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Abstract

The variance of a fuzzy random variable plays an important role as a mea-
sure of central tendency. Some of the main contributions in this topic are
consolidated and discussed in this paper. In case of the hypothesis testing
problem, bootstrap techniques (Efron and Tibshirani, 1993) have empiri-
cally been shown to be efficient and powerful. Algorithms to apply these
techniques in practice and some illustrative examples are provided. We also
describe a bootstrap method for estimating the variance that is designed for
the testing of hypotheses problem for fuzzy data based on the L2 metric.
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1 Introduction

Statistical analysis, in its traditional form, is based on the crispness of
data, the associated random variables, the point estimation techniques used,
the hypotheses and parameters of interest and so on. There can be many
different situations in which the above mentioned concepts are imprecise.
On the other hand, the theory of fuzzy sets is a well established tool for
formulation and analysis of imprecise and subjective concepts. Testing of
hypotheses with fuzzy data is therefore an important practical problem. The
theory of statistical inference (confidence interval and testing of hypotheses)
in fuzzy environments has been discussed and developed through different
approaches in the literature.
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Filzmoser and Viertl (2004) present an approach for statistical testing on
the basis of fuzzy values by introducing the fuzzy p value. Torabi et al. (2006)
try to develop a new approach for testing fuzzy hypotheses when the available
data are also fuzzy. They state and prove a generalized Neyman-Pearson
Lemma for such a problem. Some methods of statistical inference with
fuzzy data are reviewed by Viertl (2006). Buckley (2005, 2006) studies the
problem of statistical inference in a fuzzy environment. Thompson and Geyer
(2007) have proposed the fuzzy p value in latent variable problems. Taheri
and Arefi (2009) exhibit an approach for testing fuzzy hypotheses based on
fuzzy test statistics. Akbari and Rezaei (2009) describe a bootstrap method
for variance that is designed directly for hypothesis testing in case of fuzzy
data based on the Yao-Wu signed distance. Parchami et al. (2009) consider
the problem of testing of hypotheses when the hypotheses are fuzzy and
the data are crisp. They first introduce the notion of a fuzzy p value by
applying the extension principle, and then present an approach for testing
fuzzy hypotheses by comparing a fuzzy p value and a fuzzy significance level,
based on a comparison of two fuzzy sets.

The bootstrap technique for fuzzy data has also been developed through
different approaches. Montenegro et al. (2004) have presented an asymp-
totic one-sample procedure. Gonzalez et al. (2006) have shown that the
one-sample method of testing the mean of a fuzzy random variable can
be extended to general ones (more precisely, to those whose range is not
necessarily finite and whose values are fuzzy subsets of finite-dimensional
Euclidean space). In this paper we construct a new method for bootstrap
testing of hypotheses in fuzzy environments in an approach which is com-
pletely different from those mentioned above. For this purpose we organize
the material in the following manner; in Section 2 we describe some basic
concepts of canonical fuzzy numbers, the L2 metric, fuzzy random variables,
variance and fuzzy random samples. In Section 3 we summarize the testing
of hypotheses results for the one-sample case. Section 4 provides a boot-
strap hypothesis testing technique for the two sample problem. Finally, a
brief conclusion is provided in Section 5.

2 Preliminaries

In this section we study canonical fuzzy numbers, L2 metric, fuzzy ran-
dom variable, variance and fuzzy random samples.
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2.1. Canonical numbers. Let X be the universal space, then a fuzzy
subset x̃ of X is defined by its membership function µex : X → [0, 1]. We
denote by x̃α = {x : µex(x) ≥ α} the α−cut set of x̃ and x̃0 is the closure of
the set {x : µex(x) > 0}, and
(1) x̃ is called normal fuzzy set if there exist x ∈ X such that µex(x) = 1;
(2) x̃ is called convex fuzzy set if µex(λx + (1 − λ)y) ≥ min(µex(x) , µex(y))
for all λ ∈ [0, 1];
(3) the fuzzy set x̃ is called a fuzzy number if x̃ is normal convex fuzzy set
and its α−cut sets, is bounded ∀α 6= 0;
(4) x̃ is called a closed fuzzy number if x̃ is fuzzy number and its membership
function µex is upper semicontinues;
(5) x̃ is called a bounded fuzzy number if x̃ is a fuzzy number and its
membership function µex has compact support.

If x̃ is a closed and bounded fuzzy number with xL
α = inf{x : x ∈ x̃α} and

xU
α = sup{x : x ∈ x̃α} and its membership function be strictly increasing on

the interval [xL
α, xL

1 ] and strictly decreasing on the interval [xU
1 , xU

α ], then x̃
is called canonical fuzzy number.

Let “ ⊙ ” be a binary operation ⊕ or ⊖ between two canonical fuzzy
numbers ã and b̃. The membership function of ã ⊙ b̃ is defined by

µ
ea⊙eb

(z) = sup
x◦y=z

min{µea(x), µeb
(y)}

for ⊙ = ⊕ or ⊖ and ◦ = + or −.

In the following, let ⊙int be a binary operation ⊕int or ⊖int between two
closed intervals ãα = [aL

α , aU
α ] and b̃α = [bL

α, bU
α ]. Then ãα ⊙int b̃α is defined

by
ãα ⊙int b̃α = {z ∈ R : z = x ◦ y, x ∈ ãα, y ∈ b̃α}.

If ã and b̃ be two closed fuzzy numbers. Then ã⊕ b̃ and ã⊖ b̃ are also closed
fuzzy numbers. Furthermore, we have

(ã ⊕ b̃)α = ãα ⊕int b̃α = [aL
α + bL

α, aU
α + bU

α ]

(ã ⊖ b̃)α = ãα ⊖int b̃α = [aL
α − bU

α , aU
α − bL

α].

2.2. L2 metric. Now we define a distance between fuzzy numbers, which
will be used later.

Several ranking methods have been proposed so far, by Cheng (1998),
Yao and Wu (2000) Modarres and Sadi-Nezhad (2001), Nojavan and Ghaz-
anfari (2006), Puri and Ralescu (1983), and Akbari and Rezaei (2009).
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In this paper we use another metric for canonical fuzzy numbers that is
called the L2 metric.
Given a real number x ∈ R, we can induce a fuzzy number x̃ with member-
ship function µex(r) such that µex(x) = 1 and µex(r) < 1 for r 6= x. We call x̃
as a fuzzy real number induced by the real number x.

Let F(R) be the set of all fuzzy real numbers induced by the real numbers
R. We define the relation ∼ on F(R) as x̃1 ∼ x̃2 iff x̃1 and x̃2 are induced by
the same real number x. Then ∼ is an equivalence relation, which induces
the equivalence classes [x̃] = {ã : ã ∼ x̃}. The quotient set F(R)/ ∼ is the
set of all equivalence classes. We call F(R)/ ∼ as the fuzzy real number
system. In practice, we take only one element x̃ from each equivalence class
[x̃] to from the fuzzy real number system (F(R)/ ∼) that is,

(F(R)/ ∼) = {x̃ : x̃ ∈ [x̃], x̃ is the only element from [x̃]}.

If the fuzzy real number system (F(R)/ ∼) consists all of canonical fuzzy
real numbers then we call (F(R)/ ∼) as the canonical fuzzy real number
system.
For each α−cuts of ã ∈ F(Rn) the support function Seaα

is defined as
Seaα

(t) = supx∈eaα
≪ x, t ≫, t ∈ Sn−1, Sn−1 the (n − 1)−dimensional unit

sphere in Rn. Using support function we define L2 metric

δ2(ã, b̃) =

(
n

∫ 1

0
(ρ2(ãα, b̃α))2dα

) 1

2

ã, b̃ ∈ F(Rn),

where

ρ2(ãα, b̃α) =

(∫

Sn−1

|Seaα
(t) − Sebα

(t)|2µ(dt)

) 1

2

.

Note that µ is the normalized Lebesgue measure on Sn−1.

This metric is very realistic because

• it implies very good statistical properties in connection with variance;

• it involves distances between extreme points;

• it is distance with convenient statistical features.

Example 2.1. As an example of a canonical fuzzy set on R, consider
so-called LR-fuzzy numbers ã = (µ, l, r)LR with central value µ ∈ R, left
and right spread l ∈ R≥0, r ∈ R≥0, decreasing left and right shape functions
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L : R≥0 → [0, 1], R : R≥0 → [0, 1] with L(0) = R(0) = 1, i.e. a fuzzy set ã
with

µea(x) =





L(µ−x
l

) x ≤ µ

R(x−µ
r

) x ≥ µ

An LR-fuzzy number ã = (µ, l, r)LR with L = R and l = r = ε is called
symmetric LR-fuzzy number and abbreviated by ã = (µ − ε, µ, µ + ε).

Let ãi = (µi, li, ri)LR; i = 1, 2. We have

ãiα = [µi − L−1(α)li, µi + R−1(α)ri] i = 1, 2,

furthermore

Seaiα
(t) =





−µi + L−1(α)li t = −1

µi + R−1(α)ri t = 1.

Thus

δ2
2(ã1, ã2) = (µ1−µ2)

2+
1

2

∫ 1

0
(L−1(α))2dα (l1−l2)

2+
1

2

∫ 1

0
(R−1(α))2dα (r1−r2)

2

−

∫ 1

0
(L−1(α))dα (µ1−µ2)(l1−l2)+

∫ 1

0
(R−1(α))dα (µ1−µ2)(r1−r2)

For symmetric fuzzy numbers ãi = (µi − εi, µi, µi + εi); i = 1, 2. We have

δ2
2(ã1, ã2) = (µ1 − µ2)

2 +

∫ 1

0
(L−1(α))2dα (ε1 − ε2)

2.

2.3. Fuzzy random variable, variance and fuzzy random sample. Let
(Ω,F , P ) be a probability space. A compact convex random set (Cr.s.) X is
a Borel measurable function from (Ω,F , P ) to (X,B, PX), where PX is the
probability measure induced by X and is called the distribution of the Cr.s.
X , i.e.,

PX(A) = P (X ∈ A) =

∫

X∈A

dP ∀A ∈ B.

Definition 2.1. A fuzzy random variable (F r.v.) is a Borel measurable
function X̃ : Ω → F(Rn) where

{(ω, x) : ω ∈ Ω , x ∈ X̃α(ω)} ∈ F × B ∀α ∈ [0, 1].
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Then all α−cuts of X̃ are Cr.s. and further more The above definition
used here is equivalent to the often used definition by Puri and Ralescu
(1986), and for n = 1 to the definition by Kwakernaak (1978).

Lemma 2.1. Let F(R) be a canonical fuzzy real number system. Then X̃
is a F r.v. iff XL

α and XU
α are random variables for all α ∈ [0, 1].

The expected value Ẽ(X̃) of the F r.v. X̃ is defined by

Ẽα(X̃) = {E(X)|X : Ω → Rn, X(ω) = X̃α(ω)}.

Definition 2.2. The variance of a F r.v. X̃ is defined as ν(X̃) =
E[δ2

2(X̃, E(X̃))]. Using Eα(X̃) = E(X̃α) and S
E( eXα)(t) = E(SeXα

(t)) this

can be written as

ν(X̃) = n

∫ 1

0

∫

Sn−1

V ar(SeXα
(t))µ(dt)dα.

Näther (2006) defined an scalar multiplication between X̃ and Ỹ given
by

< X̃, Ỹ >= n

∫ 1

0

∫

Sn−1

SeXα
(t)S eYα

(t)µ(dt)dα,

thus
ν(X̃) = E < X̃, X̃ > − < E(X̃), E(X̃) >

and similarly

Cov(X̃, Ỹ) = n

∫ 1

0

∫

Sn−1

Cov(SeXα
(t), S eYα

(t))µ(dt)dα

= E < X̃, Ỹ > − < E(X̃), E(Ỹ) > .

Definition 2.3. Let X̃ and Ỹ be two F r.v.’s. We say that X̃ and Ỹ
are independent iff each random variable in the set {XL

α ,XU
α : 0 ≤ α ≤ 1}

is independent with any random variable in the set {Y L
α , Y U

α : 0 ≤ α ≤ 1}.

Definition 2.4. We say X̃ and Ỹ are identically distributed iff XL
α , Y L

α

are identically distributed, and XU
α , Y U

α are identically distributed for all α ∈
[0, 1].
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Definition 2.5. We say X̃ = (X̃1, X̃2, ..., X̃n) is a fuzzy random sample
iff X̃ ,

is are independent and identically distributed.

Lemma 2.2. Let X̃ = (X̃1, X̃2, ..., X̃n) be a fuzzy random sample. The

sample fuzzy variance value S2
n = 1

n−1

∑n
i=1 δ2

2

(
X̃i, X̃

)
is an unbiased

estimator of the parameter ν(X̃); where X̃ is the sample fuzzy mean value
1
n
⊕n

i=1 X̃i.

Proof. We have

E[S2
n]

=
1

n − 1

n∑

i=1

∫ 1

0

∫ 1

−1
E[S eXiα

(t) − S
eXα

(t)]2dtdα

=
1

n − 1

n∑

i=1

∫ 1

0

∫ 1

−1
E[S eXiα

(t) − E(S eXiα
(t)) + E(S eXiα

(t)) − S
eXα

(t)]2dtdα

=
1

n − 1

n∑

i=1

[
ν(X̃i) +

∫ 1

0

∫ 1

−1

{
V ar[S

eXα

(t)]−2Cov(S eXiα
(t), S

eXα

(t))
}

dtdα

]

=
1

n − 1

n∑

i=1

[
ν(X̃i) + ν( eXi)

n
− 2ν( eXi)

n

]

= ν(X̃).

Lemma 2.3. Consider Lemma 2.2. For given crisp value S2
n

lim
n→∞

S2
n = ν(X̃).

Proof. It is a special condition of Strong Law of Large Numbers.

Lemma 2.4. If V ar(X) be a variance of the crisp random variable X,
then we have

ν(X) = V ar(X).

Proof. From Example 2.1, it is obvious.
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3 Bootstrap Testing of Hypotheses for the Single-sample Case

In this section we describe a method for bootstrap hypothesis testing in
the single-sample case using fuzzy data.

We note that, in classical testing of hypotheses, there is a relationship be-
tween interval estimation and testing of hypothesis. We describe a bootstrap
method that is designed based on relationship between interval estimation
and testing of hypotheses, for hypothesis testing for fuzzy data based on L2

metric.

Suppose that we have fuzzy random samples X̃ = (X̃1, X̃2, ..., X̃n), and
we want to test the fuzzy null hypotheses

H0: the variance of observations is σ2
0

versus
H1: the variance of observations is not σ2

0 .

We need a distribution that estimates the population of treatment times
under H0. Note first that the empirical distribution ( i.e., putting probability
1
n

on each member of X̃) is not an approximate estimate for distribution
because is does not obey H0. Somehow we need to obtain an estimate of the
population that has variance σ2

0. A simple way is to translate the empirical
distribution so that is has the desired variance. In other word, we use as our
estimated null distribution the empirical distribution on the values

X̃ci =
σ0X̃i

Sn
i = 1, 2, ..., n,

since, under the hypothesis H0,

S2
cn =

1

n − 1

n∑

i=1

∫ 1

0

∫ 1

−1
[S eXciα

(t) − S
eXcα

(t)]2dtdα,

=
1

n − 1

n∑

i=1

∫ 1

0

∫ 1

−1
[
σ0

Sn
S eXiα

(t) −
σ0

Sn
S

eXα

(t)]2dtdα

=
σ2

0

S2
n

1

n − 1

n∑

i=1

∫ 1

0

∫ 1

−1
[S eXiα

(t) − S
eXα

(t)]2dtdα

= σ2
0,

as σ0

Sn
> 0 and, for any r > 0, S

r eXα
= rS eXα

.
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We generate B bootstrap fuzzy random sample X̃∗1

, X̃∗2

, ..., X̃∗B
(i.e.,

each X̃∗b
is a fuzzy sample of size n drawn randomly and replacement from

X̃). We have the following:

• In testing the null hypothesis H0 : σ2 = σ2
0 at the nominal

significance level γ ∈ [0, 1], H0 should be rejected whenever

χ2 =
(n − 1)S2

n

σ2
0

> z1− γ

2

or χ2 =
(n − 1)S2

n

σ2
0

< zγ

2

where zγ is the 100(1 − γ) fractile of the distribution of the

bootstrap χ2∗b

= (n−1)S2∗
b

cn

σ2

0

and with

S2∗b

cn =
1

n − 1

n∑

i=1

∫ 1

0

∫ 1

−1
[S eX∗

b

ciα

(t) − S
eX

∗
b

cα

(t)]2dtdα b = 1, 2, ..., B.

If B × γ is not an integer, the following procedure can be used. Assuming
γ ≤ 0.5, let k = [(B + 1)γ], the largest integer ≤ (B + 1)γ. Then we define
the empirical γ and 1 − γ quantizes by the kth largest and (B + 1 − k)th

largest values of χ2∗b

, respectively.

Now we brief the steps of bootstrap testing of hypotheses for one-sample
as the follows:

Computation of the bootstrap test statistics for testing H0 : σ2 = σ2
0

1. Draw B samples of size n with replacement from (x̃i; i = 1, 2, ..., n).

2. compute the value of the bootstrap statistics χ2∗b
b = 1, 2, ..., B.

3. compute the bootstrap zγ

2

and z1− γ

2

values.

Algorithm 1. One-sample bootstrap test algorithm

Example 3.1. Consider a fuzzy random sample of size n = 15 from a
population, given in Table 1.
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Table 1. Fuzzy random sample of size n = 15 from a population

N Observation N Observation N Observation

1 (33, 35, 36) 6 (60, 63, 66) 11 (41, 41, 41)
2 (81, 82, 84) 7 (70, 70, 72) 12 (54, 56, 58)
3 (85, 87, 87) 8 (70, 73, 76) 13 (40, 40, 42)
4 (90, 90, 90) 9 (69, 70, , 73) 14 (94, 96, 99)
5 (53, 53, 55) 10 (38, 40, 40) 15 (39, 41, 44)

Now suppose that we want to test the following hypotheses

{
H0 : σ2 = σ2

0

H1 : σ2 6= σ2
0 .

For γ = 0.05, The percentiles and histogram (for σ2
0 = 400 ) of χ2∗b

based
on 10000 bootstrap samples are shown in Table 2 and figure 1 respectively.

Table 2. σ2
0, χ2, zγ

2

, z1− γ

2

and result

σ2
0 χ2 zγ

2

z1− γ

2

result

100 39.57 6.54 18.95 reject H0

225 17.58 7.35 19.22 accept H0

400 9.89 6.74 19.11 accept H0

625 6.33 6.2 18.9 accept H0

900 4.4 6.91 19.41 reject H0

1225 3.23 6.51 19.58 reject H0

Example 3.2. The water levels of a river in a year can not be measured
in an exact way because of the fluctuation. Under this consideration, the
more appropriate way to describe the water levels are to say that the water
levels are around 35,40,38,42,41,34,44,... meters. For example the phrases
“approximately 35” should be regarded as a fuzzy number 3̃5 that will be
realize thought fuzzy sets theory. We may come across more realistic expres-
sions about parameter would be considered as: “less than 35”, “more than
35”, “essentially less than 35 ”, and so on.

For some fuzzy observations of x̃1 = 9̃, x̃2 = 7̃, x̃3 = 1̃5, x̃4 = 1̃7, x̃5 =
1̃1, x̃6 = 9̃, x̃7 = 2̃0, x̃8 = 1̃9, x̃9 = 2̃1 with triangular membership function,

µexi
(y) =





y−xi+a
a

xi − a ≤ y ≤ xi

xi+b−y
b

xi ≤ y ≤ xi + b,
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Figure 1: Bootstrap distribution of χ2∗b
for σ2

0 = 400

for each 1 ≤ i ≤ 9 and a, b ≥ 0. Now suppose that we want to test the
following hypotheses {

H0 : σ2 = 9
H1 : σ2 6= 9.

For γ = 0.05, we have χ2 = 3.11, zγ

2

= 2.325, and z1− γ

2

= 15.88. Thus we
accept H0.

4 Bootstrap Testing of Hypotheses for the Two-sample Case

In this section we describe one method to bootstrap testing of hypotheses
for the two-sample case based on fuzzy data.

Let z̃ = (z̃1, z̃2, ..., z̃n) and ỹ = (ỹ1, ỹ2, ..., ỹm) be fuzzy random samples
from possibly different probability distributions, and we wish to test the null
hypothesis

H0 : the variance of first population (σ2
1) is equal to variance of second

population (σ2
2).

H1 : the variance of first population (σ2
1) is not equal to variance of second

population (σ2
2).



Variance of fuzzy random variables 217

Denote the combined fuzzy sample by x̃ = (z̃1, z̃2, ..., z̃n, ỹ1, ỹ2, ..., ỹm) and
let a probability 1

n+m
be assigned to each member of x̃. We have:

• In testing the null hypothesis H0 : σ2
1 = σ2

2 at the nominal

significance level γ ∈ [0, 1], H0 should be rejected whenever

ξ =
(n − 1)S2

1n

(m − 1)S2
2n

> z1− γ

2

or ξ =
(n − 1)S2

1n

(m − 1)S2
2n

< zγ

2

where zγ is the 100(1 − γ) fractile of the distribution of the

bootstrap ξ∗
b

=
(n−1)S2

1cn

(m−1)S2

2cn

and with

S2∗b

1cn =
1

n − 1

n∑

i=1

∫ 1

0

∫ 1

−1
[S eZ∗

b

ciα

(t) − S
eZ
∗
b

cα

(t)]2dtdα b = 1, 2, ..., B,

S2∗b

2cn =
1

n − 1

n∑

i=1

∫ 1

0

∫ 1

−1
[SeY ∗

b

ciα

(t) − S
eY

∗
b

cα

(t)]2dtdα b = 1, 2, ..., B.

Now we introduce the steps of bootstrap for the two-sample case as follows:

Computation of the bootstrap test statistics for testing H0

1. Draw B samples of size n + m with replacement from x̃. Call the first n

observations z̃∗
b

and the remaining m observations ỹ∗b

, for b = 1, 2, ..., B.

2. Compute the value of the bootstrap statistics ξ∗
b

,b = 1, 2, ..., B.

Algorithm 2. Two-sample bootstrap test algorithm

Example 4.1. Consider fuzzy random samples of sizes n = 9 and m = 8
respectively from two population. The corresponding triangular fuzzy data
is given in Table 3.
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Table 3. Fuzzy random samples of sizes n = 9 and m = 8 from
two populations

The first population The second population

(19, 20, 22) (92, 94, 95)
(47, 50, 53) (68, 68, 70)

(100, 100, 100) (43, 44, 45)
(58, 60, 61) (57, 59, 61)
(49, 50, 51) (99, 99, 99)
(90, 92, 93) (82, 83, 85)
(9, 10, 10) (23, 23, 23)
(25, 27, 28) (40, 42, 43)
(46, 46, 46)

The percentiles and histogram, using 10000 bootstrap samples, of ξ∗
b

are
given in Table 4 and Figure 2 respectively.

Table 4. Percentiles of the bootstrap distribution of ξ∗
b

Percentile 0.005 0.025 0.05 0.1 0.9 0.95 0.975 0.995

Bootstrap 0.04 0.225 0.37 0.552 3.316 4.33 5.77 10.21

For γ = 0.05, we have ξ = 0.999, so we accept H0.

Figure 2: Bootstrap distribution of ξ∗
b
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Example 4.2. A food company wished to test two different package de-
signs for a new product. Seventeen stores, with approximately equal sales
volumes, are selected as the experimental units. Package designs 1 is as-
signed to nine stores and package designs 2 is assigned to eight stores.

The data are displayed in Table 5, while the percentiles and histogram,
using 10000 bootstrap samples, of ξ∗

b
are given in Table 6 and Figure 3

respectively.

For γ = 0.05, we have ξ = 5.64, so H0 is rejected.

Figure 3: Bootstrap distribution of ξ∗
b

Table 5. Fuzzy data for sales volumes

Store Package design 1 Package design 2

1 (14, 15, 15) (13, 15, 15.5)
2 (22, 22, 22) (14, 14, 14)
3 (9, 9, 10) (17.5, 18, 19)
4 (11, 12, 13) (13, 14, 14.5)
5 (9.5, 10, 11) (11.5, 12, 12.6)
6 (18.5, 19, 19.2) (17, 18, 19)
7 (19, 19, 19.5) (14, 15, 16)
8 (25, 27, 28) (12.5, 13, 13)
9 (16, 17, 19)
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Table 6. Percentiles of the bootstrap distribution of ξ∗
b

Percentile 0.005 0.025 0.05 0.1 0.9 0.95 0.975 0.995

Bootstrap 0.115 0.211 0.301 0.403 2.735 3.7 4.874 9.003

5 Conclusions

In this paper, we have proposed a technique for bootstrap testing of
hypotheses for one-sample and two-sample problem for fuzzy data based on
the L2 metric. Application of the proposed method to test the variance,
correlation and other parameters of linear models, such as regression models
and design of experiment, will be natural extensions of this approach and
consitute potential future work. Furthermore we can construct bootstrap
confidence intervals for crisp and fuzzy parameters.
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