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Recently a new four-dimensional nonrelativistic renormalizable theory of gravity was
proposed by Hořava. This gravity reduces to Einstein gravity at large distances. In this
paper we present different toroidal solutions to the equations of motion using the new
action for gravity. Our solutions describe the near horizon geometry with slow rotating
parameter.
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1. Introduction

A new four-dimensional nonrelativistic renormalizable theory of gravity was

recently proposed by Hořava.1 It is believed that this theory is a UV completion

for the Einstein theory of gravitation. Recently lots of effort have been dedicated

to understand this theory.2–33 In Ref. 2 the solutions with spherical symmetry has

been found. It also presents equations of motion for Hořava gravity. The topological

black hole solutions has been found in Ref. 16. In this paper, in Sec. 2, we review

briefly the static toroidal solution, which is a special solution found in Ref. 16. In

Sec. 3 we try to find the rotational solutions. We use the equations of motion pre-

sented in Ref. 2 and show that there are different possible solutions to the equations

of motion.

We start from the four-dimensional metric written in the ADM formalism34

ds24 = −N2 dt2 + gij(dx
i −N i dt)(dxj −N j dt) . (1.1)

The Einstein–Hilbert action in this formalism is given by

SEH =
1

16πG

∫

d4x
√
gN(KijK

ij −K2 +R − 2Λ) , (1.2)

where G is the four-dimensional Newton’s constant and Kij is the second funda-

mental form and is defined by

Kij =
1

2N
(∂tgij −∇iNj −∇jNi) . (1.3)

925
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The action proposed by Hořava is a nonrelativistic renormalizable gravitational

theory and is given by1

S =

∫

dt d3x
√
gN

{

2

κ2
(KijK

ij − λK2) +
κ2µ2(ΛWR− 3Λ2

W )

8(1− 3λ)

+
κ2µ2(1− 4λ)

32(1− 3λ)
R2 − κ2µ2

8
RijR

ij +
κ2µ

2w2
εijkRi`∇jR

`
k −

κ2

2w4
CijC

ij

}

, (1.4)

where λ, κ, µ, w and ΛW are constant parameters, and Cij is the Cotton tensor,

defined by

Cij = εik`∇k

(

Rj
` −

1

4
Rδ

j
`

)

= εik`∇kR
j
` −

1

4
εikj∂kR . (1.5)

Using the relation

εijkRi`∇jR
`
k = Ri`

[

Ci` − 1

4
εij`∂jR

]

= Ri`C
i` , (1.6)

one can rewrite the action (1.4) as

S =

∫

dt d3x(L0 + L1) ,

L0 =
√
gN

{

2

κ2
(KijK

ij − λK2) +
κ2µ2(ΛWR− 3Λ2

W )

8(1− 3λ)

}

,

L1 =
√
gN

{

κ2µ2(1− 4λ)

32(1− 3λ)
R2 − κ2

2w4

(

Cij −
µw2

2
Rij

)(

Cij − µw2

2
Rij

)}

.

(1.7)

By comparing L0 with the general theory of relativity in the ADM formalism, one

can read the speed of light, the Newton’s constant and the cosmological constant as

c =
κ2µ

4

√

ΛW

1− 3λ
, G =

κ2

32πc
, Λ =

3

2
ΛW . (1.8)

Additionally, demanding that L0 gives the usual four-dimensional Einstein–Hilbert

Lagrangian (general covariance), one finds that λ = 1.

2. Toroidal Static Solution

The topological black hole solution has been found in Ref. 16. We are interested to

the special case of toroidal symmetric solutions in this paper. So in this section we

review the special solution found in Ref. 16 with toroidal symmetry. We start from

the ansatz

ds2 = −N(r)2dt2 +
dr2

f(r)
+ r2(dθ2 + dφ2) (2.1)

and insert it into the total Lagrangian L0 + L1. Due to the special form of the

ansatz, the Cotton tensor is zero.
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The Lagrangian with general value for λ is given by

L0 + L1 =
3µ2κ2N

8(−1 + 3λ)r2f
1
2

(

(1− λ)r2

6
f ′2 +

2

3
r(ΛW r2 + λf)f ′

+
1

3
(1− 2λ)f2 +

2

3
ΛW r2f + Λ2

W r4
)

, (2.2)

where a prime denotes the derivative with respect to r. The solution to the equations

of motion is16

f(r) = −Mrn − ΛW r2 , N2(r) = f(r)(Cr)2(1−2n) , n =
2λ−

√
−2 + 6λ

−1 + λ
, (2.3)

where M and C are the constants of integrations.

The above solution has two real roots for M > 0 and ΛW < 0 at r− = 0 and

r+ =
(

− M
ΛW

)
1

2−n . The scalar curvature is given byR = 2(3ΛW+M(n+1)rn−2), and

because when λ → +∞, n → 2, therefore we always have a curvature singularity

at r = 0. When ΛW > 0, r = 0 is a naked singularity.

3. Rotating Solutions

In this section we try to find other solutions to the Hořava gravity by including the

rotation. Because of the rotation, we do not have enough symmetry to apply the

previous method (i.e. inserting the ansatz into the Lagrangian), instead we must

solve the equations of motion directly. The equations of motion are very difficult to

solve since they are up to six derivatives and the metric in the rotating solutions

depend on the rotation coordinate as well as the radial coordinate. To overcome

this difficulty we try to find the near horizon geometry of the rotating black holes.

This will simplify the equations of motion since, as we will see in what follows, the

functional form of the solutions with respect to the radial coordinate will be fixed,

so it remains to find their dependence on the rotation coordinate.

3.1. Extremality

To find the radial behavior of the extremal solutions we start to find the extremality

condition for the general solution found in (2.3). We first find the temperature of

the solution (2.3). The temperature of this black hole can be computed by finding

the surface gravity at the horizon. The result will be

T =
1

2π

(

2ΛW (n− 1)r−2n+2
0 +

(

3

2
n− 1

)

Mr−n
0

)

=
ΛW

(

n
2 − 1

)

2π

(

− M

ΛW

)

2(n−1)
n−2

, (3.1)

where the last equality comes from the fact that the location of the horizon is at

r0 = r+. The extremality condition holds when the temperature is zero, and so we
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find the critical value of M for an extremal solution to be zero. In this way the

geometry of the extremal solution is

ds2 = r4(1−n)dt2 − dr2

ΛW r2
+ r2(dθ2 + dφ2) . (3.2)

3.2. Two derivative solutions

Before we start to solve the equations of motion, we consider the special case where

the equations of motion only contain up to two derivative terms. In this case we

expect to find the known solutions for Einstein gravity. The solution to the equations

of motion for Einstein gravity is given by35

ds2 = −N2dt2 +
ρ2

∆r

dr2 +
ρ2

∆θ

dθ2 +
Σ2

ρ2
(dφ−$dt)2 , (3.3)

with

ρ2 = r2 + a2θ2 , ∆θ = 1 +
a2

l2
θ4 , ∆r = a2 − 2Mr +

r4

l2
,

Σ2 = r4∆θ − a2θ4∆r , $ =
∆rθ

2 + r2∆θ

Σ2
a , N2 =

ρ2∆θ∆r

Σ2
,

(3.4)

where a is the rotation parameter and in our notation l2 = − 2
ΛW

. We are interested

to find the extremal solution and its near horizon geometry. The extremal condition

holds when

M =
1

2

a2l2 + r40
r0l2

, r20 =
1√
3
al , (3.5)

where r0 is the location of the horizon. To find the near horizon geometry we need

to change our variables to some new dimensionless coordinates as follows:

r = r0 +
ε

y
a , t =

c0

ε
τ , φ = φ̂+

√
3c0
lε

τ , c20 =
r20
12

. (3.6)

Sending ε → 0 one finds the following metric

ds2 =

(

1 +
a2θ2

r20

)

(

− 1

2
√
3

a3

ly2
dτ2 +

l2

6y2
dy2

+
r20

1 + a2

l2
θ4

dθ2 + r20
1 + a2

l2
θ4

(

1 + a2

r20
θ2
)2

(

dφ̂+
a

ly
dτ

)2
)

. (3.7)

This is the near horizon geometry of the rotating black holes with toroidal symme-

try. We expect that it satisfies the equations of motion up to two derivative terms.

As a double check, we have inserted this solution into the equations of motion and

found they satisfy these equations.
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3.3. Higher derivative solutions

We are interested to find the effect of higher curvature terms. To find the solutions

we follow the following steps.

(i) In the rotating solutions the Cotton tensor is not necessarily zero and this

makes the problem difficult to solve. To find the rotating solution, we consider

the slow rotation condition, i.e. a � l as a parameter of perturbation and solve

the equations of motion up to O(a).

(ii) To find the extremal rotating solution we use the tree-level solution (3.7) as

a guide. We start from the ansatz

ds2 = −A2
1(θ)

y2
dτ2 +

A2(θ)

y2
dy2 +A3(θ)dθ

2 +A4(θ)

(

dφ̂+
a

ly
dτ

)2

, (3.8)

where y is the radial near horizon coordinates and the other functions in the

metric are some general functions. This metric satisfies the equation of motion

coming from variation of the Lagrangian with respect to N , the laps function.

So we just need to insert this general ansatz into the other equations of motion

coming from variation with respect to the shift functions N i and the metric

gij .

(iii) One may notice that we have a freedom for time scaling in the metric. We

have fixed this by choosing the above proper off-diagonal term.

(iv) There is another freedom when one chooses the function A3(θ). Because this

is only a field redefinition, all different functions of θ will be equivalent by a

change of coordinate on θ. To fix this freedom we assume the functional form

A3(θ) = r20

1 + a2

r20
θ2

1 + a2

l2
θ4

, (3.9)

where we have chosen it in such a way that we can compare the new metric

with the previous two derivative cases.

(v) To solve the equations of motion perturbatively in terms of the rotating

parameter a, we choose polynomial functions with unknown constant coef-

ficients as

A2
1(θ) = s1a

3(1 + b1aθ
2) ,

A2(θ) = s2(1 + b2aθ
2) ,

A4(θ) = s4a(1 + b4aθ
2) ,

(3.10)

where we have used the fact that we have a symmetry under (θ ↔ −θ).

(vi) Similar to (3.7) the regularity condition implies (see e.g. Ref. 36)

A1(θ)A
1
2
2 (θ) → const ,

A3(θ)

A4(θ)
→ 1 , θ → 0 , (3.11)

which gives a simple constraint as s4 =
r20
a
.
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(vii) Similar to the Einstein gravity solution, we assume that r20 = za with z as a

function of the constants of the Hořava gravity. In fact, this is nothing but

the normalization for A3(θ).

By considering all these facts, we find the four algebraic equations (see App. A).

As can be seen there are four equations and s1, s2, b1, b2, b4 and s4 = z as unknown

constants. There are no more constraints left since we have used all symmetries and

boundary conditions

3.3.1. w-independent solution

One amazing observation of the equations shows that when b2 = b4 then the con-

stants are independent of w. At this step even before solving the equations of motion

one can verify that the Cotton tensor is zero for this ansatz. To find the solution

to the equations of motion we follow the following steps. We begin by solving the

first three equations and find the following values for s1, b1 and b2:

b1 =
− 2

3 (l
2 − 6s2)

(

λ− 1
3

)

l2zs2((λ− 1)l2 + 4s2)

×
(

(λ− 1)2l4 − 3

2
(λ− 1)

(

z2 − 8

3
s2

)

l2 + 12

(

λ− 5

6

)

z2s2

)

,

b2 = − 2z(l2 − 6s2)

l2((λ− 1)l2 + 4s2)
,

s1 =
1

8

(l2(λ − 1) + 4s2)
2z

((λ− 1)l4 + 8l2s2 − 24s22)s2
,

and then we insert these values into the fourth equation, which gives the following

equation for s2:

(λ− 1)l6 + (−8λ+ 12)s2l
4 − 48l2s22 + 96s32 = 0 (3.12)

which is independent of z. The above solution is a family of one parameter solutions

(only depend on z) with zero Cotton tensor. In the special case of λ = 1 the above

solution will simplifies to

b1 = b2 =
z

l2
1±

√
3

1±
√
3
3

, s1 =
z

l2(1∓
√
3)

, s2 =
1

4

(

1±
√
3

3

)

l2 . (3.13)

As a special point on this family of solutions and as an example one may choose

b1 = b2 = b4. Again if we solve the equations of motion we will find the following

values for a general value of λ after solving the first three equations (in Appendix):

b1 = b2 = b4 = − 4

3z
,
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s1 =
9

64

(−1 + 3λ)z5(4l2 + 9z2)

l2
(

(λ − 1)l2 − 3
2z

2
)(

(λ− 1)l4 − 3l2z2 − 27
8 z

4
) ,

s2 = −1

2

l2
(

2l2(λ− 1)− 3z2
)

4l2 + 9z2
.

Inserting the above values into the fourth equation gives an equation for z:

(λ− 1)2l6 − 6

(

λ− 3

4

)

l4z2 − 27

4
(λ− 1)l2z4 +

81

32
z6 = 0 . (3.14)

This equation shows that the location of the horizon depends on λ and l. Again the

special case λ = 1 gives the values found in (3.13) with z = ± 2

3
3
4

√
±l2.

3.3.2. w-dependent solution

In general, when one chooses b2 6= b4, the constant values will be w-dependent. In

this case one may solve the equations of motion and find the first three equations

for s1, s2 and b1 in terms of b2, b4 and z. Putting them into the fourth equation

gives a relation between the remaining free parameters. This an equation of degree

8 for z, 6 for b2 and 5 for b4 — so impossible to solve!

To find a solution we restrict ourselve to a special limit of parameters. One

possible solution could be found as a series of 1
w4 . Also we consider the location of

the horizon r0, to be independent of w and its value is the same as w-independent

solution. With these simplifications we find the following solution to the order of

O
(

1
w4

)

, in the case of λ = 1,

b1 = − 2

3
1
4 l

(

1 +
x1

w4

)

,

b2 = − 2

3
1
4 l

(

1 +
x2

w4

)

,

b4 = − 2

3
1
4 l

(

1 +
x4

w4

)

,

s1 =
2

3
1
4 l(3 +

√
3)

(

1 +
y1

w4

)

,

s2 =
l2(3 +

√
3)

12(2 +
√
3)

(

1 +
y2

w4

)

,

(3.15)

with

x1 = − 1

13

(

105
√
3 + 217

)

y2 , x2 = − 1

13

(

45
√
3 + 67

)

y2 ,

x4 = −
(

5
√
3 + 7

)

y2 , y1 =
1

13

(

62
√
3− 27

)

y2 ,

(3.16)
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where the constant y2 although is arbitrary but can be absorbed in w by a rescaling,

so we can set it to one. As we see this will produce the w-independent solution when

one sends w to the infinity.

4. Conclusion

In this paper we have studied the toroidal solutions for the nonrelativistic and renor-

malizable theory of gravity proposed by Hořava.1 We solved equations of motion by

using an ansatz with toroidal symmetry. We show our results for general parameters

in the theory and in “detailed balance.”

The static case found in Ref. 16 shows the existence of black hole solutions where

their location of horizon depends on the parameters of the theory, when ΛW < 0.

It shows that for ΛW > 0 we have naked singularities.

In this paper we find the near horizon geometry of the rotating black hole

solutions with small rotating parameter a with respect to l =
√

− 2
ΛW

. So our

solution is a series solution in terms of a. Also we have assume the θ to −θ symmetry.

By imposing these constraints we have found a set of algebraic equations of motion.

There is an interesting observation in our solutions to equations of motion. There

are two types of solutions. The first one is independent of w parameter and the

Cotton tensor for this solution is zero. The other solution depends on w and at

w → ∞ this solution returns to the first solution.

Comparing these results with those found in the two-derivative case, one

observes that the location of the horizon is shifted due to the higher derivative

corrections. This is in agreement with the results found for the spherical solutions

in Ref. 2.

It will be interesting to find the exact rotating solution. In this case the metric

will be a complicated function of θ and y. In finding our solutions we have made

several assumptions, a � l, θ to −θ symmetry and in the case of w-dependent

solution, the location of the horizon is considered to be independent of w. In general,

there is no reason to have these constraints in the exact solution. So the near horizon

of the exact solution just with the above assumptions must agree with our solutions.

Note that the regularity condition and the field redefinitions for t and θ must hold

in the exact solution.
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Appendix A

{(

(

b2
2 − b2b4 + b4

2
)

λ− 1

2
b4

2 − 1

2
b2

2

)

l4 + 2z(b2 + b4)l
2 − 6z2

}

s1s2

+
1

4
(−1 + 3λ)z3 = 0 ,
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l2κ4s1s2

{

− 19

3
+

(

b1 − 5b2 −
16

3
b4

)

z

+

(

− 14

3
b2

2 +

(

b1 −
11

3
b4

)

b2 + (b1 − 5b4)b4

)

z2
}

+
4

3

{

1

8
(3λ− 1)z4 +

[

−3z3 + l2(b1 + b4)z
2

+

([

− 9

2
b2

2 +

(

b1 +
1

2
b4

)

b2 −
1

2
(b1 − 5b4)b4

]

λ

+
9

4
b2

2 − 1

4
b4

2 − 1

2
(b1 + b4)b2

)

l4z

− 4l4
((

b2 −
1

2
b4

)

λ− 1

2
b2

)]

s1s2

}

z2w4

(3λ− 1)(b2 − b4)
= 0 ,

l2κ4s1(−4z + s2(b2 − b4))(1 + (b2 + b4)z)

+ 2

{[(

[b2 − (2b2 − b4)λ]z −
[

1

2

(

b2
2 + b2

2
)

λ−
(

b2
2 − b2b4 + b4

2
)

]

s2

)

l4

− 2l2z2 + 6s2z
2

]

s1 +
3

4
z3
(

− 1

3
+ λ

)}

z2w4

(3λ− 1)(b2 − b4)
= 0 ,

6l2s1κ
4

{

4

3
(b2 + b4)z

3 +

[

4

3
+

(

−5b2
2 +

(

b1 −
11

3
b4

)

b2 +

(

b1 −
14

3
b4

)

b4

)

s2

]

z2

+ s2

(

b1 −
16

3
b2 − 5b4

)

z − 19

3
s2

}

+ 4

{[

(−2l2 + 6s2)z
3 + [λ(b2 + b4)l

2 − 2s2(b1 + b2)]l
2z2

+ s2

(

(9b4
2 + (−2b1 − b2)b4 + b2(−5b2 + b1))λ − 9

2
b4

2 + (b1 + b2)b4 +
1

2
b2

2

)

l4z

− 4((b2 − 2b4)λ+ b4)s2l
4

]

s1 +
3

4
(3λ− 1)z4

}

z2w4

(3λ− 1)(b2 − b4)
= 0 .
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