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This paper presents the formulation of a macroscopic model for reinforced soil structures in which the
interface is taken into consideration as a rigid-plastic contact. The model is formulated in the framework
of a so-called multiphase model recently introduced for reinforced soil masses. The proposed simplified
two-phase model can be considered as an optimal solution between extremely simplified perfect
bonding model on one hand, and using a third phase for the interface on the other hand, which results in
a more complicated and time-consuming model. The introduced platform is implemented in a numerical
code. The proposed model is evaluated by simulating (a) the failure of laboratorial plane strain
compression tests; (b) the behavior of a 1-g reinforced soil retaining wall model under external loading,
and (c) the deformation of a reinforced soil structure under its own weight, which has been analyzed by
another homogenization approach including elastoplastic interface model. The results indicate that the
deformation of reinforced soil structures can be satisfactorily predicted by the proposed model.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Reinforced soils may be regarded as multilayered composite
systems due to the existence of periodic layers of soil and inclusion.
The behavior of this systematic material can be analyzed with the
aid of homogenization methods, by which an equivalent medium is
introduced with a homogenous, but anisotropic behavior in
macroscopic view (e.g., de Buhan et al., 1989; Harrison and Gerrard,
1972; Michalowski and Zhao, 1995; Romstad et al., 1976). For
reinforced soil medium, de Buhan and Sudret (1999) have recently
introduced ‘‘Multiphase Model’’ as an extension of classical
homogenization methods, in the sense that the composite is rep-
resented at the macroscopic scale not by one single medium as in
the homogenization methods, but by superposed mutually inter-
acting media (or ‘‘phases’’). For instance, in a two-phase system,
each geometrical point consists of two coincident particles
including matrix phase (representative of soil) and reinforcement
phase (representative of inclusion). In the general case, it is possible
to dedicate different kinematic fields to each phase relating to each
other through an interaction law. Consequently, despite classical
homogenization methods, the multiphase model can capture both
scale and boundary effects (Ben Hassine et al., 2008).
: þ98 2166403808.
eininia), ofarzane@ut.ac.ir

All rights reserved.
In the initial introduced multiphase models, it has been
supposed that the matrix and reinforcement phases be perfectly
bonded to each other. The inclusions were considered as one-
dimensional elements. Using this approach, several boundary value
problems were studied in the literature. The examples are the
analysis of a piled-raft group (de Buhan and Sudret, 2000) and that
of a rock-bolted tunnel (Sudret and de Buhan, 2001). The model
was further developed by considering flexural (de Buhan and
Sudret, 2000) and shear behaviors (Hassen and de Buhan, 2005) of
such linear inclusions. In all these analyses, the matrix phase has
been taken as a linear elastic–perfectly plastic material. More
recently, the applicability of inelastic non-linearity in the behavior
of soil is paid attention and the behavior of reinforced soil systems
have been simulated and evaluated (Seyedi Hosseininia, 2009;
Seyedi Hosseininia and Farzaneh, 2007, 2008).

The perfect bonding between soil and inclusion does not always
exist. In a reinforced soil wall, for example, the interface might have
a weaker strength than soil–soil contact that influences the global
wall behavior. As a matter of fact, the performance of soil-structure
systems depends on not only the behavior of each constituent, but
also on the interaction between soil and inclusions, which is stabi-
lized through interface behavior. Hence, the multiphase model was
then developed in such a way that the ‘‘interface phase’’ was intro-
duced in which, an interaction force was related to relative
displacement between phases. Bennis and de Buhan (2003) calcu-
lated the settlement of a piled-raft foundation with/without inter-
face phase. Similarly, Thai et al. (2009) have studied numerically the
stability of a reinforced retaining wall and compared the results with
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those of upper bound limit analysis. It is worth noting that this
technique makes the formulation more complicated as well as more
time-consuming in comparison with perfect bonding condition. This
is because, in one hand, the interface phase has been considered as
a new phase existing in each geometrical point, i.e., three super-
posed phases. On the other hand, the algorithm of such analysis
requires the calculation of individual displacement fields of matrix
and reinforcement phases based on the interface behavior which
either holds the interaction law or reveals the failure condition.

It is interesting to note that the interaction need not always fail
due to relative movement of soil and inclusion alone, but some-
times it can also fail because of shear failure of the interface. This
case was discussed by Tatsuoka (1985) where the interface failure is
only due to the mobilization of maximum shear strength originated
from stress rotation axes. Observational investigations in laboratory
and field tests indicate the possibility of such failure mechanism in
reinforced soil structures (e.g., Cazzuffi et al., 1993; Hatami and
Bathurst, 2005, 2006; Kotake et al., 1999; Matichard et al., 1992;
Peng et al., 2000).

The objective of this paper is to consider the interface as a rigid-
perfectly plastic contact in a two-phase system to simulate soil–
inclusion interaction as an optimal solution between overly
simplified perfect bonding model on one hand, and having to use
the third phase on the other hand, which results in a more
complicated and time-consuming model. In the present contribu-
tion, the planar inclusions have only tensile behavior. The formu-
lation is expressed in-plane strain condition. By implementing the
formulation in a numerical code, the model is evaluated and veri-
fied by simulating the behavior of reinforced soil retaining walls.

2. Formulation of a two-phase system

This section briefly deals with the constitutive equations of
a perfectly bonded two-phase system for reinforced soils. A
detailed explanation can be found in de Buhan and Sudret (1999).
The inclusions are assumed bi-dimensional and only support
tensile forces.

Consider a granular medium including thin planar inclusions
that are placed periodically (Fig. 1a). The inclusions may be laid in
an arbitrary direction with an angle a with 1-axis of a global
coordinate system (1–2–3). As a consequence, the medium can be
regarded, from a macroscopic viewpoint, as a superposition of
matrix and reinforcement phases occupying the whole space as
shown in Fig. 1b. The sign of compressive stress and strain
components is considered as positive.

2.1. Reinforcement phase

The inclusion layers are placed with the same spacing (h) from
each other (Fig. 1a). Consider a local Cartesian x–y–z coordinate
system in which the plane of inclusion is set in x–y plane. The y-
direction shows the out-of-plane direction parallel with the 3-axis
of the global coordinate system. The thickness (t) of the inclusion
(along z-direction) is assumed to be negligible compared with
other dimensions.

The inclusion has a linear elastic–perfectly plastic behavior with
Young’s modulus ðEincÞ, Poisson’s ratio ðvincÞ and tensile strength
ðsinc

u Þ. The corresponding macroscopic parameters with superscript
r (Er,nr and sr

u) can be defined by a reinforcement volume ratio (c)
which is equal to the volume ratio of the inclusion ðV incÞ to the soil
ðVsÞ in one periodic span (refer to Fig. 1):

c ¼ V inc

Vs ¼
t
h

(1)
Thus, the macroscopic properties of the reinforcement phase
(without any change in Poisson’s ratio) are as follows:

Er ¼ cEinc (2a)

sr
u ¼ csinc

u (2b)

In the macroscopic scale and according to the elasticity theory
for bi-dimensional reinforcement phase, we have:�

Dsr
x

Dsr
y

�
¼ Er

1� nr2

�
1 nr

nr 1

��
Der

x
Der

y

�
(3)

where ðsr
x; s

r
yÞ and ðer

x; e
r
yÞ are in-plane axial stress and strain

components, respectively. Hereafter, the sign D denotes the incre-
ment of the related parameter. Under the condition of plane strain
ðer

z ¼ 0Þ, the two-dimensional stress–strain relationship in Eq. (3)
turns into the following simple form:

Dsr
x ¼

�
Er

1� nr2

�
Der

x; Dsr
y ¼

�
nrEr

1� nr2

�
Der

x (4)

Generally, the applied stress on the inclusion surface is too small
in comparison with the in-plane stress components
(i.e.,jsr

xj > jsr
yj[jsr

zj); it is a common practice to ignore the
contribution of out-of-plane stress in the inclusion behavior. By
considering the Tresca yield criterion for the reinforcement phase,
the yield function becomes:

f r�sr
i

�
¼ sr

x � sr
u (5)

2.2. Matrix phase

A linear elastic–perfectly plastic model is considered here for
matrix phase behavior. It is obvious that there is no need to reduce
soil properties since the inclusion properties have already been
scaled to soil volume (Eq. (2)).

The yield function of matrix (fm) is supposed to be the familiar
Mohr–Coulomb criterion as follows:

f m�sm
I ; s

m
II

�
¼
�
sm

I � sm
II

�
� sin fm�sm

I þ sm
II

�
(6)

where 4m is the internal friction angle and (sI
m,sII

m) are major and
minor principal stresses. The superscript m denotes matrix phase.
In a similar way, the plastic potential function (gm) is defined using
the dilation angle (jm):

gm�sm
I ; s

m
II

�
¼
�
sm

I � sm
II

�
� sin jm�sm

I þ sm
II

�
(7)

The constitutive relation for soil (and consequently matrix
phase) is:

Dsm
ij ¼ Ae

ijkl

�
Dem

kl � Demp
kl

	
(8)

in which Ae
ijkl is elastic stiffness tensor. Plastic strain rate ðDemp

ij Þ is
calculated from the flow rule:

Demp
ij ¼ < lm

>
vgm

vsm
ij

(9)

where lm is the plastic loading multiplier and we have <x>¼ x for
x> 0 and <x>¼ 0, otherwise.

2.3. Assembly of phases in a two-phase system

For any arbitrary geometrical point of a two-phase material, the
element is under the influence of global stress components (Sij) as
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Fig. 1. (a) Microscopic view of a reinforced soil medium including soil and inclusions; (b) Macroscopic view of the reinforced soil medium which is regarded as a two-phase system;
(c) A two-phase element is decomposed into matrix and reinforcement phases (d) demonstration of stress state by Mohr stress circles.
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shown in Fig. 1c. The two-phase element can be decomposed into
matrix and reinforcement phases, which results in distinguishing
the stress components of each phase. Despite the matrix phase
(element no. 1), the stress in the reinforcement phase consists of
only axial component ðsr

xÞ along local x direction, as obtained in Eq.
(4). Stress equilibrium always exists between phases. In order to
consider this equality, the axial stress in the reinforcement
(element no. 2) is replaced by its corresponding stress components
on the same element which is rotated clockwise with an angle of 2a

on the stress Mohr circle (element no. 3). The corresponding stress
points are shown in Fig. 1d. The axial stress of the reinforcement
phase can be written in a tensor form and thus, stress equilibrium
condition is written as follows:

DSij ¼ Dsm
ij þ Dsr

ij ¼ Dsm
ij þ Dsr

x

�
er

i 5er
j

	
(10)

The symbol 5 denotes dyadic product of vectors. The unit
vector er

i shows the direction of inclusion and equals:

er
i ¼ fcos a; sin ag (11)

According to the hypothesis of perfect bonding, the strain
compatibility between phases can be stated as follows:

D˛ij ¼ D3m
ij ¼ D3r

ij ¼ D3r
x

�
er

i 5er
j

	
(12)

where ˛ij and 3ij denote strain tensors of composite and phases,
respectively. Herein, it is important to mention that since the stress
and strain tensors of the reinforcement phase have appeared as
second order tensors, a fourth order tensor is presented as rein-
forcement stiffness tensor Ar

ijkl in the following form:
Dsr
ij ¼ Ar

ijklD3r
kl; Ar

ijkl ¼ Er er
i 5er

j 5er
k5er

l (13)

� 	

Now, by taking Eq. (12) as well as Eq. (10), the constitutive
equation of a two-phase system can be obtained:

D˛ij ¼ D3m
ij ¼ Cm

ijklDsm
kl ¼ Cm

ijkl

�
DSkl�Dsr

kl

	
¼ Cm

ijkl

�
DSkl�Ar

ijklD3r
kl

	
0
�

dijdklþAr
ijmnCep

mnkl

	
D˛ij ¼ Cep

mnklDSkl0DSij ¼
�

Ar
ijklþAm

ijkl

	
D˛kl

(14)

where Cm
ijkl is the fourth order compliance tensor of matrix. Finally,

the yield criterion of the composite has been defined in such a way
that it is equal to either of the phase yield criteria which goes to be
first satisfied. In other words, the yield criterion of a two-phase
system is introduced as follows:

F
�

sm
ij ; s

r
x

	
¼ max

n
f m
�

sm
ij

	
; f r�sr

x
�o
� 0 (15)

The formula above indicates that the composite strength rea-
ches the ultimate value when yielding takes place in both phases.
2.4. Stress Mohr circles evolution

Before improving the model by considering the interface effect,
the behavior of a two-phase system is explained schematically in
the space of stress Mohr circles. For instance, consider a two-phase
element being under constant horizontal minor ðS1 ¼ cteÞ and
vertical major ðS2Þ principal stress field. The reinforcement phase is
laid with an inclined angle of a from horizontal direction. The stress
Mohr circles of both phases are sketched in Fig. 2. Since there is no
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shear stress over the sample, we have: S12 ¼ sm
12 þ sr

12 ¼ 0. In
addition, due to the constant lateral stress, the sum of sm

11 and sr
11

remains constant, i.e., S1 ¼ cte ¼ sm
11 þ sr

11. The sample is loaded
by vertical uniform displacement which causes lateral deformation
in the sample. As a result, the axial strain in the reinforcement
enhances the tensile reinforcement stress (with negative sign)
which makes the Mohr circle of the matrix move ahead on condi-
tion that two aforementioned equalities hold true during loading.
Sequential numbers illustrate the process of the circle movement.

The growth of stress in and thus the movement of Mohr circle of
the matrix totally depend on the reinforcement deformability. The
initial stress condition is shown by circle no. 1. If the reinforcement
has high stiffness (Fig. 2a), axial stress in reinforcement grows
rapidly and moves the matrix circle to a long distance. This
movement leaves off when the reinforcement circle touches its
yield criterion line, whilst the matrix does not become plastic yet
(circle no. 4). At this moment, it is the matrix that is alone under
applied load and the circle gets bigger until it reaches the matrix
yield criterion line too (circle no. 5).

In contrast with the previous case, consider the condition where
the reinforcement has high extensibility (low stiffness). The stress in
the reinforcement grows in a gentle manner so that the stress Mohr
circle of matrix reaches the yield criterion at first (circle no. 3), whilst
the reinforcement has not yet got plastic. By having successive lateral
deformation in the sample, the axial stress in reinforcement
continues to increase which again causes to move forward the Mohr
2α
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Fig. 2. Evolution of Mohr stress circles in matrix
circle of matrix, provided that all circles remain tangential to the
yield criterion line as shown in Fig. 2b. The sample finally reaches the
ultimate state when the reinforcement gets plastic too (circle no. 4).

3. Implementation of the interface effect in
the two-phase model

As can be figured out from diverse trends in the behavior
explained above, a two-phase system fails only if both phases reach
their ultimate stress state (also refer to Eq. (15)). This is, however,
against the cases observed in laboratory and field tests, in which
a failure mechanism is generated in the reinforced soil mass
without failure in both inclusion and soil (e.g., Broms, 1977; Civ-
idini, 2002; Haeri et al., 2000; Holtz et al., 1982; Latha and Murthy,
2007; Tatsuoka and Yamauchi, 1986). In other words, it is the
interaction between these constituents that fails and hence, the soil
is not anymore supported by the inclusion.

In the present contribution, the interaction between phases is
considered through a rigid-perfectly plastic contact; it is suggested
that the stress in the reinforcement phase be limited by maximum
admissible shear stress in the matrix phase along the reinforcement
phase direction. By assuming that this surface has frictional resis-
tance, the interrelation between phases will be interrupted if the
tangential stress in this direction exceeds frictional strength. The
interface failure function ðf intÞ, described by Coulomb criterion, is
expressed as follows:
2θ

Yie dl Cr eti r oi n L ni e of Ma rt xi

σi

lastic first.

4

4

3

me plastic first.

σ

Y ei dl Cr eti rion L ni e of Matr xi

2θ

5

m

m
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f intðs;snÞ ¼ s� tanðdÞsn (16)

where s and sn are shear and normal stresses, in the matrix phase,
corresponding to the interface surface direction. d is the interfacial
friction angle.

In order to calculate stress components ðs; snÞ, stress vector on
the interface ðtint

i Þ is first assessed by having the normal direction of
reinforcement plane with unit vector ni:

tint
i ¼ sm

ij nj ¼
�
�sin asm

11 þ cos asm
12

�sin asm
12 þ cos asm

22

�
(17)

where unit vector ni equals:

ni ¼
�
�sin a
cos a

�
(18)

The angle a is the reinforcement phase inclination from hori-
zontal. Hence, by calculating the normal stress along unit vector ni:

sn ¼ tint
i nj ¼ sm

11cos2 aþ sm
22sin2 a� 2sm

12cos a sin a

it is now possible to find the shear stress on the plane as follows:

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jtint

i j
2 � s2

n

q
(19)

where jtint
i j indicates the scalar value of the stress vector.
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Fig. 3. The influence of interface on evolution of Mohr stress circles in the matrix
phase.
Fig. 3 describes schematically the role of the interface in limiting
the matrix stress growth in the space of Mohr stress circles. The
interface can influence the global strength of a two-phase system in
two different manners whether or not the matrix reaches its yield
criterion line before the interface has failed. As shown in Fig. 3a, if
the matrix becomes plastic first, the movement of Mohr circles,
while being tangential on the yield criterion line, is halted when the
stress point correspondent to the stress state on the interface
surface coincides with the interface yield criterion line. On the
contrary, in accordance with Fig. 3b, this is the interface that fails
first and as a result, the matrix cannot reach its yield criterion line
(circle no. 4).

In the latter case, the composite demonstrates a yield-like
condition due to failure of interface. Hence, it may be regarded as if
the composite contained a new soil material with weaker strength,
i.e., smaller internal friction angle ðfintÞ. Besides, according to
Rowe’s stress–dilatancy theory (Rowe, 1962), the deformation
mechanism in such a material corresponds to the characteristics of
the failure surface, i.e., the interface dilatancy angle ðjintÞ. The
pseudo friction angle of the matrix can be assessed by having the
angles a, q, and d as follows:

fm
int ¼ sin�1

�
tanðdÞ

sin 2ðaþ qÞ � tanðdÞ cos 2ðaþ qÞ

�
(20)

The angle q indicates the rotation of principal stress axes in the
matrix phase:

q ¼ 1
2

sin�1

0
B@ sm

12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
sm

22 � sm
11

�2
=4þ sm2

12

q
1
CA (21)

Hence, plastic behavior of the matrix is modified, by replacing
friction and dilatancy angles, as follows:

f m�sm
I ;s

m
II

�
¼
�
sm

I � sm
II

�
� sin feq�sm

I þ sm
II

�
feq ¼ min

n
fm;fint

o
(22a)

gm�sm
I ;s

m
II

�
¼
�
sm

I � sm
II

�
� sin jeq�sm

I þ sm
II

�
jeq ¼

(
jm for fm < fint

jint for fm � fint (22b)

The equations above indicate that the plastic behavior of the
matrix phase can be changed directionally as a function of stress
state in the matrix phase as well as reinforcement phase
inclination.

4. Numerical implementation

The proposed formulation is implemented in the finite differ-
ence-based code FLAC (Itasca Consulting Group, 2001). Since two
types of material exist in each element, stress–strain calculation is
performed separately for each phase. It is firstly assumed that
applied total strain increment on the two-phase system is elastic.
Therefore, elastic trial stresses in both phases are calculated. Then, it
is examined if the stresses violate yield criteria. If the stress state lies
outside its yield function, stress state is corrected by plastic correc-
tion procedure used in FLAC (explicit procedure). The calculation is
initially launched for the matrix phase. In each step, the yield and
potential functions are updated in accordance with Eq. (22). The
calculation then continues for the reinforcement phase. If the
interface has failed (i.e., fint � fm), no stress state is updated.
Otherwise, the stress state is calculated according to stress–strain
relationship and failure condition of the reinforcement phase.
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5. Evaluation and verification

The study explained in this section includes three groups of
numerical simulations. The first refers to the response of a plane
strain compression test on a reinforced soil sample. The second
concerns the deformation pattern of the face of a reinforced soil
retaining wall and the numerical simulations are compared with
experimental data. Finally, the behavior of a reinforced soil wall is
simulated under its own weight and it is compared with the
analysis result of another advanced homogenization method.

5.1. Simulation of a plane strain compression test

McGown et al. (1978) performed several plane strain compres-
sion tests on reinforced sand samples under confining pressure of
70 kPa. The soil used was dense Leighton Buzzard sand with rela-
tive density of 65%. Two different types of inclusions including
aluminum foil and non-woven geotextile (T140) were applied. The
aluminum foil had the stiffness (J) of 560 kN/m with tensile
strength force ðTuÞ of 3 kN/m. The properties of geotextile were
J¼ 30 kN/m and Tu ¼ 1.4 kN/m. The dimension of reinforced soil
samples was 152 mm� 102 mm� 102 mm. In all reinforced
samples, one layer of inclusion was placed in the middle of the
specimen with an inclined direction varying between a¼ 0 and 90�.
The samples were loaded vertically by rigid platen displacements,
while the lateral stress was kept constant during the test. The sand
parameters are estimated from the stress–strain graphs: 4m¼ 51�,
jm¼ 20�, Em¼ 52 MPa, and nm¼ 0.3. No data were reported for the
mechanical behavior of the interface. Hence, the value of the
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Fig. 4. Comparison of experimental and simulated behavior of reinforced soil samples
in term of Maximum Stress Ratio (MSR) along with the inclusion inclination.
interface friction angle (d) in the simulations is assessed to be 49�

by trial and error procedure. It should be mentioned that the very
thin layer of the reinforcing layer (about 8 mm for aluminum foil)
would be deformed under compression of sand particles during
sample preparation. Consequently, this high value for d would be
reasonable.

The sample is modeled as a single degree-of-freedom two-
phase element under S1 and S2 principal stresses. In Fig. 4, the
result of simulations without/with considering the failure interface
is presented in terms of Maximum Stress Ratio (MSR), defined as
(S2/S1)max, along with inclination of inclusion. In the same figure,
the result from experimental tests is demonstrated too. The
comparison shows the influence of the interface resistance on the
reinforced soil strength.

According to Fig. 4, it can be observed that MSR obtained from
the simulation has the same trend as that of the experiment along
with the inclination angle of the inclusion when the inclusion is
inclined in a shallow angle from horizontal (a< 50�). In this case,
the composite strength is higher than that of soil alone; however,
passing through a¼ 50�, MSR becomes even smaller than that of
non-reinforced sand. This reduction in MSR can only be predicted
by the model in which the interface failure takes place.

5.2. Response of a reinforced retaining wall under external loading

Schiavo et al. (2001) have studied the behavior of a 1-g geogrid
reinforced retaining wall model (Fig. 5a). The retaining wall face
was made up of a set of rigid metallic strips hinged each other and
kept vertically only by the interposition of geogrids. The geogrids
(110 cm long) were placed in seven layers. The sand layers were
prepared by raining technique with a relative density of 85% (unit
weight¼ 16 kN/m3). The reinforced retaining wall was loaded
Grid used in numerical analysis 
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Fig. 5. Scheme of the reinforced soil retaining wall model under external loading.
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Fig. 7. Reinforced soil wall under its own weight: (a) global layout; (b) grid and
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through a rigid steel plate (200 mm� 400 mm) resting on top of
the deck surface. Five horizontal transducers measured the wall
face movement during the loading process. They have simulated
the wall behavior by the finite-element-based code Plaxis. Based on
triaxial compression tests on sand samples as well as the back-
analysis of the experimental data for the wall deformation, they
have proposed the following sand parameters: 4¼ 42�, j¼ 9�,
E¼ 6.5 MPa, and n¼ 0.2. The geogrid used has J¼ 55 kN/m, n¼ 0.3,
and tensile strength force ðTuÞ of 4.5 kN/m.

This problem is analyzed with the aid of multiphase concept in
the present study by considering different interface behaviors. In
the first analysis, the phases are perfectly bonded to each other
(without interface failure). The analysis with Plaxis has been per-
formed with the same condition where the soil and inclusions were
modeled individually. Second analysis concerns the simulation of
the wall behavior in which the interface failure is taken into
account in the system. A value of d¼ 34� and jint¼ 5� is chosen for
the interface properties. The grid used and the boundary conditions
in the analyses are shown in Fig. 5b.

Fig. 6 provides the wall face deformation measured in the test
together with the result of simulations. First of all, by referring to
Fig. 6a, it can be seen that there is a good agreement between the
simulations of the homogenized and discrete (Plaxis) models.
Secondly, by comparing Fig. 6a with Fig. 6b, it is found out that the
proposed interface behavior has influence over the pattern of
the face deformation. This influence becomes more evident as the
applied load augments. The difference in the deformation pattern is
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Fig. 6. Variation of horizontal wall face deformation at different load levels.

boundary conditions used in numerical simulation.
highly distinguished in the upper half of the wall height. It is obvious
that the deformation profile obtained from the model with the
interface failure has more similarity with experimental data than the
model with perfect bonding condition.
5.3. Behavior of a reinforced soil wall under its own weight

Ensan and Shahrour (2003) have analyzed the deformation of
a reinforced soil wall under its own weight by applying a consti-
tutive model for multilayered materials in domain of homogeni-
zation theories. In their proposed model, the interface failure
feature has been defined by considering relative displacement
between the soil and the inclusion. The wall geometry is shown in
Fig. 6a. The wall is composed of eight reinforcement layers with
the properties as follows: Einc¼ 10,500 MPa, ninc¼ 0.22, and
sinc

u ¼ 6 MPa. The soil has the following characteristics: 4m¼ 30�,
jm¼ 30�, Em¼ 150 MPa, and nm¼ 0.3. The analysis has been
carried out by two values of interface friction angle d¼ 10� and 20�

(1/3 and 2/34m). In all analyses, jint¼ 4� has been assumed. The
wall was loaded gradually by increasing the volume force from
zero to the unit weight of the soil (g¼ 20 kN/m3) and the
displacement of the upper corner point of the wall (point A in
Fig. 7a) was calculated.

The same problems are analyzed here with the present model as
a two-phase system. The grid used in the analysis is shown in
Fig. 7b. The results of the analyses from both methods are depicted
in Table 1. By comparing the results, it is interesting to find out that
although the relative displacement is neglected in the present
Table 1
Horizontal displacement of point A obtained from different methods (mm).

Interface characteristics Present model Ensan and Shahrour (2003)

d¼ 10� 1.19 1.25
d¼ 20� 0.95 1.04
Perfect bonding 0.94 0.98
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formulation, the obtained results are very similar to those of the
other advanced model in which more extra parameters are needed
for the interface.
6. Conclusion

In this paper, the interface effect in reinforced soil structures is
taken into consideration as a rigid-plastic contact in two-phase
systems. The analysis with the present model is simple and less
time-consuming since there is no need to introduce a third phase
and to calculate relative displacement between matrix and rein-
forcement phases.

By simulating the behavior of reinforced soil samples as a single
element, the influence of interface failure on the global strength is
clearly demonstrated. Then, by simulating the behavior of a 1-g
reinforced soil wall model under external loading, it has been
shown that in comparison with the perfect bonding model, the face
deformation profile can be predicted more accurately by the
present model.

Ignoring the relative displacement between soil and inclusion
before interface failure in the proposed model might impose an
error on predicting the deformation of reinforced soil walls.
However, in the cases where the wall is not heavily loaded or it is
under its own weight, it is found out that the error is small and
ignorable. This is examined by investigating the simulated behavior
of the above-mentioned model test as well as comparing the
simulation result of a reinforced soil wall with that of the other
homogenization method including elastoplastic interface model.

The efficiency of the proposed formulation in predicting the
deformation of reinforced soil walls has been demonstrated in the
present study. However, more investigation is required to examine
the applicability of the model for stability analysis of reinforced soil
structures.
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