconnected power networks including steam turbines
and reheats are employed to apply the proposed method and simulation studies.
Two-area sample system has been used only for approving the performance of the
suggested method, while the same approach can be implemented accurately and
efficiently for the multi-area power system connected via tie-lines [25]. Fig. 1
depicts the block diagram of the employed two-area power system, whose variables
and parameters are given in Appendices 1 and 2. It can be seen that non-linear
factors, such as generator power rate constraint (GRC) and governor dead-band,
have been included. These non-linearities increase the overshoot and settling time
of the system response due to disturbances. In [12] it is shown that the elimination
of these non-linearities in the controller design process may cause the system to
become unstable in real life applications. In the block diagram of Fig. 1, ∆PD1, and
∆PD2 are load changes in areas 1 and 2, and ∆f1, ∆f2, and ∆P12 are variations in
the frequency in areas 1 and 2 and variations in the tie-line power from their desired
values, respectively. The goal of control system is to damp these variations to zero
as fast and smooth as possible, following a change in ∆PD1, and ∆PD2 values.
∆PCi is the controller output and is applied to the governor of each generator to
provide a closed loop control system.

3. Proposed Control Scheme

Similarly to the most currently utilized methods, the input of the proposed con-
troller for each area, according to Eq. 1, is ACE (Area Control Error), the param-
eters of which are defined in Appendix 1 [1].

ACEi = ∆Pij + Bi∆fi i = 1, 2 (1)

Bi = Di +
1
Ri

i = 1, 2 (2)

Fig. 2 shows the structure of the proposed controller, whose input is ACE i and
the output is ∆PCi ; which can be applied to the governor of each generator. ACE
is defined by Eq. (1), and KP , KI and KD are PID controller parameters.

Current controllers are generally based on constant gain integrators. Although
the PID controllers require a more complex procedure to be designed, they can
improve the transient response compared to the simple integral controllers [19].
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Fig. 1 The sample two-area power system block diagram.

Fig. 2 The proposed controller block diagram.

The input-output data pairs required for the offline training of the RBFN used
in the proposed controller, shown in Fig. 2, can be obtained by simulation of
the studied system (i.e. Fig. 1) under all possible operating conditions and load
variations using Matlab/Simulink software. At each operating point, GA is used
to obtain the optimal PID controller constants. The recent procedure is shown in
Fig. 3.

Using GA, an appropriate performance index (J) whose minimum value ensures
zero steady-state error, minimum overshoot and minimum settling time has been
developed. This step is performed offline, and in each operating condition, the
GA is used to optimize the PID controller parameters in order to minimize the
performance index. Hereby, optimum values for KP ,KI , and KD coefficients for
any possible ∆PDi will be obtained. This procedure is shown in Fig. 3 and will
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Fig. 3 The offline application of GA in order to obtain the optimum PID constants.

be discussed later clearly. The obtained data pairs are used to train the RBFN.
After the RBFN training procedure, they can be used for online tuning of the PID
controller. As seen before, the input data for the offline training of RBFN are power
system load variations. These input data can be provided in the online operation
by several techniques developed with high accuracy, called very short-time load
forecasting (VSTLF). It is also possible to measure the load on each bus directly.
So in the following subsections, the VSTLF techniques as well as GA and RBFN
are briefly described.

A. VSTLF

Many techniques have been developed for precise load forecasting for the next min-
utes as well as next few days. These methods are called short-time load forecasting.
One of the most recent and advanced group of these techniques is called VSTLF
(very short-time load forecasting) or RTLF (real-time load forecasting), and it is
able to estimate the network load variations in the next or several minutes pre-
cisely. There are many successful efforts in the field of VSTLF, reported in [22,
23], and [24]. In [23] VSTLF is suggested for the LFC system, however, the full
application of this method in the real LFC system has not been discussed. In this
paper, VSTLF has been employed for practical applications in the LFC system,
which has not been reported yet.

B. GA (Genetic Algorithm)

For the past 25 years, GA has been employed in optimization problems extensively.
GA is an effective algorithm which provides reasonable results even if it has not
been used appropriately. Although GA is based on a stochastic procedure, it has
been proved to be a robust method, providing universal optimums [26]. GA includes
reproduction, crossover and mutation operators. The reproduction operator creates
a new generation of population by selecting the most fitted individuals in the
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current population. Crossover is the most dominant operator in GA, in which new
offspring are produced by selecting two strings and exchanging some portions of
their structures. The mutation operator alters the value of a random position in a
string.

Real Coded Genetic Algorithm (RCGA)

GA is classified into two main categories: binary genetic algorithm (BGA) and
real coded genetic algorithm (RCGA), which is often referred to as a continuous pa-
rameter genetic algorithm. In specific problems including continuous search space,
the binary representation causes large dimensions [26, 27]. Furthermore, since the
BGA precision is limited by the binary representation of the values, using real
numbers will easily provide the required system precision. In addition, RCGA can
be easily implemented in Matlab/Simulink [27].

Computational process of the Genetic Algorithm

RCGA algorithm for obtaining the optimal PID constants can be presented as
follows:

1. The first generation is formed randomly.

2. The performance index is computed by simulation in Matlab/Simulink (Eq. 3).

J =
∫ T

0
t (|∆Ptie|+ B1 |∆f1|+ B2 |∆f2|)dt

Bi = Di + 1
Ri

(3)

With this definition for J , its minimum value ensures the minimum overshoot
and minimum settling time for frequency and tie-line power fluctuations. The
steady-state error is also always zero.

3. A new generation is formed using reproduction, crossover, and mutation op-
erators.

4. Performance index is computed for the members of new generation.

5. If the population converges or the number of generations reaches a certain
limit, the search will stop, otherwise we will go to step 3.

Fig. 4 shows the flowchart of this process. The GA is executed for 100 gen-
erations, and the population size has been chosen to be 50. The probabilities of
crossover and mutation have been selected as scattered and Gaussian functions, re-
spectively. Fig. 3 shows how the GA is used offline in order to obtain the optimum
PID constants.

C. RBFN (Radial Basis Function Network)

In spite of most of the sophisticated controllers presented so far for the LFC system,
the neural network is very fast due to its parallel processing nature; thus it can
be implemented in real-time applications. Like most other feed-forward networks,
RBFN also has three layers called input, hidden and output layers. Fig. 5 shows a
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Fig. 4 GA computational flowchart.

schematic diagram of the employed RBFN, which has two inputs and three outputs.
The hidden layer nodes are RBF units. Each node in this layer has a parameter
vector called a center. Each node computes the Euclidean distance between the
center and the input vector and passes the result through a nonlinear function (.).
The output layer is a set of linear combiners. Generally, for a RFBN, which has n
inputs and m outputs, the output yi due to input vector x, [x1. . . xn]T is computed
as:

yi = θ0i +
∑M

j=1
θjiΦ(‖x− cj‖ , σj). (4)

M is the number of hidden units and cj and σj are the center and the width of the
jth hidden unit. θji is the weight between jth hidden unit and ith output unit;
and θ0i is the bias term related to the ith output unit. As seen in Eq. 5, in this
work, the Gaussian activation function is used for (.); and also the orthogonal least
square method has been employed for a training purpose.

Φ (z, σ) = exp
(−z2/2σ2

)
. (5)
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Fig. 5 The schematic diagram of the used RBFN.

4. Simulation Results

As shown in Fig. 1, the employed sample system for simulation studies includes
reheat turbines and generator power rate constraint (GRC), which is more realis-
tically compared to the linear model for a non-reheat turbine. The GRC value is
assumed to be 0.2 p.u./min for each generation unit [21]. Moreover, another non-
linearity effect such as turbine governor dead-band, which is assumed to be 0.06%
for each area [21], is included for simulation purposes. For comparative studies,
we also used a conventional fixed gain integral controller (i.e. KI/s, KI = 0.125)
for each area. KI is determined by a commonly used method employing ITAE
criteria. Tab. I summarizes three case studies under our investigation. Figs. 6 to
8 illustrate the dynamic responses related to the sample power system using the
fixed gain integral controller as well as the proposed controller employed for each
area for all cases mentioned in Tab. I. According to cases 1 and 2, Figs. 6 and 7
show that the system equipped with the proposed controller provides remarkable
performance compared to the conventional fixed gain integral controller. It is clear
that the system, using the proposed controller, experiences fewer oscillations with
smaller peaks, which vanish more rapidly; and also, in both the cases, the settling
time is reduced drastically. Although, with both controllers, steady-state errors are
in acceptable limits, the proposed controller provides a better steady-state perfor-
mance. Fig. 8 shows that the variation of load in the both areas (case 3) is the
worst case, in which the fixed gain integral controller is not capable to maintain
the frequency in acceptable limits and the system is completely unstable. However,
it can be seen that in such a sever condition, the proposed controller maintains
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the stability with remarkable dynamic behavior. Fig. 8 also shows that with the
proposed controller, the frequency and tie-line power deviations are driven to zero
successfully in a very short time, while with the fixed gain integral controller, the
control variables deviations cannot be driven back to zero at all. This study shows
that the proposed controller is not only fast and accurate, but also robust. In addi-
tion, for more validation we use ITAE criteria for both the fixed gain integral and
proposed controllers in all cases given in Tab. I. The results of these comparative
studies are summarized in Tab. II; we can see that the proposed controller acts
remarkably.

case 3 case 2 case 1 step load change
1% 3% 1% ∆PD1

3% 0 0 ∆PD2

Tab. I Summary of case studies.

case 3 case 2 case 1 controller type
unstable 21.13 1.067 fixed gain integral controller

9.279 3.775 0.1898 proposed controller

Tab. II The comparison of ITAE value for three case studies.

5. Conclusions

In this paper, a genetic algorithm based self-tuned PID controller for the LFC
system, whose coefficients are regulated online by a newly implemented artificial
neural network, RBFN, is proposed. In this novel approach, the VSTLF technique
is employed for very short time load forecasting. The efficiency of the proposed
controller is verified by simulation studies of two-area interconnected power system
in three different scenarios. In comparison with the conventional fixed gain integral
controller, the major advantages of proposed strategy can be classified as:

1. The input signal of the proposed controller is the same as that of the conven-
tional controller (i.e. ACE), while the output can be applied to the governor.

2. VSTLF provides more accurate load forecasting and eliminates the measure-
ment and estimation of system states. Therefore, the VSTLF scheme sim-
plifies the design and implementation of the proposed controller for the LFC
system. Also the stability and optimal control in a wide range of load varia-
tions could be achieved.

3. The learning feature of RBFN and the ability of GA to find the optimal
values of coefficients in the proposed controller in all possible operating points
with inherent uncertainty of system states provide a more flexible and robust
controller.

317



Neural Network World 4/08, 309-322

Fig. 6 Dynamic responses for two different control strategies for case 1: ∆PD1 =
1%, ∆PD2= 0. Fixed gain integral controller (- - -); Proposed controller (—).
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Fig. 7 Dynamic responses for two different control strategies for case 2: ∆PD1=
3%, ∆PD2= 0. Fixed gain integral controller (- - -); Proposed controller (—).
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Fig. 8 Dynamic responses for two different control strategies for case 3: ∆PD1=
1%, ∆PD2= 3%. Fixed gain integral controller (- - -); Proposed controller (—).
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4. The design of the proposed controller is achieved in the offline environment,
while in the online operation the coefficients of suggested controller can be
regulated through the RBFN with a high speed response and minimum com-
plexity, appropriate for real time application.

5. Due to the VSTLF scheme, the control strategy can be expanded to include
economical dispatch of the power systems.

Appendix 1

Block diagram model parameters and variables shown in Fig. 1 (i = 1, 2):
f : System frequency (Hz )
∆f i: Change in frequency in area i
∆PDi: Load change in area i (p.u.)
∆P12/∆Ptie: Change in tie-line power interchange between areas 1 and 2 (p.u.)
B i: Frequency bias constant of area i (p.u./Hz )
D i: Load governing characteristic of area i (p.u./Hz )
Ri: Speed governor regulation of area i (Hz/p.u.)
T g: Time constant of speed governors (s)
T r: Reheat time constant of reheat turbines (s)
K r: Reheat parameter
T t: Turbine time constant (s)
T p: Time constant of power system (s)
K p: Power system parameter (Hz/p.u.)
T 12: Tie-line synchronizing power coefficient between area 1 and

area 2 (p.u.)

Appendix 2

Nominal parameters of the studied system:

D = 8.33× 10−3 p.u.MW/Hz , R = 2.4 Hz/p.u.MW
Pr = 2000 MW (area rated capacity)
Ptie,r = 200 MW (tie-line capacity)
T 0

12 = Ptie,r

Pr
cos 30◦, Tg = 0.08 s, Tt = 0.3 s

Tr = 10 s,Kr = 0.5, Tp = 20 s,Kp = 120 Hz/p.u.MW
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