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Abstract 

In this paper, the solution of the inverse, conduction-

radiation problem in a two-dimensional system was 

analyzed to determine the temperature-dependent 

emissivity at the boundary for a participating media. 

The inverse problem was solved through the 

minimization of performance function, which was 

expressed by the sum of square residuals between 

estimated and exact heat fluxes, using a combined 

method of the genetic algorithm and the conjugate 

gradient method.  For this, we supposed that the 

emissivity was represented as a function of temperature 

at the boundary surface. The effects of the measurement 

errors on the accuracy of the inverse analysis are 

investigated. 

Keywords: Combined method of genetic algorithm and 

conjugate gradient method, Emissivity, Inverse 

radiation- conduction analysis, Measurement error 

 

Introduction 

Conduction-radiation heat transfer is an important heat 

transfer mode in various engineering application. Two 

studies can be done about combined heat transfer by 

conduction and radiation. In direct radiation-conduction 

investigation, boundary conditions and the radiative 

properties of walls and medium are given. These types 

of problems are mathematically well posed and 

therefore, the radiation intensities, temperature 

distribution and heat flux distribution can be 

determined. In the second study, determination of the 

radiation properties, boundary condition, and the 

temperature profile or source term distribution from 

various types of radiation measurements are done by 

inverse analysis. In this problem, the mathematical 

formulation often leads to an ill-posed problem, and 

special numerical techniques must be employed to solve 

the corresponding set of ill-conditioned linear equations 

[1]. 

The Inverse conduction-radiation heat transfer problems 

are in turn classified as identification and design 

problems. In identification problems, temperature is 

measured at some locations within the enclosure or heat 

flux is measured at some locations on boundary surface, 

and based on these measurements and using inverse 

algorithms, the unknown parameters such as the thermal 

properties of the enclosure boundaries are estimated [2]. 

The inverse design techniques attempts to solve directly 

for the conditions in the system that would provide the 

two specifications on the design surface. Many 

researchers study to estimate thermal properties [3-7]. 

Ki Wan Kim et al. [8] estimated the emissivities in a 

two-dimensional irregular geometry by inverse radiation 

analysis using hybrid genetic algorithm.  

In the present investigation, we consider heat transfer by 

combined radiation with conduction through 

participating media capable of absorbing, emitting and 

isotropic scattering thermal radiation. We solved an 

inverse conduction-radiation heat conduction problem. 

The finite volume method was employed to solve 

energy equation. The radiative transfer equation was 

solved with the discrete ordinate method. A combined 

method of the genetic algorithm and the conjugate 

gradient method were used. 

 

Direct Solution 

Consider steady state combined conduction and 

radiation heat transfer in a gray, absorbing, emitting and 

isotropic scattering slab. Fig. 1 shows regular 

quadrilateral enclosure which is filled with an 

absorbing, emitting, scattering and gray gas with 

          and           . 

 

 
Fig. 1: A regular quadrilateral enclosure 

 

The energy conservation equation in the absence of 

convection and heat generation, assuming constant 

properties in a two-dimensional Cartesian coordinate 

system is expressed as: 
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where    is the single scattering albedo and it is defined 

as: 
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where    is the (linear) scattering coefficient for 

scattering and  
 
 is extinction coefficient. An extinction 

coefficient is defined as: 
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where     is known as the (linear) absorption 

coefficient,     is blackbody intensity: 
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   is the Stefan–Boltzmann constant. G is known as the 

incident radiation function (since it is the total intensity 

impinging on a point from all sides) and can be 

expressed as follows: 
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where    is the solid angle and   is radiative intensity. 

The radiative intensity can be found from radiative 

transfer equation (RTE). RTE in the presence of an 

absorbing, emitting and scattering medium is written as: 
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The equation of transfer in its quasi-steady form, 

equation (6), is a first-order differential equation in 

intensity (for a fixed direction s). For a surface that 

emits and reflects diffusely, the exiting intensity is 

independent of direction. Therefore, at a point   on the 

surface, boundary condition are presented in the 

following form: 
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(7) 

where n is the local outward surface normal and 

          is the cosine of the angle between any 

incoming direction    and the surface normal. Therefore, 

the outgoing intensity is not generally known explicitly, 

but is related to the incoming intensity and wall 

temperature profile. The emissivity at the boundary was 

represented as the function of temperature in the 

boundary such as: 

 

   ∑    ( ) 
(8) 

 

In direct solution, these coefficient are known, but in 

inverse analysis should be estimated.  

 

 

DISCRETE ORDINATE METHOD 

Discrete ordinate method is used to transform the 

equation of transfer into a set of simultaneous partial 

differential equations. In the discrete ordinates method 

(  ), equation (6) is solved for a set of different 

directions: 
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1,2,..., N, and the integrals over direction are replaced 

by numerical quadratures, that is: 
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Where the    are the quadrature weights associated with 

the directions   . The radiative heat flux, inside the 

medium or at a surface, may be found from its 

definition is given as:  
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The incident radiation   is similarly determined as: 

 

  ∑   

 

   

   
(12) 

 

For 2D Cartesian coordinates, RTE can be rewritten as:  

 

 
 

   
  

  
 

   
  

                       

 

(13) 

where    is again shorthand for the radiative source 

function: 
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FINITE VOLUME METHOD 

In solving the radiative transfer equation, the FVM is 

adopted for its convenience in selecting the solid angle 

while guaranteeing an exact global conservation of 

radiative energy. A general volume element is shown in 

Fig. 2. The volume element has four face areas   and 

   (in the x direction), and   and    (in the y 

direction). 
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Fig. 2: A general two dimensional control volume 

 For each volume element, equation (6) is integrated 

over the volume element and over each of the solid 

angle elements   . The RTE with finite volume method 

appears as: 
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in which  
 
 and  

 
 are constants   ⁄  <  

 
,  

 
< 1, and 

the scheme is known as weighted diamond differencing 

as proposed by Carlson and Lathrop. Where     and     

are volume averages.     and     are: 
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In the present work, as per symmetry scheme  
 
  

 
 

    has been adopted. Intensity on the other of faces can 

be calculated by relating cell-edge intensities to the 

volume-averaged intensity. Most often a linear 

relationship is chosen, i.e.: 
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The following parameters are used for expressing above 

governing equations in dimensionless form [9]: 
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where    and   are radiation–conduction parameter and 

optical thickness respectively. The energy conservation 

equation (1) for the transport phenomena in 

dimensionless form is represented as: 
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where: 

 

   ∑   

 

   

    

(20) 

 

By using FVM, the energy conservation equation can be 

rewritten as: 
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where: 
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By using DOM, the dimensionless form of equation (7) 

can be expressed as: 
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In this paper, the spatial domains are discretized into 50 

× 50 control volumes. The discrete ordinate    method 

is employed to solve the radiative transfer equation. By 

suppose emissivity at top boundary is known, equation 

(6)–(23) are solved in this way: 

 Assume an initial temperature filed and 

radiative source (    ,     ). 

 Calculate    . 

 Solve the radiative transfer equation, equation 

(15) by using the S4 method. 

 Obtain the temperature field by using equation 

(19). 

 Repeat the above procedure until the 

converged intensity. 

 

6 INVERSE SOLUTION 

The conjugate gradient method is combined with the 

genetic algorithm to solve a set of equations in inverse 

problem, which are expressed by errors between 

estimated and desired heat flux. Genetic algorithm is 

used to select an initial guess for the conjugate gradient 

method and the conjugate gradient method used to 

estimate coefficient. 

 For this, we considered a known emissivity profile for 

top wall and calculated heat flux at the bottom wall. The 

inverse problem tries to estimation of the coefficients    

defined by (8).  The objective function for minimization 

is defined as follow as: 
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(24) 

 

where    is the total number of measurements   
  is the 

vector of measured heat flux obtained from the solution 

of the direct problem and   
  is the vector of estimated 

heat flux obtained from the solution of the inverse 

problem. 

 

GENETIC ALGORITHM 

The genetic algorithm (GA) is a search-based method 

that mimics the process of natural evolution using 

techniques influenced by natural evolution such as 
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selection, mutation and crossover. Genetic algorithms 

were first used by Holland (1975). Any possible 

solution is an individual as shown in Fig. 3. Variables 

are coded in float-point or binary strings. A collection of 

individuals is called a population. At first generation, an 

initial population is randomly generated. After 

evaluating the fitness of each individual, fitter 

individuals are selected for reproducing offspring for 

the next generation. 

There are many different types of selection such as 

roulette wheel selection. In roulette wheel selection, 

individuals are given a probability of being selected that 

is directly proportionate to their fitness. Two individuals 

are then chosen randomly based on these probabilities 

and produce offspring.  

Individuals chosen by selection operation endure the 

operation of crossover and mutation for the 

reproduction of renewed individuals. 

In crossover operation, individuals, meet their mates 

and swap their genes. There are various crossover 

schemes such as one point crossover, two points 

crossover, multi point crossover, matrix crossover and 

uniform crossover. In the one point crossover, a locus is 

chosen at which the remaining alleles exchanged from 

one parent to the other. The point at which the 

chromosome is broken depends on the randomly 

selected crossover point. 

The mutation operator permits some genes to change 

their values within the design space in order to ensure 

that the individuals are not all exactly the same. In the 

mutation, genes changed with a small amount or 

replaced with a new value. The probability of mutation 

controls the number of genes suffering the mutation 

operation. The probability of mutation is usually 

between 1 and 2 tenths of a percent. 

In this study, the population size is fixed to 20 to 

decrease the computational time and the float-point 

representation is used to reduce the length of the 

chromosome. A total generation number of 100 is used 

to product initial guess for conjugate gradient method. 

The nonuniform mutation [10] and the one point 

crossover are employed to breed new individuals. The 

algorithm continues since the maximum number of 

generation is achieved.  

The computational procedure for the genetic algorithm 

can be presented as follows 

 Select the initial population  

 Calculate the fitness of each individual in that 

population  

 Repeat on this generation until the maximum 

number of generation is achieved: 

1. Select the best individuals for reproduction  

2. Reproduce new individuals through 

crossover and mutation operations to give 

birth to offspring  

3. Evaluate the individual fitness of new 

individuals  

4. Replace old population with new 

individuals  

 

   …    ...       

 

 

 

Fig. 3: Illustration of individual and gene 

 

CONJUGATE GRADIENT METHOD 

In the inverse parameter estimation problem considered 

in this study, we intend to recover the vector of 

unknown parameters P = (          ) by the 

minimization of the sum of squares function. Equation 

(28) can be rewritten as: 

 

 (  )     ( 
 )     

    ( 
 )      (25) 

 

In this study,   ( 
 ) is the vector of estimated heat 

fluxes achieved from the solution of the direct problem 

by using the current available estimate for P. In this 

study, the conjugate gradient method is employed to 

solve the inverse conduction problem; the iterative 

process is [11]. 

 

         
    (26) 

 

where  
 
 is the step size,     is the direction of descent 

which is determined from: 

 

     (  )         (27) 

 

and the conjugate coefficient   is computed from: 
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Here the row vector   (  ) is the gradient of the 

objective function. The step size is determined from 

 

 
  

       (  ( 
 )    )

             
 

(29) 

 

where   is the sensitivity coefficient vector. The 

sensitivity coefficient vector is computed from (30). In 

order to calculate the sensitivity coefficient, finite-

difference approximation is used.  
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The gradient of the objective function is determined by 

differentiating (25) with respect to   to obtain 

 

  (  )    (  ) (  ( 
 )    ) (31) 

 

The square root of the variance is given by: 

Gene 

 
Chromosome 

 

http://en.wikipedia.org/wiki/Selection_(genetic_algorithm)
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http://en.wikipedia.org/wiki/Fitness_(biology)
http://en.wikipedia.org/wiki/Generation
http://en.wikipedia.org/wiki/Reproduce
http://en.wikipedia.org/wiki/Breed
http://en.wikipedia.org/wiki/Crossover_(genetic_algorithm)
http://en.wikipedia.org/wiki/Mutation_(genetic_algorithm)
http://en.wikipedia.org/wiki/Offspring
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where M is total number of data points. The 

computational procedure for the solution of the inverse 

problem can be summarized as follows: 

Step 1: Pick an initial guess  . Set k=0. 

Step 2: Solve the direct problem to compute the 

dimensionless heat fluxes. 

Step 3: Calculate the objective function. Terminate the 

iteration process if the specified stopping criterion is 

satisfied( ). Otherwise go to Step 4. 

Step 4: Compute the sensitivity coefficient vector by 

utilizing (30). 

Step 5:  Compute the gradient of the objective function 

  (  ) from (31). 

Step 6: Knowing   (  )  compute the conjugate 

coefficient    and the direction of descent     

Step 7: Compute the step size  
   

 

Results and Discussion 

In this section, to demonstrate the accuracy and 

efficiency of this method, we have chosen three 

examples. To show the effects of measurement errors on 

the emissivity, we consider the random errors. The 

simulated measured heat fluxes with random errors are 

obtained by adding normally distributed errors into the 

exact heat fluxes on the domain as: 

 

   (   )    
 

(33) 

| |    (34) 

 

where   is the random error of measurement, and   is 

the bound of  .      in (33) is the exact heat flux and 

   is the measured heat flux at the bottom wall. 

 

Example1. In the first example, we considered that the 

boundary condition for temperature at the top wall is 

polynomial form and the emissivity is a sinusoidal 

function as: 

 

  
                 

           (   
 
 ) 

(35) 

 

where   ,    and    are supposed to be 0.5, 0.3 and 0.8 

respectively in the exact solution. Fig. 4 shows the 

estimated emissivity in example 1. 

 

 

Fig. 4: The estimated emissivity in example 1 with 

measurement errors           

 

Example2. The emissivity and the boundary condition 

for temperature at the top wall in the second example 

are presented in the following form:  

 

  
           

     √  
       (   

 
 ) 

(36) 

 

where   ,    and    are supposed to be 0.3, 0.2 and 0.5 

in the exact solution respectively. Fig. 5 illustrates that 

the estimated emissivity is acceptable even if 

measurement errors increases. 

 

Example3. The emissivity is presented as a sinusoidal-

exponential form. The emissivity and the boundary 

condition for temperature at the top wall are assumed in 

following form: 

 

  
           

            (   
 
 )        (   

 
 ) 

(36) 

 

where       ,       ,       ,        and 

    . Fig. 6 shows the comparison of the emissivity 

between the exact solution and the inverse solution. 

This indicates that that present approach provide an 

accurate estimation. 

 

 
Fig. 5: Variation of estimated emissivity with 

dimensionless temperature in example 3 with 

measurement errors           

 

 
Fig. 6: The estimated emissivity in example 3 with 

measurement errors           

 

Conclusions 

In this paper, we solved an inverse conduction-radiation 

problem in a two-dimensional system to determine the 
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temperature-dependent emissivity at the boundary for an 

absorbing, emitting, isotropic scattering and gray 

rectangular medium with opaque and diffuse bounding 

surfaces from the knowledge of the wall heat flux. For 

this, the emissivity was approached with the function of 

temperature. Three examples were used to show this 

algorithm. Results show the algorithm can estimate the 

unknown emissivity. Also the accuracy of algorithm 

decreases when measurement error increases. 
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