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Abstract Expected utility maximization problem is one of the most useful tools in
mathematical finance, decision analysis and economics. Motivated by statistical model
selection, via the principle of expected utility maximization, Friedman and Sandow
(J Mach Learn Res 4:257–291, 2003a) considered the model performance question
from the point of view of an investor who evaluates models based on the perfor-
mance of the optimal strategies that the models suggest. They interpreted their perfor-
mance measures in information theoretic terms and provided new generalizations of
Shannon entropy and Kullback–Leibler relative entropy and called them U -entropy
and U -relative entropy. In this article, a utility-based criterion for independence of two
random variables is defined. Then, Markov’s inequality for probabilities is extended
from the U -entropy viewpoint. Moreover, a lower bound for the U -relative entropy is
obtained. Finally, a link between conditional U -entropy and conditional Renyi entropy
is derived.
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1 Introduction and motivations

Statistical modeling is a critical tool in scientific research. A statistical model is a
probability distribution that uses observed data to approximate the true distribution
of probabilistic events. In practice, model selection and evaluation are central issues,
and a crucial aspect is selecting the most appropriate model from a set of candidate
models. Therefore, probabilistic model builders and model users often must choose
the best model from some collection of models. There are a number of different model
performance measures that arise in different contexts. For example, in the informa-
tion-theoretic approach advocated by Akaike (1973), Akaike (1974), the Kullback
and Leibler (1951) information discrepancy is considered as the basic criterion for
evaluating the goodness of a model as an approximation to the true distribution that
generates the data. The Akaike information criterion (AIC) was derived as an asymp-
totic approximate estimate of the Kullbackf́b-Leibler information discrepancy and
provides a useful tool for evaluating models estimated by the maximum likelihood
method. Burnham and Anderson (2002) provided a nice review and explanation of the
use of AIC in the model selection and evaluation problems.

Probability models estimated by minimum relative entropy (MRE) methods are
special in the sense that they are tailored to the risk preferences of logarithmic-family-
utility investors. However, not all risk preferences can be expressed by utility functions
in the logarithmic family. In the financial community, a substantial percentage, if not
a majority, of practitioners implement utility functions outside the logarithmic family
(see, for example, Morningstar 2002). This is not surprising that other utility func-
tions may more accurately reflect the risk preferences of certain investors or possess
important defining properties or optimality properties.

We note that these model performance measures are typically not motivated by con-
sidering the performance of an investor who relies on the models to make investment
decisions. There is some question as to whether the aforementioned model perfor-
mance measures are the best tools for a decision maker who uses the models to manage
risk. According to the principle of expected utility maximization, a rational investor,
when faced with a choice among a set of competing feasible investment alternatives,
chooses the option with the greatest expected utility under the probability distribution
that he believes (see, for example, Ingersoll 1987, Theorem 3, p. 31).

Motivated by the principle of expected utility maximization, Friedman and Sandow
(2003a) considered the model performance question from the point of view of an inves-
tor who evaluates models based on the performance of the optimal strategies that the
models suggest. In order to evaluate a particular model, they assumed that there is an
investor who believes in the model. Also, they employed a utility function and a well-
established concept in economics (see, for example, Von-Neumann and Morgenstern
1944). Under this new paradigm, the investor selects the model consistent with the
highest estimated expected utility. They interpreted their performance measures in
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information theoretic terms and provided new generalizations of Shannon entropy
and Kullback–Leibler relative entropy. Also, they showed that the relative perfor-
mance measure is independent of the market prices if and only if the investor’s utility
function is a member of a logarithmic family that admits a wide range of possible risk
aversions (see, for more details, Friedman and Sandow 2003a).

In this article, first, we review these generalized quantities and their properties.
Then, a criterion for independence of two random variables is given from the condi-
tional U -entropy viewpoint. Further, Markov’s inequality for probabilities is extended
from U -entropy perspective. Two lower bounds are obtained for the U -relative entropy
and its special case, i.e., Kullback–Leibler information measure. Finally, a link between
the conditional U -entropy and the conditional Renyi entropy is derived.

2 Preliminaries and background theory

Let X be a discrete random variable with support χ and probability distribution p(x).
The Shannon (1948) entropy of random variable X is defined by:

H (X) = −
∑

x∈χ

p (x) ln p (x), (1)

which is a measure of uncertainty of a discrete random variable. Clearly, in the discrete
case H(X) ≥ 0.

Suppose that p(x) and q(x) are two probability distributions on the common finite
support χ. The relative entropy or Kullback–Leibler information measure between
two probability distributions p(x) and q(x) is defined as:

K (p‖q) =
∑

x∈χ

p (x) ln

[
p (x)

q (x)

]
. (2)

The relative entropy is a measure of the distance between two probability distributions.
It is well known that K (p‖q) ≥ 0, the equality holds if and only if p(x) = q(x) for
all x in the common finite support χ.

Over the past 60 years, various generalizations of the Shannon entropy and
Kullback–Leibler information measure were introduced, (see, for more details, Ullah
1996; Verdu 1998). A number of these generalization are closely related to the mate-
rial in this article. For example, the Tsallis entropy, which was introduced by Cressie
and Read (1984) and used for statistical decisions. A generalization of Kullback–
Leibler information measure, relative Tsallis entropy, was introduced by Liese and
Vajda (1987).

Renyi entropy is a one-parameter generalization of Shannon entropy. Despite its
formal origin, Renyi entropy proved important in a variety of practical applications in
coding theory (Campbell 1965; Aczel and Daroczy 1975; Lavenda 1998), statistical
inference (Arimitsu and Arimitsu 2000, 2001), etc. Recently, Friedman and Sandow
(2003a,b) and Friedman et al. (2004); Friedman et al. (2007) introduced utility-based
generalizations of the Shannon entropy and Kullback–Leibler information measure.
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Utility function is one of the most useful tools in decision analysis and economics.
An investor’s subjective probabilities numerically represent his beliefs and informa-
tion, and his utilities numerically represent his tastes and preferences. Utility func-
tions provide us with a method to measure an investor’s preferences for wealth and
the amount of risk he is willing to undertake in the hope of gaining greater wealth.
Axiomatizations of expected utility theory have been provided several various ways by
Von-Neumann and Morgenstern (1944), Herstein and Milnor (1953), Debreu (1960),
and Fishburn (1989) among others. Axiomatizations of general rank-dependent util-
ity have been provided by Nakamura (1995) and Abdellaoui (2002). Abbas (2003)
introduced a relation between probability and utility based on the concept of a utility
density function and showed the application of this relation via the maximum entropy
principle. Expected utility maximization problems in mathematical finance and eco-
nomics have been studied by Pikovsky and Karatzas (1996), Amendinger et al. (1998),
Frittelli and Biagni (2005), and Gundel (2005).

2.1 Utility function, U -entropy and U -relative entropy

Let � be a set of outcomes and � be the class of all probability distributions P on
the set �. The essential requirement is that � must be a well-defined set of elements.
We shall not distinguish in our notation between a particular outcome r0 ∈ � and the
degenerate probability distribution P0 ∈ � which yields the reward r0 with probabil-
ity one. Therefore, we suppose that the set � contains all the elements of � through
degenerate probability distributions. Consider two probability distributions P1 ∈ �

and P2 ∈ �. We write P1 ≺ P2 to indicate that P2 is preferred to P1, P1 � P2 to
indicate that P1 is not preferred to P2, and P1 ∼ P2 to indicate that P1 and P2 are
equivalent. The preference relation ≺ satisfies the Von Neumann and Morgenstern
axioms. The definition of a utility function is as follows.

Definition 1 A real-value function U defined on the set � is said to be a utility
function if it has the following property: Let P1 ∈ � and P2 ∈ � be any two dis-
tributions such that both E(U |P1) and E(U |P2) exist. Then P1 � P2 if and only if
E(U |P1) ≤ E(U |P2), in which E(U |P) is the expected utility under the probability
distribution of P .

For all r ∈ �, the number U (r) is called the utility of r . Also, for any distribution
P ∈ �, the number E(U |P), when it exists, is often called simply the utility of P .
Hence, the utility of a probability distribution is equal to the expected utility of the
outcome that will be received under that distribution. We consider, throughout this
article, an expected utility maximizing investor with a utility function, U (.), that is
strictly monotone increasing, strictly concave and twice differentiable (see, for more
details, Friedman et al. 2007).

Definition 2 Let p(x) and q(x) be two probability distributions defined over a com-
mon finite support χ . The U -relative entropy from the probability distribution p(x)

to probability distribution q(x) is given by:
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DU (p‖q) = sup
b(x)∈βχ

∑

x∈χ

p (x) U

(
b (x)

q (x)

)
, (3)

where U (.) is a utility function and

βχ =
{

b(x) :
∑

x∈χ

b (x) = 1

}
.

Note that DU (p‖q) is optimized when

b(x) = b∗
p (x) = q (x)

(
U ′)−1

(
λq (x)

p (x)

)
, (4)

in which, λ is the solution of the following equation:

∑

x∈χ

q (x)
(
U ′)−1

(
λq (x)

p (x)

)
= 1. (5)

Definition 3 The U -entropy of the probability distribution p(x) is given by:

HU (X) = U (|χ |) − DU

(
p ‖ 1

|χ |
)

, (6)

where q(x) = 1
|χ | and |χ | is the cardinality of the finite set χ .

For logarithmic utility function, via simple calculations, we have b∗
p (x) = p(x).

Therefore, Definitions 2 and 3 are reduced to the Kullback–Leibler information mea-
sure and Shannon entropy, respectively. Hence, these present generalizations for the
Kullback–Leibler information measure and Shannon entropy.

Friedman et al. (2007) defined the conditional relative U -entropy, the conditional
U -entropy, and the mutual U -information similar to the classical concepts of infor-
mation theory. The following definitions generalize the concepts of the conditional
relative entropy, the conditional entropy, and the mutual information, respectively.

Definition 4 The conditional relative U -entropy from the conditional probability dis-
tribution p(y|x) to the conditional probability distribution q(y|x) is given by:

DU (p(y|x)‖q(y|x)) =
∑

x∈χ

pX (x) DU (p(y|X = x)‖q(y|X = x))

=
∑

x∈χ

pX (x) sup
b(y|x)∈βy

∑

y∈y

p (y|x) U

(
b (y|x)

q (y|x)

)
,
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where pX (x) is the marginal probability distribution of random variable X and

βy =
⎧
⎨

⎩b(y|x) :
∑

y∈y

b (y|x) = 1

⎫
⎬

⎭ .

Definition 5 The conditional U -entropy, HU (Y |X), is defined by:

HU (Y |X) =
∑

x∈χ

pX (x) HU (Y |X = x)

= U (|y|) −
∑

x∈χ

pX (x) sup
b(y|x)∈βy

∑

y∈y

p (y|x) U (|y|b(y|x)).

Definition 6 Consider two random variables X and Y with a joint probability distri-
bution p(x, y) and marginal probability distributions pX (x) and pY (y). The mutual
U -information, IU (X; Y ), is defined as:

IU (X; Y ) = DU (p(x, y)‖pX (x)pY (y)).

2.2 Properties of U-entropy and U-relative entropy

Now, we review some properties of DU (p‖q) and HU (X) established by Friedman
et al. (2007), in the same manner as classical information theory.

Theorem 1 The generalized relative entropy, DU (p‖q), and the generalized entropy,
HU (X), have the following properties:

(i) DU (p‖q) ≥ 0 with equality if and only if p = q.
(ii) DU (p‖q) is a strictly convex function of p.

(iii) HU (X) ≥ 0, and HU (X) is a strictly concave function of p.
(iv) DU (p(x)‖q(x)) ≤ DU (p(x, y)‖q(x, y)).
(v) DU (p(y|x)‖q(y|x)) ≤ DU (p(x, y)‖q(x, y)).

According to Friedman et al. (2007), the conditional U -entropy and the mutual
U -information have the following properties:

• The inequality HU (Z |X, Y ) ≤ HU (Z |X) holds, which induces HU (Y |X) ≤
HU (Y ). Therefore, conditioning reduces U -entropy.

• If the random variables X, Y, Z form a Markov chain X → Y → Z , then
HU (Z |X, Y ) = HU (Z |Y ), HU (Z |X) ≥ HU (Z |Y ) and HU (X |Z) ≥ HU (X |Y ).

• IU (X; Y ) = IU (Y ; X) and IU (X; Y ) ≤ IU (X; Y, Z).

• Data Processing Inequality: If the random variables X, Y, Z form a Markov chain
X → Y → Z , then IU (X; Y ) ≥ IU (X; Z) and if Z = g(Y ), we have IU (X; Y ) ≥
IU (X; g(Y )).
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3 Main results

We note that a number of properties that hold for classical quantities of information
theory do not retain anymore. For example, the chain rule for U -relative entropy does
not retain, i.e.,

DU (p(x, y)‖q(x, y)) = DU (p(x)‖q(x)) + DU (p(y | x)‖q(y | x)).

Also, the relationships between U -entropy and mutual U -information do not retain,
i.e.

IU (X; Y ) = HU (X) − HU (X | Y ) = HU (Y ) − HU (Y | X).

In this section, some new results are obtained as the novelty of this article for which
its special cases are discussed in classical information theory.

In the classical information theory, a criterion for independence of two random
variables X and Y is the mutual information, i.e., I (X; Y ) that is zero if and only if X
and Y are independent random variables. Moreover,

I (X; Y ) = H(X) − H(X |Y ) = H(Y ) − H(Y |X),

however, as we mentioned, similar relations in utility approach do not hold. Now,
we consider HU (X) − HU (X |Y ) and introduce a criterion for independence of two
random variables.

Theorem 2 Let (X, Y ) be a pair of discrete random variable with a joint probability
distribution p(x, y) and marginal probability distributions pX (x) and pY (y). Define

δU (X; Y ) = HU (X) − HU (X |Y ),

(i) For logarithmic utility function, δU (X; Y ) is reduced to the mutual information
I (X; Y ) which agrees with classical information theory.

(ii) δU (X; Y ) ≥ 0 with equality if and only if X and Y are independent.

Proof

(i) For U (x) = ln x, HU (X) and HU (X |Y = y) are reduced to H(X) and
H(X |Y = y), respectively, hence δU (X; Y ) is reduced to I (X; Y ).
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(ii) Note that conditioning reduces U -entropy, i.e., HU (X |Y ) ≤ HU (X), therefore
δU (X; Y ) ≥ 0. Using definitions HU (X) and HU (X |Y ) we have,

HU (X)−HU (X |Y ) = U (|χ |) − DU

(
pX (x)‖ 1

|χ |
)

−
∑

y∈y

pY (y) HU (X |Y=y)

= U (|χ |) − DU

(
pX (x) ‖ 1

|χ |
)

−
∑

y∈y

pY (y)

(
U (|χ |) − DU

(
p(x |y)‖ 1

|χ |
))

=
∑

y∈y

pY (y) DU

(
p(x |y) ‖ 1

|χ |
)

− DU

(
pX (x) ‖ 1

|χ |
)

.

If X and Y are independent, then p(x |y) = pX (x) leads to δU (X; Y ) = 0.

If δU (X; Y ) = 0, then for logarithmic utility function we have δU (X; Y ) =
I (X; Y ) = 0, therefore X and Y are independent random variables.

��

Corollary 1 If the random variables X, Y, Z form a Markov chain X → Y → Z,
then δU (Z; X, Y ) = δU (Z; Y ).

In the classical information theory, Markov’s inequality for probabilities states that
if X is a discrete random variable with probability distribution p(x), then for all
0 < d < 1,

Pr{p(X) ≤ d} ln
1

d
≤ H(X). (7)

In the next theorem this property is extended to U -entropy.

Theorem 3 Let X be a discrete random variable with finite support χ and probability
distribution p(x) and let U (.) be a positive utility function. Then, for all 0 < d < 1,

Pr{p(X) ≤ d} ≤ U (|χ |) − HU (X)

U

(
|χ |

d
∑

x∈χ
1

p(x)

) . (8)

Proof Using the definition of U -entropy we have:

HU (X) = U (|χ |) − sup
b∈βχ

∑

x∈χ

p (x) U (b(x)|χ |) .
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Let b(x) = 1
p(x)

∑
x∈χ

1
p(x)

, it is obvious that b(x) ∈ βχ . Thus, we can write:

HU (X) ≤ U (|χ |) −
∑

x∈χ

p (x) U

(
|χ |

p(x)
∑

x∈χ
1

p(x)

)

= U (|χ |) − E

[
U

(
|χ |

p(X)
∑

x∈χ
1

p(x)

)]
.

Hence,

E

[
U

(
|χ |

p(X)
∑

x∈χ
1

p(x)

)]
≤ U (|χ |) − HU (X) .

Now, using Markov’s inequality leads to:

Pr [p(X) ≤ d] = Pr

[
U

(
|χ |

p(X)
∑

x∈χ
1

p(x)

)
≥ U

(
|χ |

d
∑

x∈χ
1

p(x)

)]

≤
E

[
U

(
|χ |

p(X)
∑

x∈χ
1

p(x)

)]

U

(
|χ |

d
∑

x∈χ
1

p(x)

) ≤ U (|χ |) − HU (X)

U

(
|χ |

d
∑

x∈χ
1

p(x)

) ,

and the proof is completed. ��

Corollary 2 For U (x) = ln x
|χ | and 0 < d <

[∑
x∈χ

1
p(x)

]−1/2
, the inequality (8) is

reduced to (7).
Now, we derive a link between DU (p‖q) and K (q‖p) based on a parametric family

of exponential utility function. For a parametric family of utility functions Hoseinzadeh
et al. (2009) derived some links between DU (p‖q) and other divergence measures.

Theorem 4 If U (x) = 1 − e−αx , α > 0, then

DU (p‖q) = 1 − e−K (q‖p)−α, (9)

where

K (q‖p) =
∑

x∈χ

q (x) ln

[
q (x)

p (x)

]
.

Proof Considering the exponential utility function U (x) = 1 − e−αx , we obtain
(U ′)−1(x) = −1

α
ln x

α
and using (4) we achieve,

b∗
p (x) = −1

α
q(x) ln

[
λq(x)

αp(x)

]
,
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in which, ln λ + ln α = −α − K (q‖p) . After some simple calculations the proof is
completed. ��

For the power utility function, U (x) = x1−β−1
1−β

, β ≥ 0, β = 1, Friedman et al.
(2007) proved

DU (p‖q) =
[∑

x∈χ p(x)
1
β q(x)

1− 1
β

]β − 1

1 − β
. (10)

This measure is the Tsallis relative entropy.
Now, suppose that p(x) and q(x) are two probability distributions on the common

finite support χ. In the following theorem we give a lower bound for DU (p‖q).

Theorem 5 Let p(x) and q(x) be two probability distributions defined over a common
finite support χ . Then

DU (p‖q) ≥ max

{
∑

x∈χ

p(x)U

(
p(x)

max p(x)

)
,
∑

x∈χ

p(x)U

(
p(x)

max q(x)

)}
. (11)

Proof Using the definition of U -relative entropy we can write,

DU (p‖q) = sup
b∈βχ

∑

x∈χ

p (x) U

(
b (x)

q (x)

)
.

By setting b(x) = p(x)q(x)∑
x∈χ p(x)q(x)

∈ βχ , we obtain

DU (p‖q) ≥
∑

x∈χ

p(x)U

(
p(x)∑

x∈χ p(x)q(x)

)
.

Since p(x) and q(x) are two probability distributions, the following inequalities obvi-
ously hold

p(x)∑
x∈χ p(x)q(x)

≥ p(x)

max p(x)
,

p(x)∑
x∈χ p(x)q(x)

≥ p(x)

max q(x)
.

On the other hand U (.) is a strictly increasing function, so the proof is completed. ��
Corollary 3 For exponential utility function with parameter α = max q(x),

Theorem 4 is reduced to:

K (q‖p) ≥ − max q(x) − ln

[
∑

x∈χ

p(x)e−p(x)

]
.
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In the classical information theory, the conditional Shannon entropy for random var-
iable Y, given X, with conditional probability distribution p(y|x) is defined as:

H(Y |X) =
∑

x∈χ

pX (x)H(Y |X = x) = −
∑

x∈χ

∑

y∈y

pX (x)p(y|x) ln p(y|x),

in which pX (x) is the marginal probability distribution of X. Using the conditional
Shannon entropy, Cachin (1997) gave the following definition for conditional Renyi
entropy:

Hα(Y |X) = 1

1 − α

∑

x∈χ

pX (x) ln
∑

y∈y

pα(y|x).

In the next theorem, we derive a link between the conditional U-entropy and the
conditional Renyi entropy based on the power utility function.

Theorem 6 For the power utility function U (x) = x1−β−1
1−β

, β ≥ 0, β = 1, with

parameter β = 1
α
,

HU (Y |X) = |y|1− 1
α Hα(Y |X) + O(α).

Proof Using the definition of HU (Y |X), we have,

HU (Y |X) =
∑

x∈χ

pX (x) HU (Y |X = x),

where,

HU (Y |X = x) = U (|y|) − DU

(
p(y|x)‖ 1

|y|
)

.

Considering power utility function and relation (10), after some calculations we obtain:

HU (Y |X) = |y|1−β

1 − β

⎧
⎪⎨

⎪⎩
1 −

∑

x∈χ

pX (x)

⎡

⎣
∑

y∈y

p
1
β (y|x)

⎤

⎦
β
⎫
⎪⎬

⎪⎭
.

Using the expansion:

⎡

⎣
∑

y∈y

p
1
β (y|x)

⎤

⎦
β

= 1 + β ln

⎡

⎣
∑

y∈y

p
1
β (y|x)

⎤

⎦ + O

(
1

β

)
,

and setting β = 1
α
, lead to the proof is completed. ��
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4 Conclusions and future work

Motivated by expected utility maximization in decision analysis and mathematical
finance, we reviewed generalizations of the Shannon entropy and Kullback–Leibler
information measure. We used the conditional U -entropy to present a criterion for
independence of two random variables. Also, we derived a link between the condi-
tional U -entropy and the conditional Renyi entropy. Moreover, we obtained two lower
bounds for DU (p‖q) and its special case, i.e., Kullback–Leibler information measure.
Markov’s inequality for probabilities was extended to U -entropy. In the next step, we
intend to find inequalities concerning utility-based information measures and other
properties taking Dragomir (2003) and Taneja and Kumar (2004) works into account.
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