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Quantum convolutional codes, like their classical counterparts, promise to offer higher error correction
performance than block codes of equivalent encoding complexity, and are expected to find important applications
in reliable quantum communication where a continuous stream of qubits is transmitted. Grassl and Roetteler
devised an algorithm to encode a quantum convolutional code with a “pearl-necklace” encoder. Despite their
algorithm’s theoretical significance as a neat way of representing quantum convolutional codes, it is not well
suited to practical realization. In fact, there is no straightforward way to implement any given pearl-necklace
structure. This paper closes the gap between theoretical representation and practical implementation. In our
previous work, we presented an efficient algorithm to find a minimal-memory realization of a pearl-necklace
encoder for Calderbank-Shor-Steane (CSS) convolutional codes. This work is an extension of our previous work
and presents an algorithm for turning a pearl-necklace encoder for a general (non-CSS) quantum convolutional
code into a realizable quantum convolutional encoder. We show that a minimal-memory realization depends
on the commutativity relations between the gate strings in the pearl-necklace encoder. We find a realization
by means of a weighted graph which details the noncommutative paths through the pearl necklace. The
weight of the longest path in this graph is equal to the minimal amount of memory needed to implement
the encoder. The algorithm has a polynomial-time complexity in the number of gate strings in the pearl-necklace

encoder.
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I. INTRODUCTION

Quantum error correction codes are used to protect quantum
information from decoherence and operational errors [1-10].
Depending on their approach to error control, error correcting
codes can be divided into two general classes: block codes
and convolutional codes. In the case of a block code, the
original state is first divided into a finite number of blocks
of fixed length. Each block is then encoded separately and the
encoding is independent of the other blocks. On the other hand,
a quantum convolutional code [11-24] encodes an incoming
stream of quantum information into an outgoing stream. Fast
decoding algorithms exist for quantum convolutional codes
[25].

The encoder for a quantum convolutional code has a rep-
resentation as either a standard encoder' or a pearl-necklace
encoder. The standard encoder [11,12,25] consists of a single
unitary operator repeatedly applied to a stream of quantum
data [see Fig. 1(a)]. On the other hand, the pearl-necklace
encoder [see Fig. 1(b)] consists of several strings of the
same unitary operator applied to the quantum data stream.
Grassl and Rétteler [13] proposed an algorithm for encoding
any quantum convolutional code with a pearl-necklace en-
coder. The algorithm consists of a sequence of elementary
encoding operations. Each of these elementary encoding
operations corresponds to a gate string in the pearl-necklace
encoder.

The amount of required memory plays a key role in
the implementation of any encoder, since this amount will
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Mn previous literature including [26], this kind of encoder was
simply called a “convolutional encoder.”

1050-2947/2011/83(2)/022308(10)

022308-1

PACS number(s): 03.67.Pp

result in overhead in the implementation of communication
protocols. Hence any reduction in the required amount of
memory will help in practical implementation of a quantum
system.

It is trivial to determine the amount of memory required
for implementation of a standard encoder: it is equal to the
number of qubits that are fed back into the next iteration of
the unitary operator that acts on the stream. For example, the
standard encoders in Figs. 1(a), 2(c), and 5(b) require two, one,
and four frames of memory qubits, respectively.

In contrast, the practical realization of a pearl-necklace
encoder is not explicitly clear. To make it realizable, one
should rearrange its gates in the pearl-necklace encoder so
that it becomes a standard encoder. Reference [27] was the
first work that showed how standard encoders realize the
transformations in the pearl-necklace encoders. Then in [26]
we proposed an algorithm for finding the minimal-memory
realization of a pearl-necklace encoder for the Calderbank-
Shor-Steane (CSS) class of convolutional codes. This kind
of encoder consists of controlled-NOT (CNOT) gate strings
only [27].

In this paper we extend our work to find the minimal-
memory realization of a pearl-necklace encoder for a general
(non-CSS) convolutional code. A general case includes all
gate strings that are in the shift-invariant Clifford group [13]:
Hadamard gates, phase gates, controlled-phase gate strings,
and finite-depth and infinite-depth [22,24] CNOT operations.
We show that there are many realizations for a given pearl-
necklace encoder which are obtained considering noncommu-
tativity relations of gate strings in the pearl-necklace encoder.
Then for finding the minimal-memory realization, a specific
graph, called a commutativity graph, is introduced. Each vertex
in the commutativity graph corresponds to a gate string in the
pearl-necklace encoder. The graph features a directed edge
from one vertex to another if the two corresponding gate strings
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FIG. 1. Two different representations of the encoder for a
quantum convolutional code: (a) a standard encoder and (b) a
pearl-necklace encoder [26].

do not commute. The weight of a directed edge depends on
the degrees of the two corresponding gate strings and their
type of noncommutativity. The weight of the longest path
in the graph is equal to the minimal memory requirement for
the pearl-necklace encoder. The complexity for constructing
this graph is quadratic in the number of gate strings in the
encoder.

The paper is organized as follows. In Sec. II we introduce
some definitions and notation that are used in the rest of
paper. In Sec. III, we first define three different types of
noncommutativity and then propose an algorithm to find the
minimal-memory requirements in a general case. Section [V
concludes the paper.

II. DEFINITIONS AND NOTATION

We first provide some definitions and notation which are
useful in our analysis later on. The gate strings in the pearl-
necklace encoder and the gates in the standard encoder are
numbered from left to right. We call the ith gate string in the
pearl-necklace encoder, U;, and the ith gate in the standard
encoder, U;.

Let U, without any index specified, denote a particular
infinitely repeated sequence of U gates, where the sequence
contains the same U gate for every frame of qubits.

Let U be either a CNOT or controlled-PHASE (CPHASE) gate.
The notation U (a,bD") refers to a string of gates in a pearl-
necklace encoder and denotes an infinitely repeated sequence
of U gates from qubit a to qubit b in every frame where qubit
b is in a frame delayed by /.2

Let U be either a phase or Hadamard gate. The notation
U (b) refers to a string of gates in a pearl-necklace encoder and
denotes an infinitely repeated sequence of U gates which act
on qubit b in every frame. By convention we call this qubit the
target of U (b) during this paper.

If U; is CNOT or CPHASE, the notation a;, b;, and /; are used to
denote its source index, target index, and degree, respectively.
If U; is H or P, the notation b; is used to denote its target
index.

For example, the strings of gates in Fig. 2(a) correspond to

‘H(1)CPHASE (1,2D)CNOT (1,3), (1)
b] = 1,022 1,b2=2,12= 1,613: 1,b3=3,and13=0.

Instead of prev@usly used notation U (a,b) (D'), we preferred to
use the notation U(a,bD') because we think it better matches the
concept.
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Suppose the number of gate strings in the pearl-necklace
encoder is N. The members of the sets IELNOT, Ienor IgPH ASE’
and I pyase are the indices of gate strings in the encoder
which are CNOT with non-negative degree, CNOT with negative
degree, CPHASE with non-negative degree, and CPHASE with
negative degree, respectively:

Itvor = {ilU; isCNOT, [; > 0,i € {1,2,...,N}},
Ienor = {ilU; is CNOT, [; < 0, € {1,2,...,N}},
Idopase = {i|U; is CPHASE, [; > 0,i € {1,2,...,N}},

Icpuase = li|U; is CPHASE, I; < 0,i € {1,2,...,N}}.

The members of the sets Iy and_ Ip are the indices of gate
strings of the encoder which are H and P, respectively:

Iy ={i|U;is H,i €{1,2,...,N}},
Ip={i|U;is P,ie{l1,2,...,N}}.

Our convention for numbering the frames upon which the
unitary operator of a standard encoder acts is from “bottom”
to “top.” Figure 6(b) illustrates this convention for a standard
encoder. If U; is CNOT or CPHASE gate, then let o; and 7; denote
the frame index of the respective source and target qubits
of the U; gate in a standard encoder. If U; is a Hadamard
or phase gate, let 7; denote the frame index of the target
qubit of the U; gate in a standard encoder. For example,
consider the standard encoder in Fig. 6(b). The standard
encoder in this figure consists of six gates: 11 =0, 1, =0,
o3=0,3=1,04=2,14=0,05 =3, 15 =2, 06 = 4, and
Te = 3.

While referring to a standard encoder, the following
notation is defined as follows:

CNOT (a,b) (0,7) denotes a CNOT gate from qubit a in frame
o to qubit b in frame 7.

CPHASE (a,b) (0,7) denotes a CPHASE gate from qubit a in
frame o to qubit b in frame t.

H () (7) denotes a Hadamard gate which acts on qubit b in
frame 7.

P(b) () denotes a phase gate which acts on qubit b in
frame 7.

For example, the gates in Fig. 6(b) correspond to

H(1)(0)P(1) (0)cPHASE(1,2)(0,1)CPHASE(2,3)(2,0)
CNOT(3,2)(3,2)CNOT(2,3)(4,3).

III. MEMORY REQUIREMENTS FOR AN ARBITRARY
PEARL-NECKLACE ENCODER

As mentioned in the Introduction, to find a practical
realization of an arbitrary pearl-necklace encoder, it is required
to rearrange its gates in the form of a standard encoder. The key
idea behind this rearrangement is the same as the one in [26]
and is as follows: One needs to find a set of gates consisting
of a single gate from each gate string in the pearl-necklace
encoder such that all remaining gates below the set commute
with the set. This allows the remaining gates to be shifted to
the right. Conceptually, this operation is repeated infinitely
many times on the remaining gates to obtain a standard
encoder.
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FIG. 2. Simple (since all gate strings commute with each other) example of the rearrangement of a pearl-necklace encoder for anon-CSS code
into a standard encoder. (a) The pearl-necklace encoder consists of the gate strings H (1) CPHASE (1,2) (D) CNOT (1,3). (b) The rearrangement
of gates after the first three by shifting them to the right. (c) The repeated application of the procedure in (b) realizes a standard encoder from

a pearl-necklace encoder.

In the case when all of the gates in the pearl-necklace
encoder commute with each other, there will be no constraint
on frame indices of the target qubits of the gates in the standard
encoder (i.e., one is allowed to choose any gate from each
gate string in the pearl-necklace encoder to build a standard
encoder). Figure 2 shows an example of the rearrangement
of commuting gate strings, H (1) CPHASE (1,2)(D)CNOT (1,3)
to make a standard encoder. As shown in Fig. 2(b), the first
gate from each of the three gate strings have been chosen as
a set, and the remaining gates below this set have been shifted
to the right. A repeated application of the same procedure on
the remaining gates results in the standard encoder shown in
Fig. 2(b).

On the other hand, we have shown in [26] that when the
gate strings do not commute, the commutativity constraint of
the remaining gates with the chosen set results in constraints
on frame indices of target qubits of the standard encoder gates.
This constraints are expressed in the form of three inequalities
[Egs. (6), (13), and (24)].

In the following sections, after defining different types of
noncommutativity and their imposed constraints, the algorithm
for finding the minimal-memory standard encoder for an
arbitrary pearl-necklace encoder is presented.

A. Different types of noncommutativity
and their imposed constraints

There may arise three types of noncommutativity for any
two gate strings of shift-invariant Clifford: source-target non-
commutativity, target-source noncommutativity, and target-
target noncommutativity. Each imposes a different constraint
on frame indices of gates in the standard encoder. These types
of noncommutativity and their constraints are explained in the
following sections.

1. Source-target noncommutativity

The gate strings in Egs. (2)—(5) below do not commute with
each other. In all of them, the index of each source qubit in

the first gate string is the same as the index of each target
qubit in the second gate string, therefore we call this type of
noncommutativity source-target noncommutativity.

CNOT (a,bD")CNOT (a',b'D"), where a =05, (2)
CPHASE (a,bD")CNOT (a’,b'D"), where a =15, (3)
CNOT (a,bD'YH(b'), where a =1V, 4)
CPHASE (a,bD')H(b'), where a=1"'. (5)

With an analysis similar to the one in Sec. Il A of [26]
(whose underlying idea is similar to the one mentioned
in the beginning of Sec. III), it can be proved that the
following inequality applies to any correct choice of a standard
encoder that implements either of the transformations in
Egs. (2)—(5):

o<, (6)

where o and t’ denote the frame index of the source qubit
of the first gate and the frame index of the target qubit of the
second gate in a standard encoder, respectively. We call the
inequality in Eq. (6), source-target constraint.

As an example, the gate strings of the pearl-necklace
encoder, CPHASE (2,3)CNOT (1,2D), [Fig. 3(a)] have source-
target noncommutativity. A correct choice of standard en-
coder is (the encoder depicted over a first arrow in the
Fig. 3)

CPHASE (2,3) (0,0) cNoT (1,2) (1,0). @)

In this case, 0 =0 < 7’ = 0. Since the source-target con-
straint is satisfied, the remaining gates after the chosen set
[the highlighted gates in Fig. 3(a)] can be shifted to the
right [Fig. 3(b)]. Repeated application of the procedure in
Fig. 3(b) realizes a standard encoder representation from a
pearl-necklace encoder [Fig. 3(c)]. Figure 4(a) shows the same
gate strings as Fig. 3(a). In this case the chosen standard
encoder is

CPHASE(2,3) (1,1)cNoT1(1,2) (1,0). (8)
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FIG. 3. Finding a correct standard encoder for a two noncommutative gate strings. (a) The pearl-necklace encoder consists of the
gate strings CPHASE(2,3D)CNOT(1,2D), which have source-target noncommutativity. (b) The rearrangement of gates after the first three
by shifting them to the right. (¢) The repeated application of the procedure in (b) realizes a standard encoder from a pearl-necklace

encoder.

Here,o0 = 1 € v/ = 0. Figure 4(b) shows that one of the gates
that remains after the chosen set does not commute with it.
Therefore CPHASE (2,3) (1,1) cNOT (1,2) (1,0) is not a correct
choice for the standard encoder.

The following Boolean function is used to determine
whether this type of noncommutativity exists for two gate
strings:

Source-Target (Ui ,Uj).

This function takes two gate strings U; and U ; as input. It re-

turns TRUE if U; and U ; have source-target noncommutativity
and returns FALSE otherwise.

2. Target-source noncommutativity

It is obvious that the gate strings in Egs. (9)—(12) do not
commute. In all of them, the index of each target qubit in
the first gate string is the same as the index of each source
qubit in the second gate string. Therefore, we call this type of
noncommutativity, target-source noncommutativity.

CNOT (a,bD")CNOT (@/,b'D"), where b=d, (9)
CNOT (a,bD')CPHASE (a’,b'D"), where b=2d/, (10)
H(b)CNOT (@/,b'D"), where b=d, (11)

H(b)CPHASE (a',b'D"), where b=d'. (12)

With an analysis similar to the analysis in Sec. I A of
[26] (whose underlying idea is similar to the one mentioned
in the beginning of Sec. III), it can be proved that the
following inequality applies to any correct choice of a standard
encoder that implements either of the transformations in
Egs. (9)—(12):

<o, (13)

where t and o’ denote the frame index of the target qubit of the
first gate and the frame index of the source qubit of the second
gate in a standard encoder respectively. We call the inequality
in Eq. (13), target-source constraint.

The following Boolean function is used to determine
whether target-source noncommutativity exists for two gate
strings:

Target-Source U;,,U i)

This function takes two gate strings U; and U j as input. It re-
turns TRUE if U; and U ; have target-source noncommutativity
and returns FALSE otherwise.

3. Target-target noncommutativity

It is obvious that the gate strings in Egs. (14)—(23) do not
commute. In all of them, the index of each target qubit in
the first gate string is the same as the index of each target
qubit in the second gate string. Therefore, we call this type of

noncommutativity, farget-target noncommutativity.
CPHASE (a,bD")CNOT (@',b'D"), where b =15, (14)

CNOT (a,bD')CPHASE (a/,b'D"), where b =15, (15)

CNOT (a,bD')H(b), where b=1 (16)
CPHASE (a,bD") H(b'), where b =1, (17)
H(b)TNOT (¢',b'D"), where b=1, (18)
H(b)CPHASE (a’,b'D"), where b =120, (19)
CNOT (a,bD") P(b'), where b =1 (20)
P(b)CNOT (a',b'D"), where b =1, (1)
PW)H®D'), where b=1b, (22)
H(b)P(B'), where b=1" (23)
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FIG. 4. (a) An incorrect standard encoder for the gate strings in Fig. 3. (b) Since the source-target constraint is not satisfied, one of the

gates that remains after the chosen set does not commute with it.

With a analysis similar to the analysis in Sec. III A of [26]
(whose underlying idea is similar to the one mentioned in the
beginning of Sec. III), it can be proved that the following in-
equality applies to any correct choice of a standard encoder that
implements either of the transformations in Egs. (14)—(23):

T <7, (24)
where 7 and t’ denote the frame index of the target qubit of
the first gate and the frame index of the target qubit of the
second gate in a standard encoder, respectively. We call the
inequality in Eq. (24), target-target constraint. The following
Boolean function is used to determine whether target-target
noncommutativity exists for two gate strings:

Target-Target U;,U j) = TRUE.
This function takes two gate strings U; and U ;j as input. It

returns TRUE if U; and U ;j have target-target noncommutativity
and returns FALSE otherwise.

Consider the jth gate string, U, in the encoder. It is
important to consider the gate strings preceding this one that
do not commute with this gate string and categorize them
based on the type of noncommutativity. Therefore we define
the following sets:

(S—-T);

= {i|Source-Target (U,-,Uj):TRUE, ie{l,2,...,j—1}},
(T -95);

= {i|Target-Source (U,‘,ﬁj)ZTRUE, ie{l,2,...,j—1}},

(T -T);
= {i|Target-Target (U;,U ;) =TRUE, i€{1,2,...,j —1}}.

B. The proposed algorithm for finding minimal memory
requirements for an arbitrary pearl-necklace encoder

In this section, we find the minimal-memory realization
for an arbitrary pearl-necklace encoder which includes all
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gate strings that are in the shift-invariant Clifford group:
Hadamard gates, phase gates, CPHASE, and finite-depth and
infinite-depth CNOT gate strings. To achieve this goal, we
consider any noncommutativity that may exist for a par-
ticular gate and its preceding gates. Suppose that a pearl-
necklace encoder features the following succession of N
gate strings:

U1, Us, ..., Uy. (25)

If the first gate string is CNOT (a;,b D)l > 0, the first gate
in the standard encoder is

CNOT (ay,by) (o1 = 11,11 = 0). (26)

If the first gate string is CNOT (a1,byD"),1; < 0, the first gate
in the standard encoder is

CNOT (ay,by) (01 = 0,71 = |[1]). (27)
If the first gate string is CPHASE (a;,byD"),1; > 0, the first
gate in the standard encoder is
CPHASE (a;,by) (o1 = 11,71 = 0). (28)
If the first gate string is CPHASE (a;,byD"),1; < 0, the first
gate in the standard encoder is
CPHASE (a1,b1) (o1 = 0,71 = |[1]). (29)
If the first gate string is H(b;) or P(b;), the first gate in the
standard encoder is as follows, respectively:
H(by)(0), (30)
P(b1)(0). (3D
For the target indices of each gate j where 2 < j < N, we
should choose a value for 7; that satisfies all the constraints
that the gates preceding it impose.
First consider U is the CNOT or CPHASE gate, then the fol-

lowing inequalities must be satisfied to target index of Fj T;:
By applying the source-target constraint in Eq. (6) we have

0, <1 Vie(S-T),
LG+t Vie(§-T);, (32)
~ max{t; + lities-1); < T;-
By applying the target-source constraint in Eq. (13) we have
. <o; Yie(T -98);,
L ST+l Vie(T =85);,
-1 <t Vie(T -98);,

max{ri — lj}ie(’T—S)j < T;.

(33)

By applying the target-target constraint in Eq. (24) we have
T; < Tj Vi e (T — T)j, max{ti},-e(y,f)j < T;. (34)

The following constraint applies to the frame index t; of the
target qubit by applying Eqgs. (32)—(34):

max {{r; + liYies-1),{ti — lj}[e(T,S)f1{7:1'}1'6(7’—7')‘,»} <71
(35)
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Thus, the minimal value for 7; (which corresponds to the

minimal-memory realization) that satisfies all the constraints

is:

;= max {5 + li}ies_1),- {0 — lj},»e(T_S)_/.,{Ti}ie(TfT)j}-
(36)

It can be easily shown that there is no constraint for the frame
index 7; if the gate string U; commutes with all previous gate
strings. Thusif/; > O we choose the frame index 7; as follows:

7, =0. (37)

Andif [; < 0 we choose t; as follows:

T; =l (38)
If1; > 0, a good choice for the frame index t;, by considering
Egs. (36) and (37), is as follows:

;= max{0,{t; +i}ies_1,- 1T —liYicr—s), \TitieT-1); ).

(39

And if /; <0, a good choice for the frame index t;, by
considering Egs. (36) and (38), is as follows:

t; =max{|l;|.{z; +iitics—m), it — lj},'e(T_S)j7{Ti}ie(T—T),-}~

(40)

Now consider Fj is the H, then the following inequalities

must be satisfied to target index of U;, 7;:
By applying the source-target constraint in Eq. (6) we have

0; < Tj Vi € (S—T)J,
AL <t Vie(S-T);, (41)
~ max{t; +lilies-1),; < Tj-
By applying target-target constraint in Eq. (24) we have
T, < T; Vi € (S — T)j, maX{T,'},‘E(T,T)j < Tj, (42)
The following constraint applies to the frame index 7; of the
target qubit by applying Eqs. (41) and (42):
max {{z; + li}ig(s_’]’)/’{Ti}ie(T—T)_/-} < 15

Thus, the minimal value for 7; (which corresponds to the
minimal-memory realization) that satisfies all the constraints
is

t; = max {5 + li}icqs—1,; - {Tilier-1), }- (43)

It can be easily shown that there is no constraint for the frame
index 7; if the gate string U_j commutes with all previous gate
strings. Thus, in this case, we choose the frame index 7; as
follows:

Tj = 0. (44)

A good choice for the frame index 7;, by considering Egs. (43)
and (44), is

T; = max {0,{1'1‘ + li}ie(s_T)j ,{Ti}ie(T—T)/- } (45)
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Now consider Uj is the P, then by applying the target-target
constraint in Eq. (24), the following inequality must be
satisfied to target index of Uj, 7;:

<71 YVie(T-T);, -~ max{tlicr-7), < 7).
Thus, the minimal value for t; (which corresponds to the
minimal-memory realization) that satisfies all the constraints
is

T; = max{T;}ie(r-7),;- (46)

It can be easily shown that there is no constraint for the frame
index t; if the gate string Fj commutes with all previous gate
strings. Thus, in this case, we choose the frame index 7; as
follows:

7; =0. A7)

A good choice for the frame index 7;, by considering Eqgs. (46)
and (47), is

tj = max {0, {ti}ier—1), }- “%)

1. Construction of the commutativity graph

We introduce the notion of a commutativity graph G in
order to find the best values for the target qubit frame indices.
The graph is a weighted, directed acyclic graph constructed
from the noncommutativity relations of the gate strings. G
consists of N vertices, labeled 1,2, ..., N, where the jth vertex
corresponds to the jth gate string U ;- It also has two dummy
vertices, named START and END. DrawEdge (i,j,w) is a
function that draws a directed edge from vertex i to vertex j
with an edge weight equal to w.

If the degree of the jth gate string is negative, a |/;|-weight
edge connects the START vertex to vertex j; otherwise a zero-
weight edge connects the START vertex to vertex j. If the
degree of the jth gate string is positive, an /;-weight edge
connects vertex j to the END vertex; otherwise, a zero-weight
edge connects vertex j to the END vertex. Two vertices i and
Jj are connected to each other if ith gate string and jth gate
string do not commute. The weight of the edge depends on the
degrees of the two corresponding gate strings and their type of
noncommutativity.

The commutativity graph G is an acyclic graph because
a directed edge connects each vertex only to vertices for
which its corresponding gate comes later in the pearl-necklace
encoder in Eq. (25). The running time for the construction
of the graph is quadratic in the number of gate strings in the
pearl-necklace encoder. Since in Algorithm 1 the instruction
in the inner for loop requires constant time O(1), the sum of
iterations of the if instruction in the jth iteration of the outer
for loop is equal to j — 1. Thus the running time 7'(N) of
Algorithm 1 is

N j-1

T(N) = Z Z 0(1) = O(N?).

i=1 k=1

Algorithm 1 presents the pseudocode for constructing the
commutativity graph.
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N « Number of gate strings in the pearl-necklace encoder.
Draw a START vertex.
for j:=1to N do
Draw a vertex labeled j for the jt gate string Uj
if j € Uonor Y lophasy) then
DrawEdge(START, j, |I;|)
else
DrawEdge(START, 7, 0)
end if
fori:=1toj—1do
if j € (Idnor U Lépnase Uloxor Y lcpase) then
if i € (§—17); then
DrawEdge(i, j,1; )
end if
if i € (T —S); then
DrawEdge(t, 7, —1;)
end if
if i e (T —T), then
DrawEdge(z, 7,0)
end if
else
if j € Iy then
if i € (§—17); then
DrawEdge(i, 7, ;)
end if
ifie (7 —7); then
DrawEdge(i, 7,0)
end if
else
if i e (T —T), then
DrawEdge(i, 7,0)
end if
end if
end if
end for
end for
Draw an END vertex.
for j :=1to N do
if j € (Iénor U Idpuase) then
DrawEdge(j,END, [;)
else
DrawEdge(j,END, 0)
end if

end for

2. The longest path gives the minimal memory requirements

Theorem 1 below states that the weight of the longest
path from the START vertex to the END vertex is equal
to the minimal memory required for a standard encoder
implementation.
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Theorem 1. The weight w of the longest path from the
START vertex to END vertex in the commutativity graph G
is equal to the minimal memory L that the standard encoder
requires.

Proof. We first prove by induction that the weight w; of
the longest path from the START vertex to vertex j in the
commutativity graph G is

w; = T;. (49)
Based on the algorithm, a zero-weight edge connects the
START vertex to the first vertex if 1 € (Idyor U Idpgase Y
Iy U Ip) and in this case based on Egs. (26), (28), (30),
and (31), t; =0, therefore w; = 7y = 0. An edge with the
weight equal to |/;| connects the START vertex to the first
gate if 1 € (Joyor Y Icppase)> and based on Egs. (27) and
(29), 71 = ||, therefore w; = 71 = |[;]. Thus the base step
holds for the target index of the first gate in a minimal-
memory standard encoder. Now suppose the property holds

PHYSICAL REVIEW A 83, 022308 (2011)

for the target indices of the first £ gates in the standard
encoder:

Wi =71; V]lé]ék

Suppose we add a new gate string Uy, to the pearl-necklace
encoder, and Algorithm 1 then adds a new vertex k + 1 to the
graph G. Suppose (k + 1) € (Idyor U Icpyasg)- The following
edges are added to G:

1. A zero-weight edge from the START vertex to vertex
k+1

2. An [;-weight edge from each vertex {i}ies—1),, tO

vertex k + 1 . )
3. A —li41-weight edge from each vertex {i};er—s),,, t0

vertex k + 1

4. A zero-weight edge from each vertex {i};ecr—71),, tO
vertex k + 1

5. An [, -weight edge from vertex k + 1 to the END
vertex

It is clear that the following relations hold:

wis1 = max {0,{w; + L bies—Tyr AW — lt1 Vi TSy (Widiem -7y, } +

By applying Egs. (39) and (50) we have

max {0,{t; + li}ies—7yp (T — bt Yie@—Syn (TitieT—1rns } -

(50)

In a similar way we can show that if the Uy is any other gate
string of Clifford shift-invariant, then

Wi+l = T+1- Wit+1 = T+1-

A HT} P S e =
< O, -<| I !
L | | }
(—HEHE] 4 e =
J| ° 5 { ! - !
& 4 o !
EHE & H ’
3 @ @ 1 } i — :
L ® & + 4 ©—1
—THED -—) (1 +— i
L © & ~q | j I
—EH?] |"1-|IHE T i
{ ® < ~'| 1 B O 1
o g - © T |
sttt 9@ (—— HAHF] i
- e

? © | & | ' © I

L] L] L [_ _______ ]

(a)

FIG. 5. (a) Pearl-necklace representation, and (b) minimal-memory standard encoder representation for example 1.
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v I
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| ]
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i I
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(b)

FIG. 6. (a) Commutativity graph G and (b) a minimal-memory standard encoder for example 1.

The proof of the theorem then follows by considering the
following equalities:

w = max{ max {w; +1;}, max {w,-}},
i€UnorYCenaseVInUIp) i€(enorYcprase)
= max { max {t: + 1}, max {r,-}},
i€UnorYCenaseVInUIp) i€(lenorYcpHase)
= max { max {oi}, max {r[}}.
i€UvorVIdpmaseYInYIp) i€(enorYcprase)

The first equality holds because the longest path in the graph
is the maximum of the weight of the path to the ith vertex
summed with the weight of the edge to the END vertex.
The second equality follows by applying Eq. (49). The final
equality follows because o; = 1; + [;. It is clear that

{Ti}}»

is equal to minimal required memory for a minimal-memory
standard encoder, hence the theorem holds. |

The final task is to determine the longest path in G. Finding
the longest path in a graph, in general, is a nondeterministic
polynomial time-complete (NP-complete) problem; but in a
weighted, directed acyclic graph, it requires linear time with
dynamic programming [28].

Example 1. Consider the following succession of gate
strings in a pearl-necklace encoder [Fig. 5(a)]:

H(1)P(1)CPHASE(1,2D~")CPHASE(2,3 D*)CNOT(3,2D)
CNOT(2,3D).

max
i€(enorYIchassVIHVIP)

max

max {
i€UenorYcprase)

{oi},

Figure 6(a) draws G for this pearl-necklace encoder, after
running the algorithm. The longest path through the graph is

START - 4 — 5 — 6 — END,

with weight equal to four (0 +2 + 1 4 1). Therefore the min-
imal memory for the standard encoder is equal to four frames
of memory qubits. Also from inspecting the graph G, we can
determine the locations for all the target qubit frame indices:
71=0, 1=0, 5v=1, 1b=0, 15=2, and 7tc =3.
Figure 6(b) depicts a minimal-memory standard encoder for
this example. Figure 5(b) depicts minimal-memory standard
encoder representation for the pearl-necklace encoder in
Fig. 5(a).

IV. CONCLUSION

In this paper, we have proposed an algorithm to find a
practical realization with a minimal-memory requirement for
a pearl-necklace encoder of a general quantum convolutional
code, which includes any gate string in the shift-invariant
Clifford group. We have shown that the noncommutativity
relations of gate strings in the encoder determine the realiza-
tion. We introduce a commutativity graph, whose vertices each
correspond to a gate string in the pearl-necklace encoder. The
weighted edges represent noncommutativity relations in the
encoder. Using the graph, the minimal-memory realization can
be obtained. The weight of the longest path in the graph is equal
to the minimal required memory of the encoder. The running
time for constructing the graph and finding the longest path is
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quadratic in the number of gate strings in the pearl-necklace
encoder.

As mentioned in our previous paper [26], there is an
open question remaining. Our proposed algorithm begins
with a given pearl-necklace encoder of a general quantum
convolutional code, and determines its minimal-memory
standard encoder. There exist, however, many pearl-necklace
encoders corresponding to a given quantum convolutional
code. Our algorithm does not necessarily find a minimal-
memory encoder among all possible realizations of the code.

An open problem is to determine a minimal-memory
standard encoder for a general quantum convolutional code
that is described by its polynomial matrix. There are two

PHYSICAL REVIEW A 83, 022308 (2011)

possible approaches to solving this problem: (1) to de-
termine the pearl-necklace encoder that requires minimum
memory among all pearl-necklace encoders realizing the
same code, and (2) to construct a standard quantum con-
volutional encoder directly from a given polynomial matrix
description in such a way that the required memory is
minimized.
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