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a b s t r a c t

In this paper, we derive the β-entropy for Pareto-type and related distributions. Further,
the β-entropy for some weighted versions of these distributions, such as order statistics,
proportional hazards, proportional reversed hazards, probability weighted moments,
upper record and lower record, is obtained.
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1. Introduction

The origin of the term entropy goes back to the works of Clausius (1864) and Boltzmann (1872) in Thermodynamics. The
idea of information-theoretic entropy was first introduced by Shannon (1948) and later by Weiner (1949) in Cybernetics.
Over the past 60 years, after Shannon (1948) introduced his measure of entropy, a huge number of papers, books and
monographs have been published on its extensions and applications, among which are Renyi (1961), Havrda and Charvat
(1967), Tsallis (1988), Kapur (1989), Ullah (1996), Dragomir (2003), Cover and Thomas (2006), Asadi et al. (2006) and
Harremoes (2006). A well-known parametric extension of the Shannon entropy is β-entropy, which was defined by Havrda
and Charvat (1967) and later studied in more detail by Tsallis (1988). Although β-entropy was first introduced by Havrda
and Charvat in the context of cybernetics theory, it was Tsallis who exploited its non-extensive features and placed it in
a physical setting. Hence β-entropy is also known as Tsallis entropy. In recent years, authors have shown more interest
in studying the properties and applications of Tsallis entropy. For more details, one can see Plastino and Plastino (1999),
Tsallis (2002), Tsallis and Brigatti (2004), Jizba and Arimitsu (2004), Suyari (2004), Bercher (2008), Singh Pharwaha and
Singh (2009) and Herrmann (2009).
The concept of a weighted distribution, which was introduced by Rao (1965), has many applications in different

areas of statistics such as survey sampling, reliability, biostatistics, etc. Many well-known probability models, such as
probability density functions of order statistics, record values, proportional hazards and proportional reversed hazards, can
be considered as weighted distributions. Motivated by this, we focus on the relation between the β-entropy of the parent
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distribution and theβ-entropy of correspondingweighted distributions, especially the distribution of order statistics, record
values, proportional hazards and proportional reversed hazards. Recently, Park (1995), Ebrahimi et al. (2004) and Oluyede
(2006) obtained various results on the information properties of order statistics. Yari andMohtashami Borzadaran (in press)
obtained the Shannon entropy for Pareto-type distributions and their order statistics. Baratpour et al. (2007) obtained some
results related to the Shannon entropy and Renyi entropy for record values. Hegde et al. (2005) found an order statistics
based estimator for the Renyi entropy. Belzunce et al. (2004) and Di Crescenzo and Longobardi (2006) investigated the
residual and past entropy for weighted distributions.
Pareto-type distributions are flexible parametricmodelswith applications inmany branches of science such as reliability,

actuarial science, economics, finance and telecommunications.
In this paper, we investigate the β-entropy of Pareto-type distributions and different associated weighted distributions

such as those for order statistics, record values, proportional hazards, proportional reversed hazards and probability
weighted moments. This paper is organized as follows. In Section 2, we present some preliminary results which will be
used in subsequent sections. Section 3 contains the main results of the paper. In this section, we obtain the β-entropy for
a general Pareto-type distribution, which has four parameters, and then we tabulate values for some specialized versions.
Further, we derive the β-entropy for the order statistics, record values, proportional hazards and proportional reversed
hazards related to Pareto-type distributions. Finally, Section 4 is devoted to the conclusions.

2. Preliminaries

Pareto distributions providemodels formany applications in social, natural and physical sciences and are related tomany
other families of distributions.
A hierarchy of the Pareto distributions has been established starting from the classical Pareto (I) distribution, and

subsequently additional parameters related to location, scale, shape and inequality are introduced. A general version of this
family of distributions is called the Pareto (IV) distribution, which is discussed in Arnold (1983). The cumulative distribution
function of the Pareto (IV) distribution is

F(x) = 1−

[
1+

(
x− µ
θ

) 1
γ

]−α
, x > µ, (1)

where −∞ < µ < ∞, θ > 0, γ > 0 and α > 0 are location, scale, inequality and shape parameters, respectively. This
distribution is denoted by Pareto (IV) (µ, θ, γ , α), and its density function is as follows:

f (x) =
α
( x−µ

θ

) 1
γ −1

θγ

[
1+

( x−µ
θ

) 1
γ

]α+1 , x > µ. (2)

• Setting (α = 1), (γ = 1) and (γ = 1, µ = θ) in relations (1) and (2), one at a time, leads to the cumulative distribution
function and probability density function of the Pareto (III), Pareto (II) and Pareto (I) distributions, respectively.
• A special case of the Pareto (IV) distribution inwhichµ = 0, γ → 1

γ
implies the Burr (XII) distributionwith the following

cumulative distribution and probability density functions:

F(x) = 1−
[
1+

( x
θ

)γ ]−α
, x > 0, α, γ > 0, (3)

f (x) =
(αγ
θ

) ( x
θ

)γ−1 [
1+

( x
θ

)γ ]−(α+1)
, x > 0, α, γ > 0. (4)

2.1. Weighted distributions

LetX be anon-negative randomvariablewith a probability density function f (x; θ), where thenatural parameter is θ ∈ Ω
(Ω is the parameter space). The weight functionw(x, β) is a non-negative function with the parameter β representing the
recording (sighting) mechanism. Corresponding tow(x, β), we have a probability density function

f w(x; θ, β) =
w (x, β) f (x; θ)
E [w (X, β)]

,

where E[w(X, β)] is the normalizing factor. The random variable Xw is called the weighted version of the random variable
X and its distribution is called the weighted distribution with weight functionw, as mentioned in Patil (2002). Some special
weight functions are as follows.
• w(x) = xkelxF i(x)F̄ j(x). Setting (l = 0), (k = j = i = 0), (l = i = j = 0), (k = l = 0, i → i − 1, j = n − i), (k =
l = i = 0) and (k = l = j = 0) in this weight function, one at a time, implies probability weighted moments, moment-
generating functions, moments, order statistics, proportional hazards and proportional reversed hazards, respectively,
where F(x) = P(X ≤ x) and F̄(x) = 1− F(x).
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• w(x) = (− ln F̄(x))n(− ln F(x))m. Setting (n = 0) and (m = 0), one at a time, implies lower record and upper record,
respectively.

2.2. β-entropy

Let X be a continuous random variable with a probability density function f (x). The Shannon entropy is defined as

H(f ) = −
∫
χ

f (x) log f (x)dx, (5)

where χ is the support of the random variable.
The Shannon entropy is the expected value of the function g(f ) = − log f , in which g(1) = 0 and g(0) = ∞. In general,

we can choose any convex function g(f ) as a measure of information content, provided that g(1) = 0 (Khinchin, 1957). The
expected information content is then given by

Hg(f ) = E[g(f )] =
∫
χ

g(f )f (x)dx,

and we refer to this as a class of g-entropies (Ullah, 1996). A class of smooth functions that can be presented is as follows:

g(f ) =


1

β − 1
(1− f β−1), β 6= 1, β > 0,

− log(f ), β = 1,
(6)

where β is a non-stochastic constant. The entropy measure of this class is as follows:

Hβ (f ) =


1

β − 1

[
1−

∫
χ

f βdx
]
, β 6= 1, β > 0,

−E[log (f )] = H(f ), β = 1,
(7)

which is called β-class entropy. β-entropy was originally introduced by Havrda and Charvat (1967) and later applied to
physical problems by Tsallis (1988). Tsallis exploited its non-extensive features and placed it in a physical setting (hence it
is also known as Tsallis entropy). It is currently fruitfully used inmany statistical systems: three-dimensional fully developed
hydrodynamic turbulence, two-dimensional turbulence in pure electron plasma, Hamiltonian systems with long-range
interactions, granular systems, systems with strange non-chaotic attractors, peculiar velocities in galactic clusters, etc. (for
more details, see Jizba and Arimitsu, 2004). Moreover, β-entropy is a one-parameter generalization of the Shannon entropy
which can lead to models or statistical results that are different from those obtained by using the Shannon entropy. Bear in
mind that the β-entropy is a monotonic function of the Renyi entropy (Ullah, 1996). On the other hand, Tsallis distributions
(those derived from the maximization of Tsallis entropy) are of great interest in many physical systems because they can
exhibit heavy tails andmodel power-lawphenomena. Indeed, power laws are especially interesting since they appearwidely
in physics, biology, economics and many other fields. In addition, Tsallis distributions are similar to generalized Pareto
distributions and appear as the limit distribution of excesses over a threshold (see Bercher, 2008). Also, note that β-entropy
is non-extensive and β can be seen as measuring the degree of non-extensivity. Recently, many papers have been published
about Tsallis entropy and its applications, such as Plastino andPlastino (1999), Ullah (1996), Tsallis andBrigatti (2004), Suyari
(2004), Singh Pharwaha and Singh (2009) and Herrmann (2009). A review of its successful applications was presented in
Tsallis (2002).
In the next section, we concentrate on the β-entropy for different versions of the Pareto-type distributions and its

properties.

3. Main results

In this section, we derive the β-entropy for Pareto-type distributions and for some of their weighted versions such as
probability weighted moments, order statistics, record values, proportional hazards and proportional reversed hazards.

3.1. β-entropy for Pareto-type distributions

Let X be a random variable with the probability density function (2); then we have

Hβ(f ) =
1

β − 1

{
1−

αβΓ [β(1− γ )+ γ ]Γ [β(α + γ )− γ ]
(γ θ)β−1Γ [β(α + 1)]

}
, (8)

where Hβ(f ) is β-entropy obtained via the type-2 beta integral. Further,

lim
β→1
Hβ(f ) = ln

(
γ θ

α

)
+ (γ − 1) [ψ (1)− ψ (α)] +

α + 1
α
= H(f ), (9)
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Table 1
β-entropy for some particular values of the parameters for Pareto distributions.

Distribution Density function Hβ

Pa
(
µ, α, γ , 1

γ

)
α[γ (x−µ)]

1
γ −1

{1+[γ (x−µ)]
1
γ }α+1

1
β−1

{
1− αβ Γ [β(1−γ )+γ ]Γ [βα+βγ−γ ]

Γ [β(α+1)]

}
Pa(0, α, 1, λα;α→∞) (Weibull) 1

γ
x
1
γ −1e−x

1
γ 1

β−1

{
1−

λ1−β [n
(
n−1
i−1

)
]
βΓ [β(n−i+1)]Γ [β(i−1)+1]

Γ [βn+1]

}
Pa(0, α, 1, θ) (Lomax) αθα

(x+θ)(α+1)
1

β−1

(
1− αβ θ1−β

βα+β−1

)
Pa(0, 1, 1, θ) (Log-logistic) θ

(x+θ)2
1

β−1

(
1− θ1−β

2β−1

)
P(µ, 1, 1, 1) 1

(1+x−µ)2
, x > µ 2

2β−1

Pa(0, α, 1, λα;α→∞) (Exponential) 1
λ
e
−x
λ

β−λ1−β

β(β−1)

where ψ is the digamma function. This result is the same as that achieved by Yari and Mohtashami Borzadaran (in press)
from the viewpoint of the Shannon entropy.
• For Pareto (III) and Pareto (II) distributions, we have

Hβ(f ) =
1

β − 1

{
1−

Γ [β(1− γ )+ γ ]Γ [β(1+ γ )− γ ]
(γ θ)β−1Γ [2β]

}
, (10)

Hβ(f ) =
1

β − 1

{
1−

αβΓ [β(α + 1)− 1]
θβ−1Γ [β(α + 1)]

}
, (11)

as their β-entropy, respectively.
Since β-entropy expressions of the Pareto family are not dependent on µ, we have

Hβ(Pareto(I)) = Hβ(Pareto(II)). (12)
• Note that limβ→1 Hβ(f ) for Pareto (III), Pareto (II) and Pareto (I) distributions is the same as achieved by Yari and
Mohtashami Borzadaran (in press) for the Shannon entropy.
• By replacing γ with 1

γ
in (8), we have the β-entropy of the Burr (XII) distribution as follows:

Hβ(f ) =
1

β − 1

1− θ

γ

(αγ
θ

)β Γ [ β(γ−1)+1γ

]
Γ

[
β(αγ+1)−1

γ

]
Γ [β(α + 1)]

 , (13)

for which the Shannon entropy is obtained as

lim
β→1
Hβ(f ) = ln

(
θ

αγ

)
+ (γ − 1)

[
ψ (α)− ψ (1)

γ

]
+

(
α + 1
α

)
= H(f ). (14)

Theβ-entropy values for particular values of the parameters for some versions of the Pareto-type distributions have been
derived and are summarized in Table 1.

3.2. β-entropy for a weighted version of the Pareto-type distributions

Let X be a random variable with the probability density function (2) and

w(x) = xkF i(x)F̄ j(x), (15)
as a weight function; then we have

f w(x) =
xkF i(x)F̄ j(x)f (x)
E[XkF i(X)F̄ j(X)]

. (16)

By taking 1+ ( x−µ
θ
)
1
γ = t in (2), we have

E[XkF i(X)F̄ j(X)] = αµk
∫
∞

1

[
1+

θ

µ
(t − 1)γ

]k
[1− t−α]it−αj−α−1dt. (17)

As mentioned in Nadarajah and Kotz (2007), we know that

(1− x)p =
∞∑
m=0

(−1)mA(p,m)xm (18)
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and

(1+ x)p =
∞∑
m=0

A(p,m)xm, (19)

where

A(p,m) =
Γ (p+ 1)

Γ (p+ 1−m)Γ (m+ 1)
. (20)

Hence,

(1− t−α)i =
∞∑
q=0

(−1)qA(i, q)t−αq. (21)

By substituting (21) in (17), we obtain

E[XkF i(X)F̄ j(X)] = αµk
k∑
m=0

∞∑
q=0

(−1)q
(
θ

µ

)m
A(k,m)A(i, q)

Γ (γm+ 1)Γ (αj+ α + αq− γm)
Γ (αj+ αq+ α + 1)

. (22)

Via a similar process, when kβ is integer we derive∫
∞

µ

xkβ [F(x)]iβ [F̄(x)]jβ [f (x)]β(x)dx = γ θ
[
αµk

γ θ

]β kβ∑
m=0

∞∑
q=0

(−1)q
(
θ

µ

)m
A(kβ,m)A(iβ, q)

×
Γ [β(1− γ )+ γm+ γ ]Γ [β(γ + γ j+ α)− γ − γm+ αq]

Γ [β + βαj+ βα + αq]
. (23)

Hence,

Hβ(f w) =
1

β − 1

×


1−

kβ∑
m=0

∞∑
q=0

(
θ
µ

)m
(−1)q A(kβ,m)A(iβ,q)Γ [β(1−γ )+γm+γ ]Γ [β(γ+αj+α)−γ−γm+αq]

Γ [β(αj+α+1)+αq]

(γ θ)β−1

[
k∑
m=0

∞∑
q=0

(
θ
µ

)m
(−1)q A(k,m)A(i,q)Γ (γm+1)Γ (αj+α+αq−γm)

Γ (αj+α+αq+1)

]β

. (24)

• For Pareto (III) and Pareto (II) distribution, Hβ(f w) is obtained via (24) by setting α = 1 and γ = 1, respectively.
• Let X be a random variable with the probability density function (4); we have

E[XkF i(X)F̄ j(X)] = αθ k
∞∑
m=0

(−1)mA(i,m)
∫
∞

1
(t − 1)

k
γ t−αj−α−1−αmdt

= αθ k
∞∑
m=0

(−1)mA(i,m)
Γ

(
k
γ
+ 1

)
Γ

(
αj+ α + αm− k

γ

)
Γ (αj+ α + αm+ 1)

. (25)

Hence,

Hβ(f w) =
1

β − 1

×

1−
(γ
θ

)β−1 ∞∑m=0(−1)m A(iβ,m)Γ
(
kβ
γ +β−

β
γ +

1
γ

)
Γ

(
αβj+αβ+αm− kβγ +

β
γ −

1
γ

)
Γ (αβj+αβ+αm+β)[

∞∑
m=0

(−1)m
A(i,m)Γ

(
k
γ +1

)
Γ

(
αj+α+αm− kγ

)
Γ (αj+α+αm+1)

]β
 . (26)

• Let X be a random variable with the probability density function (2) and

w(x) = [− ln F(x)]m[− ln F̄(x)]n; (27)

then we have

Hβ(f w) =
1

β − 1

{
1−

∫
∞

µ

[− ln F(x)]mβ [− ln F̄(x)]nβ [f β(x)]
Eβ [(− ln F(X))m(− ln F̄(X))n]

dx
}
. (28)
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The explicit form of (28) cannot be obtained, but it simplifies to the β-entropy for upper record and lower record of the
Pareto-type distributions whenm = 0 and n = 0, respectively. These are obtained in Section 3.4.

3.3. β-entropy for the order statistics of the Pareto-type distributions

Let X1, X2, . . . , Xn be a random sample of probability density function (2) and X(1:n) ≤ X(2:n) ≤ · · · ≤ X(n:n) denote the
corresponding order statistics; then

gi:n(x) =
nα
γ θ

(
n− 1
i− 1

)(
x− µ
θ

) 1
γ −1

[
1+

(
x− µ
θ

) 1
γ

]−α(n−i+1)−11− [1+ (x− µ
θ

) 1
γ

]−αi−1 , x > µ, (29)

where gi:n(x) is the probability density function of X(i:n). The β-entropy for gi:n(x) is obtained via (24) by replacing i, j and k
with i− 1, 0 and n− i, respectively, and is of the form:

Hβ(gi:n) =
1

β − 1

[
1− γ θ

[
nα
γ θ

(
n− 1
i− 1

)]β

×

∞∑
q=0

(−1)qA[β(i− 1), q]
Γ [β(1− γ )+ γ ]Γ [αβ(n− i+ 1)+ βγ + αq− γ ]

Γ [αβ(n− i+ 1)+ αq+ β]

]
. (30)

Also,

lim
β→1
Hβ (gi:n) = − ln

[
nα
γ θ

(
n− 1
i− 1

)]
+ [α(n− i+ 1)+ 1]

[
ψ(n+ 1)− ψ(n− i+ 1)

α

]
+ (i− 1)[ψ(n− 1)− ψ(i)] + (γ − 1)n

(
n− 1
i− 1

)

×

i−1∑
q=0

(−1)q
(
i− 1
q

)[
ψ(1)− ψ[α(n− i+ q+ 1)]

n− i+ 1+ q

]
= H(gi:n). (31)

This result is the same as that achieved by Yari and Mohtashami Borzadaran (in press).
Note that, in the process of finding (31), we have used the following relations:

∞∑
m=0

(−1)mA(p,m)
1

m+ n− i+ 1
=
Γ (p+ 1)Γ (n− i+ 1)
Γ (n− i+ p+ 2)

(32)

and
∞∑
m=0

(−1)mA(p,m)
1

(m+ n− i+ 1)2
=
Γ (p+ 1)Γ (n− i+ 1)
Γ (n− i+ p+ 2)

[ψ(n− i+ p+ 2)− ψ(n− i+ 1)]. (33)

• For the Pareto (III) and Pareto (II) distributions, Hβ(gi:n) is obtained by setting (α = 1) and (γ = 1) in (30), respectively.
The β-entropy for the Pareto (I) and Pareto (II) distributions is the same. In addition, for the Burr (XII) distribution one
can find the β-entropy via a similar process.

3.4. β-entropy for record values of the Pareto-type distributions

Suppose X1, X2, . . . , Xn to be a random sample of probability density function (2); then probability density function of
the upper record is

u(x) =

[
− ln

[
1+

( x−µ
θ

) 1
γ

]−α]n−1
Γ (n)

f (x), (34)

and the probability density function of the lower record is

l(x) =

[
− ln

(
1−

[
1+

( x−µ
θ

) 1
γ

]−α)]n−1
Γ (n)

f (x). (35)
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Table 2
β-entropy for the order statistics and proportional hazards for some particular values of the parameters for Pareto distributions.

Distribution Hβ for Order statistics Hβ for proportional hazards

Pa(µ, 1, γ , θ) (Pareto (III)) 1
β−1

{
1−

γ θ [ 1iγ θ (
n
i )]

βΓ [β(n−i+1+γ )−γ ]Γ [β(i−γ )+γ ]

Γ [β(n+1)]

}
1

β−1

{
1− (j+1)βΓ [β(1−γ )+γ ]Γ [β(j+1+γ )−γ ]

(γ θ)β−1Γ [β(j+2)]

}
Pa(0, α, 1, θ) (Lomax) 1

β−1

{
1− θ [ αiθ

( n
i

)
]
β Γ [β(n+1−i)+

β−1
α ]Γ [β(i−1)+1]

αΓ [βn+1+ β−1α ]

}
1

β−1

{
1− [α(j+1)]β

θβ−1[β(αj+α+1)−1]

}
Pa(0, α, 1, λα;α→∞) (Exponential) 1

β−1

{
1−

[n
(
n−1
i−1

)
]
βΓ [β(n+1−i)]Γ [β(i−1)+1]

λβ−1Γ [βn+1]

}
1

β−1

{
1− (j+1)β−1

βλβ−1

}
Pa(0, 1, 1, θ) (Log-logistic) 1

β−1

{
1−

θ [ 1iθ (
n
i )]

βΓ [β(n−i+2)−1]Γ [β(i−1)+1]
Γ [β(n+1)]

}
1

β−1

{
1− (j+1)β

θβ−1[β(j+2)−1]

}
Pa(µ, 1, 1, 1) 1

β−1

{
1−

[
1
i (
n
i )]

βΓ [β(n−i+2)−1]Γ [β(i−1)+1]
Γ [β(n+1)]

}
1

β−1

{
1− (j+1)β

β(j+2)−1

}

Thus by setting (m = 0 and replacing nwith n−1) and (n = 0 and replacingmwithm−1) in (28), one at a time, we derive

Hβ(u) =
1

β − 1

{
1− γ θ

[
αn

γ θΓ (n)

]β ∞∑
m=0

(−1)m
Γ (β − βγ + γ )

Γ (β − βγ + γ −m)Γ (m+ 1)
Γ (β(n− 1)+ 1)

(βα + βγ − γ )β(n−1)+1

}
(36)

and

Hβ(l) =
1

β − 1

γ θα
[

α

γ θΓ (n)

]β ∞∑
m=0

∞∑
q=0

(−1)m+q
Γ (β − βγ + γ )

Γ (β − βγ + γ −m)Γ (m+ 1)

×

Γ

(
βγ

α
−

γ

α
+
m
α
+ β

)
Γ (β(n− 1)+ 1)

Γ

(
βγ

α
−

γ

α
+
m
α
+ β − q

)
Γ (q+ 1)(1+ q)β(n−1)+1

 , (37)

as the β-entropy for the upper and lower records of the Pareto-type distributions, respectively.

• For the Pareto (III), Pareto (II), Pareto (I) and Burr (XII) distributions, the β-entropy can easily be found for upper and
lower records.

3.5. β-entropy for proportional hazards and proportional reversed hazards of Pareto-type distributions

Consider the Pareto (IV) distribution with cumulative distribution function (1); then, by setting (i = 0, k = 0) and
(j = 0, k = 0), one at a time, in (26), we obtain

Hβ

[
F̄ j(x)f (x)
E(F̄ j(X))

]
=

1
β − 1

{
1− γ θ

[
α(j+ 1)
γ θ

]β
Γ [β(1− γ )+ γ ]Γ [β(αj+ α + γ )− γ ]

Γ [β(αj+ α + 1)]

}
(38)

and

Hβ

[
F i(x)f (x)
E(F i(X))

]

=
1

β − 1

{
1− γ θ

[
α(i+ 1)
γ θ

]β ∞∑
m=0

(−1)m
Γ (βi+ 1)Γ [β(1− γ )+ γ ]Γ [β(α + γ )+ αm− γ ]

Γ (βi+ 1−m)Γ (m+ 1)Γ [β(α + 1)+ αm]

}
, (39)

which give the β-entropy for the proportional hazards and proportional reversed hazards for the Pareto (IV) distribution,
respectively.

• For the Pareto (III), Pareto (II), Pareto (I) and Burr (XII) distributions,Hβ [
F̄ j(x)f (x)
E(F̄ j(X))

] andHβ [
F i(x)f (x)
E(F i(X))

] can be derived by setting

(α = 1), (γ = 1), (γ = 1, µ = θ) and (µ = 0, γ → 1
γ
) in (38) and (39) as the β-entropy for proportional hazards and

proportional reversed hazards, respectively.

Theβ-entropy values for the order statistics and proportional hazards for someparticular values of the parameters for Pareto
distributions have been derived and are summarized in Table 2.

Remark 1. Based onHβ for the order statistics, presented in Table 2, theβ-entropy for the first-order statistics froma sample
of Pa(µ, α, 1, θ), Pa(µ, 1, 1, θ), Pa(µ, 1, 1, 1), Lomax, exponential and log-logistic distributions has a simple form. Also, the
β-entropy for the upper record for the above distributions can be shown to have a simple form.
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4. Conclusions

In this paper, the β-entropy for Pareto-type distributions and their related distributions has been obtained. Also, the
β-entropy for the weighted versions of these distributions and their special cases such as order statistics, proportional
hazards, proportional reversed hazards, probability weighted moments, upper and lower records has been obtained.
Furthermore, for some particular values of parameters, the β-entropy values for Pareto-type distributions, their order
statistics and proportional hazards have been derived and summarized in Tables 1 and 2. We have shown that our results
reduce to the Shannon entropy as β tends to one. Some of these Shannon entropy results were derived by Yari and
Mohtashami Borzadaran (in press).
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