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Abstract-- Majority of distribution networks is unbalanced due to 

unbalanced loads, asymmetry in transmission lines and two and 

single phase shunts. These characteristics of distribution systems 

results in deficiency of convenient methods in analysis of such 

cases. In this paper, we propose a successful method for solution 

of the four wire power flow problem. The method is based on the 

current injection technique and the Newton-Raphson 

formulation which has better numerical stability and 

convergence speed comparing with conventional methods. 

Furthermore, it is capable deal with the distributed generations 

as PV buses. It can also solve the sub-transmission loops as a part 

of solution of distribution system. Then, we suggest a 

modification to the proposed algorithm which drastically 

improves the convergence speed by reducing the number of the 

iterations and computational cost of each iteration. The method is 

applied to several cases and the results are presented. 

Index Terms--Distribution networks, Asymmetrical three phase 

four wire load flow, Current injection method 

I. INTRODUCTION

oad flow calculations provides amplitudes and the 

angles of all voltages and currents of the power system. 

Methods such as Gauss-Seidel, Newton and fast decoupled 

Newton-Raphson (in the polar coordinates for positive 

sequence networks) have been the basic tools for the load flow 

analysis for about 40 years. Most of the analyses have been 

focused on the balanced operation. However, the distribution 

networks are unbalanced and have low R/X ratios. Indeed, 

majority of distribution networks are unbalanced due to 

unbalanced loads, asymmetry in transmission lines and two 

and single phase shunts. These characteristics of distribution 

systems calls for effective power flow methods. A number of 

methods have been already developed for these problems. 

Recently, current injection equations have been used along 

with or instead of power mismatch equations. Garcia et al

developed a new sparse formulation for unbalanced three 

phase power systems utilizing the Newton-Raphson method in 

rectangular coordinates [1]. This work claims that their 

method is very stable and the speed is approximately 30% 

better than the other existing methods. Additionally, it has the 

ability to represent the distributed generations as PV buses and 

solve the sub-transmission loops as a part of solution of the 

distribution system. In 2001, this method was improved to 

include FACTS devices and other kind of controllers [2]. 

Eventually, the technique presented in [1] was modified to 

include fourth wire in the formulation [3]. The recent report 

allows including the neutral wires and ground impedances in 

the formulations. This technique has better numerical stability 

and convergence speed comparing with other conventional 

methods [1]-[3]. Thus, there is enough motivation to focus on 

it for even more improvements. In this paper, we first 

demonstrate the technique and its implementation algorithm. 

Then, we suggest a modification to this algorithm which 

drastically improves the convergence speed by reducing 

number of iterations and computational cost of each iteration. 

Results obtained from several case studies of applying our 

modified load flow algorithm to unbalanced systems confirm 

this considerable improvement. 

II. FOUR WIRE POWER FLOW TECHNIQUE BASED ON THE 

CURRENT INJECTION METHOD AND THE NEWTON-RAPHSON 

FORMULATION

As previously stated, this paper is focused on improvement 

of a method originally developed by other researchers. For a 

full description of the technique as well as tracking progress of 

the method see references [1]-[3]. Here, we just give a straight 

algorithm to implement it and finally we will correct it to 

improve the convergence speed intensively by reducing the 

number of the iterations and the amount plus the time of the 

computations. In this method the current injection equations 

are written in rectangular coordinates resulting in an order 8n 

system of equations. The Jacobian matrix is composed of 8×8 

blocks and retains the structure of the nodal admittance matrix 

which except for PV buses has the elements of the off 

diagonal blocks the same as those of the corresponding nodal 

admittance matrix. The elements of the diagonal blocks are 

updated at every iteration according to the load ZIP model 

parameters and the last calculated voltages for those nodes. 

The polynomial load model can represent constant impedance, 

constant current and constant power loads easily. In 

rectangular coordinates, complex values of voltages and 

currents are sum of the real and imaginary components. Nodal 
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admittance matrix is definite and can be decomposed to G and 

B components: 
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The algorithm of the conventional load flow method which is 

based on the current injection technique and Newton-Raphson 

formulation can be summarized as follows: 

Step 1: Initialization; for a flat start the initial voltages for all 

nodes should be equal to the root node voltage. 

Step 2: Calculation of the current mismatches for all nodes 

from (2)-(5). 

Step 3: Test for convergence; if max{| I|}<ε  then go to step 

7 else go to the next step.     

Step 4: Compute the Jacobian matrix for (1) from (6) and (7). 

The off diagonal blocks (elements of the second part of (7)) 

are updated according to the load ZIP model parameters and 

the last calculated voltages for those nodes by using the 

appendix expressions. 

Step 5: Calculate the complex voltage increments from (1). 

Step 6: Update the complex voltages according to the 

calculated increments. Increment the iteration count and go to 

step 2. 

Step 7: Print the results. 

To represent the PV buses, their reactive power generation is 

considered as a new state variable. Refer to [3] and [4] for 

more details. 

t

kV  : Complex voltage at node k, phase },,,{ ncbat =

kΩ : Set of nodes directly connected to node k 

d

kV : Complex voltage at node k, phase },,{ cbad =
n

kV : Neutral complex voltage at node k  
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III. MODIFYING THE ALGORITHM TO IMPROVE THE SPEED BY 

REDUCING THE NUMBER OF ITERATIONS AND THE AMOUNT PLUS 

THE TIME OF THE COMPUTATIONS

The Jacobian matrix, J, is sparse and retains the same 

structure as of the nodal admittance matrix. These advantages 

besides the utilizing the improved Newton-Raphson algorithm 

conduce to 30% speedup comparing with a state of the art 

production grade Newton-Raphson power flow [1]. On the 

other hand the elements of the diagonal blocks for all of the 

system's nodes must be updated at every iteration according to 

the load ZIP model parameters and the last calculated voltages 

for those nodes which calls for a large amount of 

computations and time. Our solution overcomes this 

disadvantage. Fortunately, reducing the amount of the 

calculations and the needed time for the load flow 

computations is not the only improvement. Furthermore, the 

proposed modification reduces the number of total iterations 

for each load flow problem which itself again reduces the 

computational costs even more. Our modification is that in 
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every load flow problem after some initial iterations once the 

variation of current mismatches for all of the nodes settled in a 

specific band (max{|| Icurrent|-| Iprevious||}<ε ′ ), the Jacobian 

matrix won't be updated and the last updated Jacobian will be 

used till the end of the load flow i.e. until  max{| I|}<ε
occurs. In fact we have used rate of  the changes of the current 

mismatches as a second error criterion and when it becomes 

less than a specific limit (ε ′ ), the Jacobian matrix won’t be 

updated. Figure (1) depicts algorithm of our modified load 

flow method. 

Fig. 1. Flowchart of the modified algorithm 

 This solution is applicable due to several reasons: First we 

should notice that by approaching to the results of the load 

flow problem the current mismatches ( I) decrease. In initial 

steps, this reduction of I is very bigger than the final steps of 

the load flow. So the slope of these variations which is a 

measure of the speed of I variations lessens rapidly and 

noticeably through the load flow steps forward so that this 

slope can be a proper check for approaching to the final results 

of the load flow problem. Then, when this slope becomes 

small, it implies that I have become very small. Therefore, 

whit this small I, the effect of the variations in the Jacobian 

on the results of V=J-1 I, (1), becomes small and can be 

neglected with no error for these very small current 

mismatches. In addition and as a result of moving toward the 

solution, the voltage variations decrease extremely. Thus, 

variations of the elements of the Jacobian matrix, which are 

dependent on these voltages, become negligible. So, not 

updating the Jacobian matrix after once entering a region near 

the final answers not only doesn't affect the results of the load 

flow but also reduces the amount of the calculations and the 

needed time for the load flow computations required for 

updating the Jacobian. Especially it's significant in dealing 

with large and complicated systems in which the process of 

updating the Jacobian is very time consuming. But it's not all; 

the proposed modification also reduces the number of the 

iterations needed to achieve the results of every load flow 

problem; consequent on it the computational costs reduce even 

more. This is because of the fact that by achieving to the final 

results, nodal voltages generally decrease till they take their 

real values which are often less than their initial values. 

Referring to the appendix we can find out that as a result of 

this reduction of voltages, the diagonal elements of the 

Jacobian, which are updated in every iteration according to 

these voltages, increase. This means that the J-1 generally 

decreases through the load flow steps forward. Now after 

some initial iterations and when slope of the error decreased to 

a particular bound (ε ′ ), which occurs near the final answer of 

the load flow, the Jacobian approximates its final value 

accurately although it is generally a little smaller than its real 

value. Now if we take the Jacobian matrix constant, then the 

values calculated for voltages from V=J-1 I are a small 

amount bigger than predictable and this lets us to achieve the 

final results in fewer iterations. This is a common idea in some 

conventional methods such as Gauss-Seidel as in this case the 

voltage increments are multiplied by a coefficient called 

accelerating factor which always exceeds unity [5]. To fulfill 

our idea, we define a second error limit called ε ′ and when 

the slope of the main error, current mismatches, settled in this 

limit, we won't update the Jacobian matrix henceforward. In 

this work once we have taken the second root of the main 

error limit, ε , for ε ′ and once more the forth root of the 

main error limit, 
4 ε , for it. 

IV. APPLING THE MODIFIED ALGORITHM TO TEST SYSTEMS 

AND COMPARING ITS EFFICIENCY WITH  THE CONVENTIONAL 

METHOD

To illustrate the practicality of our proposed modification, 

we have applied both the conventional and modified 

algorithms to four different networks. The first is a simple test 

system presented in [3] for demonstration of the conventional 

methodology. Figure (2) describes this system. Ground 

impedances are unequal and the three phase load is 

unbalanced, additionally to increase the unbalances, the phase 

c of transmission line 2-3 was assumed open. Two other test 

networks of figures (3) and (4) are expansions of the first one 

related to real cases. These two networks are four wire 

systems and have been grounded at all nodes with unequal 

impedances. Single line diagram representation is just for 

simplicity. The loads are unbalanced and the phases c of line 

2-3 and a of line 4-5 in 7 node system and the phases c of line 

5-7, b of line 8-11 and a of line 14-15 in 15 node system are 

considered open. The forth test network is the IEEE 4 node 

test feeder [6]; in this case there aren't neutral wire and ground 

impedances and the unbalance is minimum and only due to the 
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unbalanced loads. We have executed the algorithms which 

were implemented in a high level programming language on a 

1.5 MHz PC. The number of total iterations, the number of the 

times of updating the Jacobian matrix and the total time of the 

load flow computations for these four test systems, in 

conventional and modified methods are summarized in table 

(1). We have applied the modified technique for two cases 

once with ε ′ = ε  and once more withε ′ =
4 ε . Of course 

because of an equal error limit (ε ) in both conventional and 

modified methods the load flow results are the same in this 

error band. Table (1) shows a great reduction in the amount of 

updating the Jacobian matrix in the modified method. Also it 

shows that the number of total iteration is decreased. Both of 

these have led to a significant saving of computational 

expenses so that the time of the computations has been 

reduced considerably by means of the proposed modification. 

The bigger value for ε ′ has better improvement. This value 

for the 7 and 15 node test systems has achieved an average 

50% speedup. 

TABLE I

COMPARISONS OF THE SPEED AND THE COMPUTATION TIME BETWEEN THE CONVENTIONAL [3] AND THE MODIFIED ALGORITHMS

IEEE 4 node test feeder 15 node test system 7 node test system 3 node test system 

Conv. 

method2 ε
ε =′

4 ε
ε =′

Conv. 

method 2 ε
ε =′

4 ε
ε =′

Conv. 

method2 ε
ε =′

4 ε
ε =′

Conv. 

method 2 ε
ε =′

4 ε
ε =′

121211221911383223121211
Number of the total 

iterations

1242224138971241
Number of the 

Jacobian updates 

209203185797484344510328290219204188
Time of the load flow 

(ms) 

Fig. 2. 3-bus test system diagram 

Fig. 4. 15-bus test system 

Fig. 3. 7-bus test system 

Fig. 5. IEEE 4-bus test feeder 

V. CONCLUSIONS

In this paper, we propose a successful method for solution of 

the four wire power flow problem. The method is based on the 

current injection technique and the Newton-Raphson 

formulation which has better numerical stability and 

convergence speed comparing with conventional methods which 

use power mismatch equations. Furthermore, it is capable deal 

with the distributed generations as PV buses. It can also solve the 

sub-transmission loops as a part of solution of distribution 

system. In this method the neutral wires and ground 

impedances are considered separately. The other benefit is that 

the Jacobian matrix is sparse and retains the same structure as 

of the nodal admittance matrix. A modification is proposed for 

the algorithm which drastically improves the convergence speed 

by reducing the number of the iterations and computational cost 

of each iteration. Results obtained from several case studies of 
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applying our modified load flow algorithm to unbalanced 

systems confirm this considerable improvement. 

VI. APPENDIX

The elements of the second part of (7) are calculated 

according to the load ZIP model parameters and the last 

calculated voltage for each node: 
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