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a b s t r a c t

The bootstrap is a simple and straightforward method for calculating approximated biases, standard
deviations, confidence intervals, testing statistical hypotheses, and so forth, in almost any nonparametric
estimation problem. A new approach for bootstrap testing fuzzy hypotheses based on fuzzy test statistic
is introduced. In this paper we describe bootstrap method that is designed directly for hypothesis testing
for fuzzy data based on Yao–Wu signed distance.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Statistical analysis, in traditional form, is based on crispness of
data, random variable, point estimation, hypotheses, parameter
and so on. As there are many different situations in which the
above mentioned concepts are imprecise. The point estimation ap-
proaches frequently are used in statistical inference. On the other
hand, the theory of fuzzy sets is a well known tool for formulation
and analysis of imprecise and subjective concepts. Therefore the
testing hypotheses with fuzzy data can be important. The problem
of testing statistical hypotheses when the hypotheses are crisp or
fuzzy have been studied by a few authors.

Arnold (1996, 1998) presented an approach to test fuzzily for-
mulated hypotheses, in which he considered fuzzy constraints on
the type I and II errors. Taheri and Behboodian (1991) state and
prove a Neyman–Pearson Lemma for testing fuzzy hypotheses.
Their approach has been extended by Torabi, Behboodian, and
Taheri (2006) for the cases when the data are fuzzy, too. For some
other recent works in testing hypothesis using fuzzy approaches,
see Buckley (2005, 2006), Desimpelaere and Marchant (2007), Fil-
zmoser and Viertl (2004), Hyniewicz (2006), Thompson and Geyer
(2007), Viertl (2006).

The bootstrap using fuzzy data, is developed in different
approaches.

Montenegro, Colubi, Casals, and Gil (2004) have presented
asymptotic one-sample procedure. Korner’s asymptotic develop-
ment (2000) concerns general fuzzy random variables (taking on
way-either finite or infinite-number of values in the space of com-
pact convex fuzzy sets of a finite-dimensional Euclidean space).
Gonzalez-Rodriguez, Montenegro, Colubi, and Gil (2006) have

shown that the one-sample method of testing the mean of a fuzzy
random variable can be extended to general ones (more precisely,
to those whose range is not necessarily finite and whose values are
fuzzy subsets of finite-dimensional Euclidean space).

In this paper we construct a new method for bootstrap testing
hypotheses in fuzzy environment which is completely different
from those mentioned above. For this purpose we organize the
matter in the following way:

in Section 2 we describe some basic concepts of canonical fuzzy
numbers, Yao and Wu (2000) signed distance and fuzzy hypothe-
ses. In Section 3 we come up bootstrap testing fuzzy hypotheses
based on fuzzy test statistic for mean based on Yao–Wu signed dis-
tance. Section 4 provide a Bootstrap testing fuzzy hypotheses
based on fuzzy test statistic for variance based on Yao-Wu signed
distance. A brief conclusion is provided in Section 5.

2. Preliminaries

In this section we study canonical fuzzy numbers, Yao–Wu
signed distance and fuzzy hypotheses.

2.1. Canonical fuzzy numbers

Let X be the universal space, then a fuzzy subset ~x of X is defined
by its membership function l~x : X ! ½0;1�. We denote by ~xa ¼
fx : l~xðxÞP ag the a-cut set of ~x and ~x0 is the closure of the set
fx : l~xðxÞ > 0g, and

(1) ~x is called normal fuzzy set if there exist x 2 X such that
l~xðxÞ ¼ 1;

(2) ~x is called convex fuzzy set if l~xðkxþ ð1� kÞyÞP min
ðl~xðxÞ;l~xðyÞÞ for all k 2 ½0;1�;
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(3) the fuzzy set ~x is called a fuzzy number if ~x is normal convex
fuzzy set and its a-cut sets are bounded 8a – 0;

(4) ~x is called a closed fuzzy number if ~x is fuzzy number and its
membership function l~x is upper semicontinuous;

(5) ~x is called a bounded fuzzy number if ~x is a fuzzy number
and its membership function l~x has compact support.

If ~x is a closed and bounded fuzzy number with
xL
a ¼ inffx : x 2 ~xag and xU

a ¼ supfx : x 2 ~xag and its membership
function is strictly increasing on the interval xL

a; x
L
1

� �
and strictly

decreasing on the interval xU
1 ; x

U
a

� �
for any a 2 ½0;1�, then ~x is called

canonical fuzzy number.
Let ‘‘�” be a binary operation � or � between two canonical

fuzzy numbers ~a and ~b. The membership function of ~a� ~b is de-
fined by

l~a�~bðzÞ ¼ sup
x�y¼z

minfl~aðxÞ;l~bðyÞg 8z 2 R

for � ¼ � or � and � ¼ þ or -.
In the following, let �int be a binary operation �int or �int

between two closed intervals ~aa ¼ aL
a; a

U
a

� �
and ~ba ¼ bL

a; b
U
a

h i
. Then

~aa�int
~ba is defined by

~aa�int
~ba ¼ fz 2 R : z ¼ x � y; x 2 ~aa; y 2 ~bag:

If ~a and ~b be two closed fuzzy numbers. Then ~a� ~b and ~a� ~b are
also closed fuzzy numbers. Furthermore, we have

ð~a� ~bÞa ¼ ~aa�int
~ba ¼ aL

a þ bL
a; a

U
a þ bU

a

h i
;

ð~a� ~bÞa ¼ ~aa�int
~ba ¼ aL

a � bU
a ; a

U
a � bL

a

h i
:

2.2. Yao–Wu signed distance

Now we define a signed distance between fuzzy numbers which
is used later.

Several ranking methods have been proposed so far, by Cheng
(1998), Modarres and Sadi-Nezhad (2001) and Nojavan and Gha-
zanfari (2006). In this paper we use another ranking system for
canonical fuzzy numbers which is very realistic and is defined by
Yao and Wu as the following:

Definition 2.1. For each a; b 2 R, define the signed distance d� of a
and b by d�ða; bÞ ¼ a� b. Thus, we have the following way to define
the rank of any two numbers on R. For each a; b 2 R,

d�ða; bÞ > 0() d�ða;0Þ > d�ðb; 0Þ () a > b;

d�ða; bÞ < 0() d�ða;0Þ < d�ðb; 0Þ () a < b;

d�ða; bÞ ¼ 0() d�ða;0Þ ¼ d�ðb; 0Þ () a ¼ b:

Definition 2.2. For each ~a; ~b 2 FðRÞ, define the signed distance of
~a and ~b as follows:

dð~a; ~bÞ ¼
Z 1

0
Mað~aÞ �Mað~bÞ
� �

da ¼
Z 1

0
d� Mað~aÞ;Mað~bÞ
� �

da;

where Mað~aÞ and Mað~bÞ are equal to aL
aþaU

a
2 and bL

aþbU
a

2 , respectively,
furthermore d ð~a; ~bÞ means the distance of ~a to ~b.

Definition 2.3 (Yao and Wu, 2000). For each ~a; ~b 2 FðRÞ, define the
ranking 	;
 and � of ~a and ~b by

dð~a; ~bÞ > 0() d ð~a;0Þ > d ð~b;0Þ () ~a 
 ~b;

dð~a; ~bÞ < 0() d ð~a;0Þ < d ð~b;0Þ () ~a 	 ~b;

dð~a; ~bÞ ¼ 0() d ð~a;0Þ ¼ d ð~b;0Þ () ~a � ~b:

2.3. Fuzzy hypotheses

We define some models, as fuzzy sets of real numbers,
for modeling the extended versions of the simple, the one-
sided, and the two-sided ordinary (crisp) hypotheses to the fuzzy
ones.

Testing statistical hypothesis is a main branch of statistical
inference. Typically, a statistical hypothesis is an assertion about
the probability distribution of one or more random variable(s).
Traditionally, all statisticians assume the hypothesis for which
we wish to provide a test are well-defined. This limitation, some-
times, forces the statistician to make decision procedure in an
unrealistic manner. This is because in realistic problems, we may
come across non-precise (fuzzy) hypothesis. For example, suppose
that h is the proportion of a population which has a disease. We
take a random sample of elements and study the sample for having
some idea about h. In crisp hypothesis testing, one uses the
hypotheses of the form: H0 : h ¼ 0:2 versus H1 : h – 0:2 or
H0 : h 6 0:2 versus H0 : h > 0:2, and so on. However, we would
sometimes like to test more realistic hypotheses. In this example,
more realistic expressions about h would be considered as: small,
very small, large, approximately 0.2, and so on. Therefore, more
realistic formulation of the hypotheses might be H0 : h is small,
versus H1 : h is not small. We call such expressions as fuzzy
hypotheses.

We define some models, as fuzzy sets of real numbers, for mod-
eling the extended versions of the simple, the one-sided, and the
two-sided crisp hypotheses to the fuzzy ones.

Definition 2.4. Let h0 be a real number and known.

(i) Any hypothesis of the form (H : h is approximately h0) is
called to be a fuzzy simple hypothesis.

(ii) Any hypothesis of the form (H : h is not approximately h0) is
called to be a fuzzy two-sided hypothesis.

(iii) Any hypothesis of the form (H : h is essentially smaller than
h0) is called to be a fuzzy left one-sided hypothesis.

(iv) Any hypothesis of the form (H1 : h is essentially larger than h0)
is called to be a fuzzy right one-sided hypothesis.

We denote the above definitions by

(w) H0 : h is approximately h0

H1 : h is not approximately h0

�
or H0 : h is eH0

H1 : h is eH1;

�
(ww) H0 : h is approximately h0

H1 : h is certainly larger than h0

�
or H0 : h is eH0L

H1 : h is eH1;

�
(www) H0 : h is approximately h0

H1 : h is certainly smaller than h0

�
or H0 : h is eH0R

H1 : h is eH1:

�
The above areas are shown in Figs. 1–3.

3. Bootstrap testing fuzzy hypotheses based on fuzzy test
statistic for mean

Suppose that we have canonical fuzzy random sample
~x ¼ ð~x1; ~x2; . . . ; ~xnÞ.

3.1. Testing fuzzy simple hypothesis fuzzy against the fuzzy two-sided
hypothesis

We want to test the fuzzy null hypotheses

eH0: the mean of observations ðhÞ is approximately h0 versuseH1: the mean of observations ðhÞ is not approximately h0.
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We generate B bootstrap fuzzy random sample ~x�1
; ~x�2

; . . . ; ~x�B

(i.e., each ~x�b is a fuzzy sample of size n drawn randomly and
replacement from ~x).

We need a distribution that estimates the population of treat-
ment times under H0. Note first that the empirical distribution
(i.e., putting probability 1

n on each member of ~x) is not an approx-
imate estimate for distribution because it does not obey H0. Some-
how we need to obtain an estimate of the population that has
mean ~h0. A simple way is to translate the empirical distribution
so that it has the desired mean. In other words, we use as our esti-
mated null distribution the empirical distribution on the values

~xci ¼ ~xi � ex �fh0 ; i ¼ 1;2; . . . ;n;

because 1
n�n

i¼1
~xci ¼fh0 .

We compute

t ~x�
b

c

� �
¼

d ex�b

c ;
eh0

� �
cSe�b ðexcÞ

b ¼ 1;2; . . . ;B;

where

(1) d is Yao–Wu signed distance.

(2) ex�b

c ¼ 1
n�n

i¼1
~x�b

ci b ¼ 1;2; . . . ; B.

(3) cSe�b ðexcÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
nðn�1Þ

Pn
i¼1d2 ~x�b

ci ;
ex�b

c

� �r
b ¼ 1;2; . . . ;B.

The cth percentile of tð~x�bc Þ is estimated by the value t̂c such that

# t ~x�b

c

� �
6 t̂c

n o
B

¼ c:

Finally, the fuzzy bootstrap confidence interval at the level 1� 2c
using fuzzy data is

ePa ¼
1
n

Xn

i¼1

xi � t̂c
sð~xÞffiffiffi

n
p ;

1
n

Xn

i¼1

xi � t̂1�c sð~xÞffiffiffi
n
p

" #
;

(

xi 2 ~xia; i ¼ 1;2; . . . ; n

)
;

where s2
ð~xÞ ¼ 1

n�1

Pn
i¼1d2ð~xi; ~�xÞ.

If B� c is not an integer, the following procedure can be used.
Assuming c 6 0:5, let k ¼ ½ðBþ 1Þc�, the largest integer 6 ðBþ 1Þc.
Then we define the empirical c and 1� c quantizes by the kth larg-
est and ðBþ 1� kÞth largest values of tð~x�b

c Þ, respectively.

Example 3.1. Suppose that we have taken a fuzzy random sample
of size n ¼ 9 from a population and we observed the following
triangular fuzzy data: and using of the ability of package ‘‘it

MINITAB 13”, we show the percentiles and histogram of t ~x�
b

c

� �
in

the following using 10,000 bootstrap samples. If B ¼ 10;000, the

estimate of the 5% point is the 500th largest value of the t ~x�
b

c

� �
s

and the estimate of the 95% point is the 9500th largest value of the

t ~x�
b

c

� �
s.

The a-cuts of fuzzy bootstrap confidence interval (c ¼ 0:05 or
90%) using fuzzy data is

ePa ¼
1
9

X9

i¼1

xi � 1:781
20:36ffiffiffi

9
p ;

1
9

X9

i¼1

xi þ2:088
20:36ffiffiffi

9
p

" #
;

(

xi 2 ~xia; i¼ 1;2; . . . ;9

)
¼ ½46:153þ 2:22a;76:167� 1:556a�:

We show the following the distribution of tð~x�b

c Þ computed using
10000 bootstrap samples (Fig. 4).

We obtain the a- cuts of the so-called fuzzy test statistics

-10 0 10
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300
400
500
600
700
800
900
1000

Fr
eq
ue
nc
y

Fig. 4. bootstrap distribution of t ~x�b

c

� �
.

Fig. 2. The fuzzy hypotheses eH0L versus eH1.

Fig. 3. The fuzzy hypotheses eH0R versus eH1.

Fig. 1. The fuzzy hypotheses eH0 versus eH1.
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eZa ¼
ePa � ~h0a

sð~xÞffiffi
n
p

;

and use the fuzzy test statistics to provide an approach for testing
above fuzzy hypotheses, based on the following assumptions (see
Fig. 5).

 ASSUMPTIONS
1. CT be the total area under eZ .
2. C1 and C2 be the areas according to Fig. 5.
3. CR ¼ C1 þ C2

 DECISION RULE

 If CR
CT
6 2c, then we accept H0.

 If CR
CT

P 2c, then we reject H0.

Example 3.2. Consider Table 1. Now suppose that we want to test
the following fuzzy hypotheseseH0 : h isð57;60;62ÞeH1 : h is notð57;60;62Þ:

(
Here, eH0 suggests that h is approximation 60, and eH1 suggests that h
is away from 60.

We have eZa ¼ ½�2:339þ 0:622a;2:899� 0:671a�;CR ¼ C1þ
C2 ¼ 0:061þ 0:18 ¼ 0:241; CT ¼ 3:39. since CR

CT
¼ 0:071 6 0:1, thus

accept H0 (Table 2).

3.2. Testing fuzzy simple hypothesis fuzzy against the fuzzy left one-
sided hypothesis

We want to test the fuzzy null hypotheses

H0 : h is approximately h0;

H1 : h is certainly smaller than h0:

�
We obtain the a-cuts of the so-called fuzzy test statistics

eZa ¼
ePa � eh0a

s
ðexÞffiffi

n
p

;

and use the fuzzy test statistics to provide an approach for testing
above fuzzy hypotheses, based on the following assumptions (see
Fig. 6)

 ASSUMPTIONS

1. CT be the total area under eZ .
2. C1 be the area according to Fig. 6.
3. CR ¼ C1

 DECISION RULE

 If CR
CT
6 c, then we accept H0.

 If CR
CT

P c, then we reject H0.

Example 3.3. Consider Table 1. Now suppose that we want to test
the following fuzzy hypotheses

eH0 : h is approximatelyð:;60;62Þ;eH1 : h is certainly smaller thanð:;60;62Þ:

(

We have eZa ¼ ½�2:339þ 0:622a;2:382� 0:23a�; CR ¼ C1 ¼ 0:061;
CT ¼ 2:79. since CR

CT
¼ 0:022 6 0:05, thus accept H0.

3.3. Testing fuzzy simple hypothesis fuzzy against the fuzzy right one-
sided hypothesis

We want to test the fuzzy null hypotheses

H0 : h is approximately h0;

H1 : h is certainly larger than h0:

�
We obtain the a-cuts of the so-called fuzzy test statistics

eZa ¼
ePa � eh0a

sð~xÞffiffi
n
p

;

and use the fuzzy test statistics to provide an approach for testing
above fuzzy hypotheses, based on the following assumptions (see
Fig. 7)

Fig. 5. eZ in testing fuzzy simple hypothesis versus fuzzy two-sided hypothesis.

Table 1
Fuzzy random sample of size n ¼ 9 from a population.

N Observation N Observation N Observation

1 (32, 35, 40) 4 (60, 63, 63) 7 (70, 73, 75)
2 (80, 82, 82) 5 (41, 45, 47) 8 (54, 56, 59)
3 (60, 60, 60) 6 (93, 95, 96) 9 (34, 35, 36)

Table 2
Percentiles of the t distribution with 8 degree of freedom, the Nð0;1Þ distribution and
the bootstrap distribution of tð~x�b

c Þ.

Percentile 5% 10% 90% 95%

t8 �1.86 �1.40 1.40 1.86
Normal �1.65 �1.28 1.28 1.65
Bootstrap �2.088 �1.537 1.319 1.781

Fig. 6. eZ in testing fuzzy simple hypothesis versus fuzzy left one-sided hypothesis.
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 ASSUMPTIONS

1. CT be the total area under eZ .
2. C2 be the area according to Fig. 7.
3. CR ¼ C2

 DECISION RULE

 If CR
CT
6 c, then we accept H0.

 If CR
CT

P c, then we reject H0.

Example 3.4. Consider Table 1. Now suppose that we want to test
the following fuzzy hypotheseseH0 : h is approximatelyð28;30; :Þ;eH1 : h is certainly larger thanð28;30; :Þ:

(
We have eZa ¼ ½2:38þ 0:327a;7:097� 0:524a�;CR ¼ C2 ¼ 2:772;
CT ¼ 16:9. since CR

CT
¼ 0:164 P 0:05, thus reject H0.

4. Bootstrap testing fuzzy hypotheses based on fuzzy test
statistic for variance

Suppose that we have canonical fuzzy random samples
~x ¼ ð~x1; ~x2; . . . ; ~xnÞ. We generate B bootstrap fuzzy random sample
~x�1
; ~x�2

; . . . ; ~x�B and for each we compute (Fig. 8)

v2�b ¼
ðn� 1Þs2�b

ð~xÞ

s2
ð~xÞ

b ¼ 1;2; . . . ; B;

where

(1) s2�b

ð~xÞ ¼ 1
n�1

Pn
i¼1d2ð~x�b

i ;
ex�Þ.

(2) d is Yao–Wu signed distance.
(3) ex� ¼ 1

n�n
i¼1

~x�b

i .
(4) s2

ðexÞ ¼ 1
n�1

Pn
i¼1d2ð~xi; exÞ.

The cth percentile of v2�b is estimated by the value t̂c such that

#fv2�b
6 t̂cg

B
¼ c:

Finally, the a-cuts of bootstrap confidence interval using fuzzy data
is

eP�
a ¼

Pn
i¼1ðxi � �xÞ2

t̂1�c
;

Pn
i¼1ðxi � �xÞ2

t̂c

" #
: xi 2 ~xia; i ¼ 1;2; . . . ; n

( )
;

whenever its membership function is given by

leP� ðyÞ ¼ sup
06a61

aIeP�a ðyÞ:

Example 4.1. Suppose that we have taken a fuzzy random sample
of size n ¼ 12 from a population and we observed the following
triangular fuzzy data: (Table 3).

The last line of Table 4 shows the percentiles of v2�b
for variance

computed using 10000 bootstrap samples.

The fuzzy bootstrap confidence interval (c ¼ 0:05 or 90%) using
fuzzy data is

eP�
a ¼

P12
i¼1ðxi � �xÞ2

15:27
;

P12
i¼1ðxi � �xÞ2

4:523

" #
: xi 2 ~xia i ¼ 1;2; . . . ;n

( )
;

and we have for some a0’s

a 0 0.1 0.2

Confidence

interval

[317.68,
1115.83]

[318.1,
1112.66]

[318.39,
1109.59]

a 0.3 0.4 0.5

Confidence

interval

[318.8,
1106.63]

[319.24,
1103.24]

[319.71,
1101.02]

a 0.6 0.7 0.8

Confidence

interval

[320.21,
1098.38]

[320.74,
1095.84]

[321.3,
1093.41]

a 0.9 1

Confidence

interval

[321.9,
1091.08]

[322.52,
1088.86]

We obtain the a-cuts of the so-called fuzzy test statistics

eZ�a ¼ ðn� 1Þ eP�
aeh0a
;

and now we can similarly apply the previous section for analyzing
of this section.

0 10 20

0

100

200

300

400

500

Fr
eq
ue
nc
y

Fig. 8. Bootstrap distribution of v2�b .

Table 3
Fuzzy random sample of size n ¼ 12 from a population.

N Observation N Observation N Observation

1 (33, 35, 36) 5 (60, 63, 66) 9 (100, 103, 105)
2 (80, 82, 84) 6 (70, 70, 72) 10 (54, 56, 58)
3 (85, 87, 87) 7 (70, 73, 76) 11 (40, 40, 42)
4 (90, 90, 90) 8 (65, 70, 73) 12 (94, 96, 99)

Fig. 7. eZ in testing fuzzy simple hypothesis versus fuzzy left one-sided hypothesis.
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5. Conclusion

The proposed procedure is based on a significance level. Exten-
sion of the proposed method to test the parameters of linear mod-
els, such as regression models, design of experiment is a potential
area for the future work. We can use the Yao–Wu signed distance
for estimation of coefficients of linear models and apply the pro-
posed method in this paper.
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