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Primarily the separate distributions of elastic and perfectly plastic thermal stress in spherical pressure
vessels made up of Functionally Graded Material (FGM) are represented. Next, the combined elastic
and perfectly plastic thermal stress analysis of a spherical pressure vessel is considered. It is assumed that
no unloading is occurred and the modulus of elasticity, yielding stress and some specific material char-
acteristic parameters are power functions of radius. In a spherical FGM vessel and for different material
compositions, the effect of pressure and temperature upon the growth of plastic zone is studied. Espe-
cially the change in the position of the borderline between the elastic and plastic regions is sought. In
an extensive range of material thermo-mechanical properties, the position of the elastic–plastic interface
line and the yield pattern, which shows the number of plasticized layers in the wall of the vessel, are
indicated.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

In this paper, the problem of thick-walled Functionally Graded
(FG) spherical vessel under internal pressure and heat flux is stud-
ied. Although the analysis of thick walled spherical pressure
vessels is a well-known subject in the literature, the analysis of
inhomogeneous pressure vessels is not such a customary study.
Nowadays due to the growing demand for the application of the
Functionally Graded Materials in the construction of engineering
structures, the need for the analytical solutions of these problems
is gaining momentum. A summary of the recent research work as
shown below, confirms this notion.

Some of the leading papers in the stress analysis of FG pressure
vessels are those that study the effect of internal pressure on the
distribution of stress in the vessel. Among these studies, one can
point to the works by Horgan and Chan [1], Tutuncu and Ozturk
[2]. The other groups of research works study the effect of thermal
loads on the stress distribution in the elastic FG pressure vessels.
The work of Zhang et al. [3], Takezono et al. [4], Wetherhold
et al. [5], Zimmerman and Lutz [6], Obata et al. [7], Awaji and
Sivakumar [8] belong to this category. The papers cover a wide
range of geometries and thermal boundary conditions. There are
also establishing works that discuss the mutual effect of thermal
and mechanical loads on the FG structures. The papers of Reddy
and Chin [9], Mequid and Woo [10], Jabbari et al. [11], Poultangari
ll rights reserved.

: +98 511 8763304.
adeghian).
et al. [12], Liew et al. [13], Eslami et al. [14], Araslan and Akis [15],
Eslami and Bahtui [16], Akis [17] are some leading works in this
category. Yet, for the analysis of FG structures, some other discipli-
narians are adopted by researchers. For example, the size optimiza-
tion can be seen in the works of Obota and Noda [18], Ootao et al.
[19] and the stability analysis can be traced back in the works of
Shen [20] and Shahsiah and Eslami [21].

The similarity between the abovementioned works in the stress
analysis of FG structures is that all of them belong to the category
of elastic media stress analysis. A different and yet more recent
approach is to run into the study of plastic deformation. The works
of Alshits and Kirchner [22] and Oral and Anlas [23] belong to this
category.

Although there are special research reports that depict the
simultaneous influence of thermal and mechanical loads on the
elastic pressure vessels, so far no thermal–elastic–plastic analysis
of FGM spherical vessels is reported. Therefore, in this study, the
thermal stress analysis for a spherical pressure vessel made of
inhomogeneous and Elastic–Perfectly Plastic (EPP) material is
provided. The vessel is a thick walled FGM sphere with inner ra-
dius (a) and outer radius (b). It is under axi-symmetric steady
state temperature and internal pressure distribution. It is also as-
sumed that the outer surface is in zero pressure and temperature
conditions. Mechanical and thermal properties along the radius
are distributed according to a power law function. The problem
is modeled by considering its Navier governing equation in both
elastic and plastic regimes along with the Fourier heat conduction
equation. The results are presented in the form of several case
studies and charts.

http://dx.doi.org/10.1016/j.commatsci.2010.10.036
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Nomenclature

a inner radius
b outer radius
C11, C21 convection thermal coefficients
C21, C22 conduction thermal coefficients
E Young’s modulus of elasticity
Eo a material parameter
e elastic region indicator
K thermal conductivity
Ko a material parameter
m, n, L some material parameters
Pa internal pressure
Pb external pressure

p plastic region indicator
q a material parameter
r radius
T total strain indicator
T temperature
Y yield stress
Yo a material parameter
a thermal expansion coefficient
ao a material parameter
m Poisson’s ratio
e strain
r stress
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2. FG vessel thermal stress analysis

In this analysis, the problem of axi-symmetric and small defor-
mation distribution of thermal stress and plasticity in an Elastic–
Perfectly Plastic (EPP) spherical pressure vessel made of inhomoge-
neous Functionally Graded Material (FGM) is considered. Fig. 1
shows a typical FGM spherical vessel. In the spherical coordinates
(r,h,u) the characteristic parameters of the vessel are assumed to
be some power functions of r. It means that [12,17],

EðrÞ ¼ Eorn ð1Þ
YðrÞ ¼ Yorm ð2Þ
aðrÞ ¼ aorL ð3Þ
KðrÞ ¼ Korq ð4Þ

where Eo ¼ E=bn
; Yo ¼ Y=bm

; ao ¼ �a=bL
; Ko ¼ K=bq

; E; Y; �a and K
are the referential parameters for the elastic modulus, yield stress,
thermal expansion coefficient, and thermal conductivity respec-
tively. Moreover b is the outer radius of the spherical vessel and
m, n, L, and q as well as the Poisson’s ratio (m) are the parameters
which do not depend on temperature.

For a spherical vessel in an infinitesimal and axi-symmetric
deformation pattern the general constitutive relation is,

eT
r ðrÞ ¼

1
EðrÞ rrðrÞ � 2mrhðrÞ½ � þ ep

r ðrÞ þ aðrÞ � TðrÞ ð5Þ
Fig. 1. Inhomogeneous spherical pressure vessel.
eT
hðrÞ ¼ eT

uðrÞ
D E

¼ 1
EðrÞ ð1� mÞrhðrÞ � mrrðrÞ½ � þ ep

hðrÞ þ aðrÞ � TðrÞ

ð6Þ

in which e stands for strain and r is stress. The superscript T means
‘‘total’’, while the superscript p is the sign of plasticity, E(r) is elastic
modulus function, a(r) is thermal expansion coefficient and T(r) is
the radial distribution of temperature in a vessel.

The strain and deformation components are related by,

eT
r ðrÞ ¼

duðrÞ
dr

ð7Þ

eT
hðrÞ ¼

uðrÞ
r

ð8Þ

in which u(r) is the radial displacement function.
2.1. Elastic analysis

In this section an elastic thermal stress analysis for a FG
spherical vessel is given. Using Eqs. (5)–(8) the stress components
are,

rrðrÞ ¼
EðrÞ

ð1þ mÞð1� 2mÞ ð1� mÞduðrÞ
dr
þ 2m

uðrÞ
r
� ð1þ mÞaðrÞTðrÞ

� �

ð9Þ

rhðrÞ ¼
EðrÞ

ð1þ mÞð1� 2mÞ m
duðrÞ

dr
þ uðrÞ

r
� ð1þ mÞaðrÞTðrÞ

� �
ð10Þ

The equilibrium equation for a spherical vessel in an axi-symmetric
problem is,

drr

dr
þ 2ðrr � rhÞ

r
¼ 0 ð11Þ

The substitution of Eqs. (9) and (10) in Eq. (11) results in the Navier
equation of the problem as,

d2uðrÞ
dr2 þ nþ 2

r

� �
duðrÞ

dr
þ 2mðnþ 1Þ � 2

r2ð1� mÞ

� �
uðrÞ

¼ ð1þ mÞa0rL

ð1� mÞ
nþ L

r
TðrÞ þ dTðrÞ

dr

� �
ð12Þ

One dimensional spherical steady state thermal conduction equa-
tion is [14],

1
r2 r2KðrÞT 0ðrÞ
� �0 ¼ 0 ð13Þ

FGM hollow spherical vessel thermal boundary conditions are,
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C11T 0ðaÞ þ C12TðaÞ ¼ f1 ð14Þ
C21T 0ðbÞ þ C22TðbÞ ¼ f2 ð15Þ

in which C11 and C21 are convection thermal coefficients, C21 and C22

are conduction thermal coefficients, f1 and f2 are specific constants
in the inner and outer radius and a is the internal radius. Substitut-
ing thermal conductivity from Eq. (4) into Eq. (13) one obtains,

1
r2 rqþ2T 0ðrÞ
� �0 ¼ o ð16Þ

Solving Eq. (16), the distribution of temperature is found. Using
temperature boundary conditions, one obtains,
TðrÞ ¼ C1r�ðqþ1Þ þ C2 ð17Þ

C1 ¼
C22f1 � C12f2

C12 ðqþ 1ÞC21b�ðqþ2Þ � C22b�ðqþ1Þ
	 


� C22 ðqþ 1ÞC11a�ðqþ2Þ � C12a�ðqþ1Þð Þ
ð18Þ

C2 ¼
f1 ðqþ 1ÞC21b�ðqþ2Þ � C22b�ðqþ1Þ
	 


� f2 ðqþ 1ÞC11a�ðqþ2Þ � C12a�ðqþ1Þ� �
C12 ðqþ 1ÞC21b�ðqþ2Þ � C22b�ðqþ1Þ
	 


� C22 ðqþ 1ÞC11a�ðqþ2Þ � C12a�ðqþ1Þð Þ
ð19Þ
To solve the Navier equation in an uncoupled thermo-mechanical
problem, primarily the distribution of temperature must be calcu-
lated. A general solution of Eq. (12) is the sum of the general solu-
tion of its relevant homogeneous form combined with the particular
solution of the completely unbroken equation. The general solution
of the homogeneous part is,

ugðrÞ ¼ Ars ð20Þ

Substituting Eq. (20) in homogeneous form of Eq. (12) one obtains,

ugðrÞ ¼ A1rS1 þ A2rS2 ð21Þ

S1;2 ¼
�ðnþ 1Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ 2nð1�5mÞþ9ð1�mÞ

1�m

q
2

ð22Þ

A1 and A2 are some constants depended on the boundary conditions.
A particular solution of Navier equation is,

upðrÞ ¼ E1rLþ1 þ E2rL�q ð23Þ

Substituting Eq. (23) in Eq. (12) one obtains,

E1 ¼
ð1þ mÞaoðnþ LÞC2

ð1� mÞ L2 þ ð3þ nÞL
h i

þ nð1þ mÞ
ð24Þ

E2 ¼
ð1þ mÞaoðnþ L� q� 1ÞC1

ð1� mÞ ðLþ qÞ2 þ ð1þ nÞðL� q� 2Þ
h i

� 2
ð25Þ

Now the general solution of Eq. (12) is,

uTðrÞ ¼ ugðrÞ þ upðrÞ ¼ A1rS1 þ A2rS2
� �

þ E1rLþ1 þ E2rL�q
� �

ð26Þ

Taking Pa as the internal and Pb as the external pressure and substi-
tuting Eq. (26) into Eq. (9) the radial stress in terms of radial dis-
placement is obtained as,

rrðrÞ ¼
�Eo

ð1þ mÞð1� 2mÞ A1rnþS1 ðm� 1ÞS1 � 2mð Þ þ A2rnþS2 ðm� 1ÞS2ð
�

�2mÞ þ rLþnþ1 E1 Lðm� 1Þ � ðmþ 1Þð Þ þ C2aoð1þ mÞf g
þrLþn�q E2 ðL� qÞðm� 1Þ � 2mð Þ þ C1aoð1þ mÞf g

�
: ð27Þ

Moreover, using the boundary conditions of the problem, the
constants A1 and A2 are obtained as,
A1 ¼
uðb; S2Þ½Pa � fðaÞ� �uða; S2Þ½Pb � fðbÞ�

uða; S1Þuðb; S2Þ �uða; S2Þuðb; S1Þ
ð28Þ

A2 ¼
uða; S1Þ½Pa � fðaÞ� �uða; S2Þ½Pb � fðbÞ�

uða; S1Þuðb; S2Þ �uða; S2Þuðb; S1Þ
ð29Þ

in which,

uðr; sÞ ¼ Eo

ð1þ mÞð2m� 1Þ ðm� 1ÞS� 2m½ �rnþs ð30Þ

fðrÞ ¼ Eo
ð1þmÞð2m�1Þ C2aoð1þ mÞ þ E1 Lðm� 1Þ � ðmþ 1Þð Þð Þrqþ1

�
þ C1aoð1þ mÞ þ E2 ðL� qÞðm� 1Þ � 2mð Þð Þ�rnþL�q

ð31Þ
Tangential stresses and radial-tangential strains in elastic regime
can be found to be,

rhðrÞ ¼
Eo

ð1þ mÞð1� 2mÞ A1rnþS1 ðmS1 þ 1Þ þ A2rnþS2 ðmS2 þ 1Þ
�

þ rLþnþ1 E1 1þ mðLþ 1Þð Þ � C2aoð1þ mÞf g
þ rLþn�q E2 ðL� qÞmþ 1ð Þ � C1aoð1þ mÞf g

�
ð32Þ

erðrÞ ¼ A1S1rS1�1 þ A2S2rS2�1 þ E1ðLþ 1ÞrL þ E2ðL� qÞrL�q�1 ð33Þ
ehðrÞ ¼ A1rS1�1 þ A2rS2�1 þ E1rL þ E2rL�q�1 ð34Þ
2.2. Perfectly plastic analysis

In this section according to the Tresca’s yield criterion, the dis-
tribution of stress in a fully plastic vessel is found. Based on the
Tresca’s criterion, if maximum shear stress gets to the yield level,
Y, plastic deformation is practicable. Therefore, in an axi-symmet-
ric problem if tangential stress, rh, becomes greater than radial
stress, rr, the yield criterion can be shown as,

rhðrÞ � rrðrÞ ¼ YðrÞ ð35Þ

Using equilibrium equation in Eq. (11), constitutional equations in
Eqs. (1)–(4) and failure criterion in Eq. (35) one realizes that [17],

rrðrÞ ¼
2rmYo

m
þ Q 1 ð36Þ

rhðrÞ ¼
ð2þmÞrmYo

m
þ Q 1 ð37Þ

where Q1 is depended on the boundary conditions. Plastic deforma-
tion is supposed to be incompressible, i.e., ep

r ðrÞ þ ep
hðrÞ þ ep

uðrÞ ¼ 0.
Therefore, according to the stress-strain relationship the sum of
strain components is,

eT
r ðrÞ þ 2eT

hðrÞ ¼
ð1� 2mÞ

E
rrðrÞ þ 2rhðrÞð Þ þ 3aðrÞ:TðrÞ ð38Þ

Using Eqs. (7) and (8) one obtains,

duðrÞ
dr
þ uðrÞ

r
¼ ð1� 2mÞ

E
rrðrÞ þ 2rhðrÞð Þ þ 3aðrÞ:TðrÞ ð39Þ

Substituting stress components from Eqs. (36) and (37), we have:
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duðrÞ
dr
þ 2uðrÞ

r
¼ 2ð1� 2mÞ

Eo
� ð3þmÞYo

m

� �
rm�n

þ 3Q1ð1� 2mÞ
Eo

r�n þ 3aoTðrÞrL ð40Þ

By using of heat transfer equation provided in Eq. (17), the overall
shape of the plastic displacement differential equation is,

duðrÞ
dr
þ 2uðrÞ

r
¼ 2ð1� 2mÞ

Eo
� ð3þmÞYo

m

� �
rm�n

þ 3Q1ð1� 2mÞ
Eo

r�n þ 3aoC2rL þ 3aoC1rL�q�1 ð41Þ

Now we try to find the general solution of Eq. (41). The homoge-
neous form of Eq. (41) equation is,

duðrÞ
dr
þ 2uðrÞ

r
¼ 0 ð42Þ

To solve Eq. (42) we have,

duðrÞ
uðrÞ ¼ �2

dr
r

ð43Þ

upðrÞ ¼
C3

r2 ð44Þ

In which C3 is a constant. A particular solution of Eq. (41) is,

upðrÞ ¼ P1rL�q þ P2rLþ1 þ P3rm�nþ1 þ P4r1�n ð45Þ

Substituting Eq. (45) in Eq. (41) provides:

duðrÞ
dr
þ 2uðrÞ

r
¼ P1ðL� qþ 2ÞrL�q�1 þ P2ðLþ 3ÞrL

þ P3ðm� nþ 3Þrm�n þ P4ð3� nÞr�n ð46Þ

Then comparing Eqs. (46) and (41) yields,

P1 ¼
3aoC1

L� qþ 2
ð47Þ

P2 ¼
3aoC2

Lþ 3
ð48Þ

P3 ¼
2ð1� 2mÞð3þmÞYo

mEoðm� nþ 3Þ ð49Þ

P4 ¼
3Q 1ð1� 2mÞ

Eoð3� nÞ ð50Þ

Thus the fully plastic general solution of the displacement for a
spherical vessel is,

uðrÞ ¼ ugðrÞ þ upðrÞ

¼ C3

r2 þ P1rL�q þ P2rLþ1 þ P3rm�nþ1 þ P4r1�n ð51Þ

Once the displacement field is obtained, the plastic strain can be
calculated as well. That is,

ep
hðrÞ ¼

uðrÞ
r
� aðrÞ:TðrÞ � rhðrÞ � m rrðrÞ � rhðrÞð Þ½ �

EðrÞ ð52Þ

ep
r ðrÞ ¼

duðrÞ
dr
� aðrÞ:TðrÞ � rhðrÞ � 2mrhðrÞ½ �

EðrÞ ð53Þ

It should be mentioned that, in special case of m = 0, P3 in Eq. (49) is
undefined and this in turn causes Eqs. (51)–(53) to be undefined.
Table 1
The parameters used in the both examples.

Eo (Pa) Yo (Pa) Pb (Pa)

2 � 1011 4.3 � 108 0

ao (�C)�1 C11 (�C)�1 C12 (�C)�1

1.2 � 10�6 0 1
Therefore, when m = 0 Eqs. (51)–(53) are not applicable and the
problem should be formulated separately from the beginning.

Using the Tresca’s yield criterion (35), the equilibrium equation
in (11) can be rewritten as,

drrðrÞ
dr

¼ 2YðrÞ
r

ð54Þ

Consequently, the stress components are,

rrðrÞ ¼ Q 1 þ 2Yo ln r ð55Þ
rhðrÞ ¼ Q 1 þ ½1þ 2 ln r�Yo ð56Þ
3. Discussions and results

In this work the position of elastic–plastic interface in a spher-
ical inhomogeneous vessel obeying the elastic–perfectly plastic
uni-axial stress-strain behavior and Tresca’s failure criterion under
different temperature and pressure distributions inside and out-
side the vessel are studied. Physical properties may differ only
along the radial direction. Temperature distribution is in a steady
state condition and the effect of temperature on material proper-
ties is negligible. Coefficients of elasticity, yield stress, thermal
expansion and conductivity are power functions of radius.
Throughout the thickness, Poisson’s ratio is a constant independent
of temperature. To locate the position of elastic–plastic border line,
the related Navier equations of inhomogeneous material in elastic
and plastic regions given in Eqs. (26) and (51) are solved simulta-
neously and unknown quantities in the interface line as well as the
position of the interface line are obtained.

One of the main requirements of this analysis is to have at least
a rough estimate of the plastic deformation onset radius. That is we
must know whether plasticity begins from inside, outside or even
from an intermediate radius. When internal pressure increases the
stress in different radii of an axi-symmetric vessel grows up. In this
condition, there is a radius wherein the left side of Eq. (35) grows
up sooner to the key level of Y given in the right side of Eq. (35).
This point is the plastic zone initiation point. Unlike the homoge-
nous materials in which plastic deformation begins from the inner
surface of a spherical vessel, in general, for an inhomogeneous
material, this onset point could be anywhere along the radius of
the sphere. However, apart from the initiation of plastic zone, plas-
tic zone growth pattern is also dissimilar in different material com-
positions. For example, in situations where plastic zone
commences from an intermediate radius, it is likely that by
increasing of internal pressure the separation line moves toward
or out of the internal radii. As there are many conditions and
parameters that can be assessed, here only a few typical examples
are shown and studied.

In order to reduce the possibility of change in the yielding pat-
tern during the transient heat transfer and to reduce the complex-
ity of highly nonlinear problem, the assumption is that steady state
thermal condition is shaped prior to the application of any
mechanical pressure load and as a whole any types of path-
depended situation is not considered here.

It should be mentioned that in all cases, the boundary condi-
tions of the steady state heat equation are of the Dirichlet or essen-
tial nature. Moreover, in all cases irrelevant to the inside
b (m) m f2

1 0.3 0

C21 (�C)�1 C22 (�C)�1

0 1



Table 2
The parameters, plastic deformation starts from outside.

n m L q a (m) Pa (Pa)

0.9 �2.8 �4 �4 0.4 3.5 � 109

Fig. 2. Stress distribution in different temperatures, plastic zone begins from
outside.

Fig. 3. Plastic strain distributions in different temperatures, plastic zone begins
from outside.

Fig. 4. The position of elastic and plastic zone interface line, plasticity begins from
outside.

Table 3
The parameters, plastic zone starts from an intermediate radius.

n m L q a (m) Pa (Pa)

�1.53 �4.2 1.2 1.2 0.3 3.123 � 1010

Fig. 5. Stress distribution in different temperatures, plastic zone begins from an
intermediate radius.
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temperature, the temperature in the outside is T(b) = ooc. A physical
characteristic of the material are represented in Table 1 and is the
same for both examples.

The radial variables as well as the stress and strain components
in dimensionless form are proposed as,

�r ¼ r
b
; �rh ¼

rh

Yoam ;
�rr ¼

rr

Yoam ;
�er ¼

er:Eo:b
n

Yoam ; �eh ¼
eh:Eo:b

n

Yoam

ð57Þ
3.1. Case study 1

It is assumed that the rise of pressure triggers the plastic zone to
start from the outer surface of a spherical vessel. To perform the
analysis a sphere with the physical parameters given in Table 2
is considered. In Table 2 m, n, L and q are the exponents used in
Eqs. (1)–(4), a is the internal radius of the vessel and Pa is the inter-
nal pressure.

To find the position of elasto-plastic interface line, some equa-
tions should be solved simultaneously. There are five unknown
A1, A2, Q1, C3 and rp. These unknowns are obtained by using of
the following boundary conditions,

re
r ðaÞ ¼ Pa; rp

r ðbÞ ¼ Pb; ueðrpÞ ¼ upðrpÞ;
re

r ðrpÞ ¼ rp
r ðrpÞ; re

hðrpÞ ¼ rp
hðrpÞ

Based on these constraints the analysis has been performed. Using
the results of the solution, the radial and tangential stresses are



Fig. 6. Plastic strain distribution in different temperatures, plastic zone begins from
an intermediate radius.

Fig. 7. The positions of elastic and plastic zone interface lines, plasticity begins from
an intermediate radius.

Fig. 8. The monograph of yielding pattern in different in-homogeneity m and n
exponents.
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plotted in Fig. 2. Likewise, the radial and tangential strains are given
in Fig. 3 and the increase in plastic zone is shown in Fig. 4.

As can be seen in Fig. 4, the higher is the temperature inside the
vessel, the bigger is the plastic zone area.

3.2. Case study 2

The second case shows a condition in which plastic zone starts
from an intermediate radius between the inside and outside sur-
faces of a vessel with the parameters shown in Table 3. As usual
m, n, L and q are the exponents used in Eqs. (1)–(4), a is the internal
radius of the vessel and Pa is the internal pressure.

In this case, there are eight equations and eight unknowns. For
the interior elastic region (a < r < rp

1Þ the unknowns are rp
1;A1 and

A2. For the intermediate plastic zone ðrp
1hrhr

p
2ÞQ1 and C3 are the un-

knowns and for the exterior elastic zone ðrp
2hrhbÞ the unknowns are

rp
2; A1 and A2. The boundary conditions are,

re
rðaÞ ¼ Pa; re

r ðbÞ ¼ Pb; re
rðr

p
1Þ ¼ rp

r ðr
p
1Þ;

re
hðr

p
1Þ ¼ rp

hðr
p
1Þ; re

r ðr
p
2Þ ¼ rp

r ðr
p
2Þ; re

hðr
p
2Þ ¼ rp

hðr
p
2Þ;

ueðrp
1Þ ¼ upðrp

1Þ; ueðrp
2Þ ¼ upðrp

2Þ
In the above relationships rp
1 is the first elasto-plastic interface from

the inside, rp
2 is the second elasto-plastic interface and the letters e

and p indicate elastic and plastic regions, respectively. The solution
for the stresses is given in Fig. 5 and strain curves are shown in
Fig. 6. Fig. 7 shows that the increase of temperature shifts the bor-
derlines existed between the elastic and plastic regions.
4. Yield pattern monograph

As seen in the former case studies, there may be different pat-
tern for the commencement of yielding in a pressure vessel. That
is the yielding may start from an internal radius, external radius
or even somewhere in the bulk material of the vessel. The behavior
is highly depended on the selection of exponents in the parameter
distribution Eqs. (1)–(4). In order to shed light on this feature here
a different graph is introduced. In the plane of this monograph, the
color of each point denotes the yield pattern produced by the par-
ticular selection of the parameters shown in by ordinate and ab-
scissa. That is the color of each point shows whether the yielding
commences from inside, outside or from an intermediate radius.
The boundary between each colored zone shows a marginal behav-
ior similar to both adjacent patterns. For example, the boundary
between (i) and (iii) zones designates a yield pattern in which
yielding starts from inside and outside simultaneously.

The three different yield pattern zones in a wholly zero temper-
ature condition are shown in Fig. 8. Zone (i) demonstrates a situa-
tion where plastic zone commences from inside. Zone (ii) points to
the special arrangements of the material in-homogeneity expo-
nents, which causes the plastic zone to shows up in an intermedi-
ate radius. Zone (iii) belongs to the selections that results in the
onset of plastic zone from the outer radii.
5. Conclusion

In a FGM spherical vessel, the effects of pressure and tempera-
ture upon the distribution of stress and yield pattern of are studied.
To this ends, Trescca yield criterion and small deformation theory
are assumed. Four characteristic factors including the elastic coef-
ficient, yield stress, coefficient of thermal conductivity and coeffi-
cient of thermal expansion are considered as power functions of
radius of vessel and independent of temperature. The Poisson’s ra-
tio is assumed to be a constant, independent of temperature.
According to the results of this work, the structure of FG material,
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the pressure and the steady state distribution of temperature may
affect the spread and growth of plastic zone. Unlike the homoge-
nous materials in this generalized inhomogeneous case, the ever-
growing area of plastic zone is not necessarily initiating inside. In
this relation, several scenarios for the escalating and growth of
plastic regions may be considered. That is plastic zone may start
from inside, Outside, an intermediate radius or even may com-
mences simultaneously from inside and outside. To entrap all cat-
egories inside a unique framework some monographs are
represented which show how material parameters may influence
the pattern of the yielding.
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