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Abstract. In the present paper,a class of explicit stochastic Runge-
Kutta (SRK) methods for Itô stochastic equation systems w.r.t m-
dimentional wiener processes satisfying a commutativity condition
is developed. General conditions for the coefficients of the SRK
methods assuring convergence with order two in the weak sense
are presented. Due to the commutativity condition, no correlated
random variables have to be generated for the considered Runge-
Kutta methods.

1. Introduction

In many disciplines like engineering or mathematical finance, dynamical systems disturbed by

random effects are described by stochastic differential equations (SDEs).Because such differential

equations cannot usually be solved analytically, so numerical methods are required and should be

designed to perform with a certain order of accuracy.

The paper is organized as follows:In section2,weak approximation is defined, and in section3,

a class of SRK methods is introduced.Further more coefficiants for explicit second order SRK

schemes are presented.Then,it closes with a numerical example in section4.

2. Weak approximation

We consider a probability space (Ω,<, P ) with a filtration (<t)t≥0.We denote by (Xt)t∈I the

solution of the d-dimentional Itô SDE defined by

(2.1) dXt = a(t, Xt)dt + b(t, Xt)dWt, Xt0 = x0,

with an m-dimentional Wiener process (Wt)t≥0 and I = [t0, T ].

We assume that Borel-measurable coefficients a : I × Rd → Rd and b : I × Rd → Rd×m satisfy
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a Lipschitz and a linear growth condition such that the Existence and Uniqueness Theorem[] ap-

plied.In the following, let bj(t, x) = (bi,j(t, x))1≤i≤d ∈ Rd denote the jth column of the diffusion

matrix b(t, x) for j = 1, ..., m.Let a discretization Ih = t0, t1, ..., tN with t0 < t1 < ... < tN = T

of the time interval I = [t0, T ] with step sizes hn = tn+1 − tn for n = 0, 1, ..., N − 1 be

given.Further, define h = max0≤n≤Nhn as the maximum step size.Let Cl
P (Rd, R) denote the

space of all g ∈ Cl(Rd, R) fulfilling a polynomial growth condition and let g ∈ Ck,l
P (I × Rd, R) if

g(., x) ∈ Ck(I ×Rd, R) and g(t, .) ∈ Cl
P (Rd, R) for all t ∈ I and x ∈ Rd.

Definition 2.1. An approximation process Y converges weakly with order p to X as h → 0 at

time T if for each functional f ∈ C
2(p+1)
P (Rd, R) exists a constant cf , which does not depend on

h, and a finite h0 > 0 such that

(2.2) |E(f(XT ))− E(f(YT ))| ≤ cf hp

holds for each h ∈]0, h0[.

3. stochastic Runge-Kutta methods

We introduce a class of second order SRK methods for the weak approximation of the solution

of the Itô SDE (2.1).We define the d-dimensional approximation process Y with Yn = Y (tn) for

tn ∈ I by the following SRK method with Y0 = x0 and

Yn+1 = Yn +
s∑

i=1

αia(tn + c
(0)
i , H

(0)
i )hn

+

s∑
i=1

m∑
k=1

β
(1)
i bk(tn + c

(1)
i , H

(k)
i )Î(k)

+

s∑
i=1

m∑
k=1

β
(2)
i bk(tn + c

(1)
i , H

(k)
i )

Î(k,k)√
hn

(3.1)

+

s∑
i=1

m∑
k=1

β
(3)
i bk(tn + c

(2)
i , H

(k)
i )Î(k)

+

s∑
i=1

m∑
k=1

β
(4)
i bk(tn + c

(2)
i , H

(k)
i )

√
hn

for n = 0, 1, ..., N − 1 with stage values

H
(0)
i = Yn +

s∑
j=1

A
(0)
ij a(tn + c

(0)
j hn, H

(0)
j )hn

+
s∑

j=1

m∑
l=1

B
(0)
ij bl(tn + c

(1)
j hn, H

(l)
j )Îl,

H
(k)
i = Yn +

s∑
j=1

A
(1)
ij a(tn + c

(0)
j hn, H

(0)
j )hn

+
s∑

j=1

B
(1)
ij bk(tn + c

(1)
j hn, H

(k)
j )

√
hn,
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Ĥ
(k)
i = Yn +

s∑
j=1

A
(2)
ij a(tn + c

(0)
j hn, H

(0)
j )hn

+
s∑

j=1

m∑
l=1,l6=k

B
(1)
ij bl(tn + c

(1)
j hn, H

(l)
j )

Î(k,l)√
hn

,

for the i = 1, ..., s and k = 1, ..., m.

The coefficients of such a method can be represented by the usual Butcher-Arrays which take

the form
c(0) A(0) B(0)

c(1) A(1) B(1)

c(2) A(2) B(2)

αT β(1)T
β(2)T

β(3)T
β(4)T

Applying the rooted tree[4] analysis and to all rooted trees up to order 2.5, we can calculate the

following complete order two conditions for the SRK methods (2.1).

Theorem 3.1. if coefficients of the SRK methods (2.1) fulfill the equations

1)αT e = 1 2)β(4)T
e = 0 3)β(3)T

e = 0

4)(β(1)T
e)2 = 1 5)β(2)T

e = 0 6)β(1)T
B(1)e = 0

7)β(4)T
A(2)e = 0 8)β(3)T

B(2)e = 0 9)β(4)T
(B(2)e)2 = 0 then the method

converges with order 1.0 in the weak sense.In addition,if the equations

10)αT A(0)e = 1
2

11)αT (B(0)e)2 = 1
2

12)(β(1)T
e)(αT B(0)e) = 1

2
13)(β(1)T

e)(β(1)T
A(1)e) = 1

2

14)β(3)T
A(2)e = 0 15)β(2)T

B(1)e = 1

16)β(4)T
B(2)e = 1 17)(β(1)T

e)(β(1)T
(B(1)e)2) = 1

2

18)(β(1)T
e)(β(3)T

(B(2)e)2) = 1
2

19)β(1)T
(B(1)(B(1)e)) = 0

20)β(3)T
(B(2)(B(1)e)) = 0 21)β(3)T

(B(2)(B(1)(B(1)e))) = 0

22)β(1)T
(A(1)(B(0)e)) = 0 23)β(3)T

(A(2)(B(0)e)) = 0

24)β(4)T
(A(2)e)2 = 0 25)β(4)T

(A(2)(A(0)e)) = 0

26)αT (B(0)(B(1)e)) = 0 27)β(2)T
A(1)e = 0

28)β(1)T
(A(1)e)(B(1)e)) = 0 29)β(3)T

(A(2)e)(B(2)e)) = 0

30)β(4)T
(A(2)(B(0)e)) = 0 31)β(2)T

(A(1)(B(0)e)) = 0

32)β(4)T
((B(2)e)2(A(2)e)) = 0 33)β(4)T

(A(2)(B(0)e)2) = 0

34)β(2)T
(A(1)(B(0)e)2) = 0 35)β(1)T

(B(1)(A(1)e)) = 0

36)β(3)T
(B(2)(A(1)e)) = 0 37)β(2)T

(B(1)e)2 = 0

38)β(4)T
(B(2)(B(1)e)) = 0 39)β(2)T

(B(1)(B(1)e)) = 0

40)β(1)T
(B(1)e)3 = 0 41)β(3)T

(B(2)e)3 = 0

42)β(1)T
(B(1)(B(1)e)2) = 0 43)β(3)T

(B(2)(B(1)e)2) = 0

44)β(4)T
(B(2)e)4 = 0 45)β(4)T

(B(2)(B(1)e))2 = 0

46)β(4)T
((B(2)e)(B(2)(B(1)e))) = 0 47)αT ((B(0)e)(B(0)(B(1)e))) = 0

48)β(1)T
((A(1)(B(0)e))(B(1)e)) = 0 49)β(3)T

((A(2)(B(0)e))(B(2)e)) = 0

50)β(1)T
(A(1)(B(0)(B(1)e))) = 0 51)β(3)T

(A(2)(B(0)(B(1)e))) = 0

52)β(4)T
((B(2)(A(1)e))(B(2)e)) = 0 53)β(1)T

(B(1)(A(1)(B(0)e))) = 0

54)β(3)T
(B(2)(A(1)(B(0)e))) = 0 55)β(1)T

((B(1)e)(B(1)(B(1)e))) = 0
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56)β(3)T
((B(2)e)(B(2)(B(1)e))) = 0 57)β(1)T

(B(1)(B(1)(B(1)e))) = 0

58)β(4)T
((B(2)e)(B(2)(B(1)(B(1)e)))) = 0 59)β(4)T

((B(2)e)(B(2)(B(1)e)2)) = 0

are fulfilled,then the SRK method (2.1) converges with order 2.0 in the weak sense.

Remark 3.2. Due to Theorem 3.1, we have to solve 59 equations for m > 1.However, in the case of

m = 1 and if we choose A
(2)
ij = 0 for 1 ≤ i, j ≤ s, then the 59 conditions reduce to 28 conditions.

For an explicit SRK method of type (3.1), s ≥ 3 is needed due to conditions 4,6,and 17,which

cannot be fulfilled for s < 3.

Considering the order conditions 1-9 of Theorem 3.1,we can easily calculate order two SRK meth-

ods converging with order one in the weak sense.For example, the well-known Euler-Maruyama

scheme EM belongs to the introduced class of SRK methods having order 1 with s = 1 stage and

with coefficients α1 = β
(1)
1 = 1, β

(2)
1 = β

(3)
1 = β

(4)
1 = 0, A

(0)
11 = A

(1)
11 = 0, and B

(0)
11 = B

(1)
11 = 0.

Further,if we calculate order two SRK methods with s ≥ 3 stages,there are some degrees of free-

dom in choosing the coefficients.Especially,it is possible to calculate an SRK methods converging

with some higher order if it applied to a deterministic ordinary differential equation.For exam-

ple,if the weights αi and the coefficients A
(0)
ij are fulfilled conditions αT (A(0)(A(0)e)) = 1

6
and

αT (A(0)e)2 = 1
3

,then the SRK method is of order three in the case of bj ≡ 0 for 1 ≤ j ≤ m

in SDE (2.1).Therefore,let (pD, pS) with pD ≥ pS denote the order of convergence of the SRK

method.

The SRK method RI5 with pD = 3 and pS = 2 presented in Table1.While the SRK scheme RI6

with pD = 2 and pS = 2 presented in Table2.

Table1:SRK method RI5

0

1
5
12

1
25
144

35
144

1
3
−5
6

0

0
1
4
1
4

1
4
1
4

0

1
2
−1
2

0

0

0

0

0

0 0

1

−1 0

1
10

3
14

24
35

1 −1 −1 0 1 −1

1
2

−1
4

−1
4

0 1
2

−1
2

Table2:SRK method RI6

0

1

0

1

0 0

1

0 0

0

1

1

1

1 0

1

−1 0

0

0

0

0

0 0

1

−1 0

1
2

1
2

0 1
2

1
4

1
4

0 1
2

−1
2

−1
2

1
4

1
4

0 1
2

−1
2
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4. Simulation study

In the following, the two SRK methods RI5 and RI6 are compared to the Euler-Maruyama

scheme (EM) having order 1.

We approximate E(f(XT )) by Monte Carlo simulation.Therefore,we estimate E(f(YT )) by the

sample average of M independently simulated realizations of the approximations f(YT,k) ,k =

1, ..., M ,with YT,k calculated by the scheme under consideration.Then the error is denoted by

(4.1) µ̂ = E(f(XT ))−
1

M

M∑
k=1

f(YT,k)

References

1. A.Rossler, Runge-Kutta methods for itô stochastic differential equations with
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