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CLOSABILITY OF FARTHEST POINT MAPS IN FUZZY

NORMED SPACES

(DEDICATED IN OCCASION OF THE 70-YEARS OF

PROFESSOR HARI M. SRIVASTAVA)

ALIREZA KAMEL MIRMOSTAFAEE, MAJID MIRZAVAZIRI

Abstract. Let (X,N) be a fuzzy normed space. For each 0 < � < 1 and a
non-empty subset A of X, we define a natural notion for �-farthest points from

A and a set-valued map x 7→ Q�(A, x), called the fuzzy �-farthest point map.

Then we will investigate basic properties of the fuzzy �-farthest point mapping.
In particular, we show that the fuzzy �-farthest point map is closable.

1. Introduction

Together with advances in fuzzy theory, it seems necessary to create and develop
an environment so the mathematical precision meet the reality of fuzzy systems.
To achieve this goal, traditional objects of mathematics are changed to their fuzzy
versions to obtain more compact formulations or more general results. This divided
mathematics into two parts: in one traditional, i. e. crisp structures are studied,
while the second part encompasses fuzzification of these structures.

The concept of a fuzzy norm on a linear space was initiated by Katsaras [8] in
1984. Later, some mathematicians defined notions for a fuzzy norm from different
points of view. In particular, following [2], Bag and Samanta in [3] and [4], intro-
duced and studied an idea of a fuzzy norm on a linear space in such a manner that
its corresponding fuzzy metric is of Kramosil and Michalek type [9].

The notion of the farthest points has many nice applications in the study of
some geometrical properties of a normed linear space, see e.g. [1, 5, 10, 11]. In this
paper, we use the notion of a fuzzy norm introduced in [3] to define natural notions
for fuzzy farthest points, fuzzy bounded subsets of a fuzzy normed space and fuzzy
closability. Then we will prove the closability of the fuzzy farthest point map from
a fuzzy bounded subset of a fuzzy normed space.
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2. Fuzzy farthest points

To start with, following [3] and [4], we will give a notion of a fuzzy normed space.

Definition 2.1. Let X be a complex linear space. By a fuzzy norm on X, we
mean a fuzzy subset of X × [0,∞) such that the following conditions hold for all
x, y ∈ X and scalars c, s, t:

(N1) N(x, 0) = 0 for each x ∕= 0;
(N2) x = 0 if and only if N(x, t) = 1 for all t ≥ 0;
(N3) N(cx, t) = N(x, t

∣c∣ ), whenever c ∕= 0;

(N4) N(x+ y, s+ t) ≥ min{N(x, s), N(y, t)} (the triangle inequality);
(N5) limt→∞N(x, t) = 1.

A linear space X with a fuzzy norm N , will be denoted by (X,N) and is called a
fuzzy normed space. It follows from (N2) and (N4) that N(x, .) is an increasing
function for each x ∈ X. In fact, if x ∈ X and 0 < s < t, then

N(x, t) ≥ min{N(x, s), N(0, t− s)} = N(x, s).

One may regard N(x, t) as the truth value of the statement ‘the norm of x is less
than or equal to the real number t’.

Example 2.2. Let (X, ∥.∥) be a normed linear space. It is easy to verify that

N(x, t) =

{ t
t+∥x∥ x ∕= 0

1 x = 0

defines a fuzzy norm on X.

Definition 2.3. Let {xn} be a sequence in X and � ∈ (0, 1). We say that the
sequence {xn} is �-convergent to x ∈ X, and write xn →� x or �-limn→∞ xn = x,
if

∀" > 0 ∀� > 0,∃n0 such that n ≥ n0 implies that N(x− xn, �) ≥ �− ".

It is called convergent to x, and write xn → x, if it is �-convergent to x for each
� ∈ (0, 1), or equivalently limn→∞N(x− xn, ") = 1 for each " > 0.

Throughout the rest of this section, unless otherwise is stated, we will assume
that � ∈ (0, 1) and (X,N) is a fuzzy normed space.

Definition 2.4. A subset A of X is said to be fuzzy �-bounded if there is a positive
real number m such that N(a,m) ≥ � for all a ∈ A. A is called fuzzy bounded, if
it is �-bounded for each � ∈ (0, 1).

Definition 2.5. Let A be a fuzzy �-bounded subset of X. For x ∈ X, we define
Q�(A, x) to be

{a ∈ A : if 0 < s < t then N(x− a, s) ≥ � implies N(x− b, t) ≥ � for all b ∈ A}.

If there is no danger of ambiguity, we denote Q�(A, x) simply by Q�(x). Each
element a ∈ Q�(x) is called a fuzzy �-farthest point of A from x and the map
x 7→ Q�(x) is called the �-farthest point map associated to A. The set A is said
to be fuzzy �-remotal in X if for each x ∈ X, Q�(x) is nonempty. A is called
�-singleton if for each a, b ∈ A and each t > 0, the relation N(a − b, t) ≥ � hold.
Clearly, A is singleton if and only if it is �-singleton for all � ∈ (0, 1). If Q�(x)
is �-singleton then we say that x admits an �-unique �-farthest point in X. A is
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said to be fuzzy �-uniquely remotal in X if each x ∈ X admits �-unique �-farthest
point in A.

Remark. If for some x ∈ X, Q�(x) is not empty, then A is fuzzy �-bounded. To
see this, let a ∈ Q�(x). By (N5) there is an s0 > 0 such that N(x − a, s0) ≥ �.
Thus for t0 = s0 + 1 and each b ∈ A we have N(x − b, t0) ≥ �. Moreover, we
can find some t1 > 0 such that N(x, t1) ≥ �. Thus for m = t0 + t1 we have
N(b,m) ≥ min{N(b − x, t0), N(x, t1)} ≥ � for each b ∈ A. This shows that A is
fuzzy �-bounded. So we will assume that A is �-bounded in our discussion.

Lemma 2.6. Let A be a subset of X and Q� denote the �-farthest point map
associated to A. Let a ∈ A and for some q�(x) ∈ Q�(x),

N(a− q�(x), t) ≥ �
for all t > 0. Then a ∈ Q�(x).

Proof. Let s < t and N(x− a, s) ≥ �. Then for " = t− s,

N(x− q�(x), s+
"

2
) ≥ min{N(x− a, s), N(a− q�(x),

"

2
)}

≥ min{�, �}
= �.

Let b ∈ A. Since t = s+" > s+ "
2 , the definition of Q�(x) implies that N(x−b, t) ≥

�. Thus a ∈ Q�(x). □

Corollary 2.7. Let A be a fuzzy �-uniquely remotal subset of X. If Q�(x) ∩
Q�(y) ∕= � then Q�(x) = Q�(y).

Proof. Let a ∈ Q�(x) ∩ Q�(y). Then for each q�(x) ∈ Q�(x), q�(y) ∈ Q�(y) and
t > 0, we have

N(a− q�(x),
t

2
) ≥ � and N(a− q�(y),

t

2
) ≥ �.

Therefore

N(q�(x)− q�(y), t) ≥ min{N(a− q�(x),
t

2
), N(a− q�(y),

t

2
)} ≥ �.

Therefore, by Lemma 2.6, Q�(x) = Q�(y). □

Definition 2.8. Let A be a fuzzy bounded subset of X. For x ∈ X, we define

Q(A, x) = ∩�∈(0,1)Q�(A, x).

When there is no difficulty to understand the set A, we simply denote Q(A, x) by
Q(x). Each element a ∈ Q(x) is called a fuzzy farthest point of A from x and the
map x 7→ Q(x) is called the fuzzy farthest point map associated to A.

Lemma 2.9. Let A be a fuzzy bounded subset of X. Then
(i) Q(x) = {a ∈ A : ∀b ∈ A N(x− a, s) ≤ N(x− b, t) if 0 < s < t}.
(ii) A is fuzzy uniquely remotal if and only if Q(x) is singleton for each x ∈ X.

Proof. (i) Let a ∈ Q(x). Then for each � ∈ (0, 1) and b ∈ A,

N(x− a, s) < � or N(x− b, t) ≥ �,
if 0 < s < t. Let � = N(x − a, s), since a ∈ Q�(x), we have N(x − b, t) ≥ � =
N(x− a, s) for t > s .
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Conversely, if N(x− a, s) ≤ N(x− b, t) for all b ∈ A and all s < t then for each
� ∈ (0, 1) with N(x − a, s) ≥ �, we have � ≤ N(x − a, s) ≤ N(x − b, t). By the
definition, a ∈ Q�(x), for all � ∈ (0, 1). Hence a ∈ Q(x).

(ii) Let A be uniquely remotal. Then for each a, b ∈ Q(x) and each � ∈ (0, 1)
we have a, b ∈ Q�(x). Thus N(a − b, t) ≥ � for each t > 0 and each � ∈ (0, 1).
This implies that N(a − b, t) = 1 for all t > 0. By (N1) we have a − b = 0. Thus
Q(x) is singleton. The converse is obvious. □

The following result shows that the �-farthest point map is closable, i.e. if
xn →� x and q�(xn) ∈ Q�(xn) for each n and q�(xn)→� y, then y ∈ Q�(x).

Theorem 2.10. Let A be a fuzzy �-bounded subset of X and x 7→ Q�(x) be the
fuzzy �-farthest point map. If xn →� x and q�(xn) ∈ Q�(xn) for each n and
q�(xn)→� y. Then y ∈ Q�(x).

Proof. Let s < t, " = t− s and N(x− y, s) ≥ �. Take some n0 ∈ ℕ, such that for
each n ≥ n0,

N(xn − x,
"

8
) ≥ � and N(y − q�(xn),

"

8
) ≥ �.

If for some n ≥ n0,

N(xn − q�(xn), s+
"

4
) < �.

Then for some n ≥ n0,

� > N(xn − q�(xn), s+
"

4
)

≥ min{N(xn − x,
"

8
), N(x− y, s), N(y − q�(xn),

"

8
)

≥ min{�,N(x− y, s), �}
≥ �

which is a contradiction. Hence

N(xn − q�(xn), s+
"

2
) ≥ N(xn − q�(xn), s+

"

4
) ≥ �

for all n ≥ n0, therefore, by the definition of Q�(xn),

N(xn − b, s+
"

2
) ≥ � ∀n ≥ n0, ∀b ∈ A.

Thus for each b ∈ A and n ≥ n0,

N(x− b, t) = N(x− b, s+ ")

≥ min{N(x− xn,
"

2
), N(xn − b, s+

"

2
)}

≥ min{�, �}
= �.

By the definition, y ∈ Q�(x). □

Corollary 2.11. Let A be a fuzzy bounded subset of X and x 7→ Q(x) be the fuzzy
farthest point map. If xn → x and q(xn) ∈ Q(xn) for each n and q(xn)→ y. Then
y ∈ Q(x).

Proof. Use Theorem 2.10 and Lemma 2.9. □
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3. Applications in traditional normed spaces

In this section, we state some results of farthest point problems as easy conse-
quences of the corresponding results in fuzzy mathematics.

Let (X, ∥ ⋅ ∥) be a normed linear space and A be a bounded subset of X. Define
the set valued map Q(A, .) : X → 2A by

Q(A, x) = {a ∈ A : ∣∣x− a∣∣ = sup{∣∣x− b∣∣ : b ∈ A} }.

If there is no danger of ambiguity, we denote Q(A, x) simply by Q(x). If for each
x ∈ X, the set Q(A, x) is nonempty, then A is said to be remotal in X. If moreover,
Q(A, x) is singleton for each x ∈ X, then A is said to be uniquely remotal in X.

The following Lemma shows that our definitions and results coincide with the
ordinary cases when we consider a traditional normed space equipped with the
structure mentioned in Example 2.2.

Lemma 3.1. Let (X, ∣∣ ⋅ ∣∣) be a normed space and A be a bounded subset of X.
Then ∩�∈(0,1)Q�(A, x), where Q�(A, x) is in the sense of Definition 2.5 with the
fuzzy norm defined by Example 2.2, is equal to Q(A, x) in (X, ∣∣ ⋅ ∣∣).

Proof. Let a ∈ ∩�∈(0,1)Q�(A, x). We may assume that a ∕= x. Thus for each � ∈
(0, 1) and each 0 < s < t and b ∈ A we have N(x−a, s) ≥ � implies N(x−b, t) ≥ �.
This is equivalent to the fact that t

t+∥x−b∥ = N(x− b, t) ≥ N(x− a, s) = s
s+∥x−a∥

for every b ∈ A. Thus for each b ∈ A and 0 < s < t we have

t∥x− a∥ ≥ s∥x− b∥.

By letting s→ t, we see that

∣∣x− b∣∣ ≤ ∣∣x− a∣∣ (b ∈ A).

I. e. a ∈ Q(A, x) in (X, ∣∣ ⋅ ∣∣).
Conversely, suppose that a ∈ Q(A, x) in (X, ∣∣ ⋅ ∣∣), then for each b ∈ A, ∣∣x−b∣∣ ≤

∣∣x− a∣∣. It follows that

N(x− b, t) ≤ N(x− a, t) (b ∈ A, t > 0).

By the definition a ∈ ∩�∈(0,1)Q�(A, x). □

Theorem 3.2. Let A be a bounded subset of a normed space X and x 7→ Q(x) be
the farthest point map. If xn → x and q(xn) ∈ Q(xn) for each n and q(xn) → y.
Then y ∈ Q(x).

Proof. Equip X with the structure mentioned in Example 2.2 to be a fuzzy normed
space. Then A is a fuzzy �-bounded subset of X for each � ∈ (0, 1), Q(x) =
∩�∈(0,1)Q�(x) and Q(xn) = ∩�∈(0,1)Q�(xn). Moreover xn → x is equivalent to
xn →� x. The result is now achieved by Theorem 2.10. □

Corollary 3.3. Let A be a bounded subset of a normed space X and x 7→ Q(x)
be the fuzzy farthest point map. If xn → x and q(xn) ∈ Q(xn) for each n and
q(xn)→ y. Then y ∈ Q(x).
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