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a b s t r a c t

A hybrid algorithm by integrating an improved particle swarm optimization (IPSO) with successive

quadratic programming (SQP), namely IPSO–SQP, is proposed for solving nonlinear optimal control

problems. The particle swarm optimization (PSO) is showed to converge rapidly to a near optimum

solution, but the search process will become very slow around global optimum. On the contrary, the

ability of SQP is weak to escape local optimum but can achieve faster convergent speed around global

optimum and the convergent accuracy can be higher. Hence, in the proposed method, at the beginning

stage of search process, a PSO algorithm is employed to find a near optimum solution. In this case, an

improved PSO (IPSO) algorithm is used to enhance global search ability and convergence speed of

algorithm. When the change in fitness value is smaller than a predefined value, the searching process is

switched to SQP to accelerate the search process and find an accurate solution. In this way, this hybrid

algorithm may find an optimum solution more accurately. To validate the performance of the proposed

IPSO–SQP approach, it is evaluated on two optimal control problems. Results show that the

performance of the proposed algorithm is satisfactory.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

One of the most active subjects in control engineering is
optimal control of nonlinear systems. Such control problems arise
in many applications, e.g., in economics, chemical engineering,
robotics and aeronautics. To solve optimal control for a nonlinear
system using classic optimal control theory, the nonlinear
Hamilton–Jacobi–Bellman (HJB) partial differential equations
must be solved (Bryson and Ho, 1975). However, in practice, the
nonlinear HJB equations are very difficult to be solved. As a result,
it is necessary to employ numerical methods to solve nonlinear
optimal control (NOC) problems.

Several works in the literature were proposed to solve NOC
problems, numerically. Gradient descents are the most elegant
and precise numerical methods to solve NOC problems. Never-
theless, they have the possibility of getting trapped at local
optimum depending on the initial guess of solution. In order to
achieve a good final result, these methods require very good
initial guesses for control variable trajectory. Besides, as the
complexity of the system increases, the specification of a suitable
initial guess can become troublesome (Bayón et al., 2009).
Alternatively, Iterative Dynamic Programming (IDP) (Luss, 2000)
is a powerful method for solving optimization problems, but
ll rights reserved.
usually the CPU time used to solve the problem is quite long and it
may also converge to the local optimum (Lopez Cruz et al., 2003;
Bayón et al., 2009).

Since solving optimal control of nonlinear complex dynamics
lead to presenting multiple local optimums, global optimal control
approaches can be used to find the global optimum or a sufficiently
close approximation. Heuristic optimization algorithms such as
genetic algorithms (GA) (Holland, 1975; Goldberg, 1989); differ-
ential evolution (DE) (Price and Storn, 1997) and particle swarm
optimization (PSO) (Kennedy and Eberhart, 1995) are found to have
a better ability to converge to a global solution than the traditional
methods in complex optimization problems (Onwubolu and Babu,
2004). Among their advantages are: (1) the objective function’s
gradient is not required; (2) they are not sensitive to initial guess of
solution and (3) they usually do not get stuck into a local optimum.
Based on these advantages, they have been successfully applied in
many NOC problems (Sewald and Kumar, 1995; Yamashita and
Shima, 1997; Lopez Cruz et al., 2003; Sarkar and Modak, 2004; Babu
and Angira, 2006; Varadarajan and Swarup, 2008; Arumugam and
Rao, 2008; Herrera and Zhang, 2009).

Recently, PSO algorithm has been found to be a promising
technique for real world optimization problems (Clerc and Kennedy,
2002). Compared to GA, PSO takes less time for each function
evaluation as it does not use many of GA operators like mutation,
crossover and selection operator. Although PSO has shown some
advances by providing high speed of convergence in specific
problems, however, it does exhibit some shortages. First, it may
convergence to a local optimum when facing with complex
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optimization problems. Second, the convergence rate decreased
considerably in the later period of evolution; when reaching a near
optimal solution, the algorithm stops optimizing, and thus the
achieved accuracy of algorithm is limited (Kennedy et al., 2001).

In this paper, a novel algorithm, namely IPSO–SQP, is proposed to
overcome these two shortages. First, an improved PSO (IPSO)
algorithm is proposed to enhance global search ability and also
convergence speed of PSO. Second, to achieve faster convergence
speed around global optimum and also higher convergence
accuracy, the proposed IPSO is combined with successive quadratic
programming (SQP) algorithm. Although the ability of SQP is weak
to escape local optimum, it can achieve faster convergence speed
around global optimum and the accuracy can be higher. The
fundamental idea in the proposed method is that at the beginning
stage of searching for the optimum, IPSO algorithm is employed to
find a near optimum solution and accelerate the training speed.
When the change in fitness value is smaller than a predefined value,
or the particles in swarm being close to the global optimum, the best
solution found by IPSO algorithm will be taken as the initial starting
point for the SQP and the searching process is switched to SQP
searching to accelerate the search process and find an accurate
solution. In this way, this hybrid algorithm may find an optimum
solution more quickly and accurately.

To our knowledge, the first and only work using a hybrid PSO–
SQP method for an optimization problem was done by Victoire
and Jeyakumar (2004). They used it for solving economic dispatch
with valve-point effect. However, our proposed method has two
distinctions with the previous one. First, an improved PSO is
proposed to enhance global search ability of PSO algorithm and
also increase the convergence speed and accuracy of PSO. Second
this is the first research that used a hybrid PSO–SQP method for
solving a dynamic optimization problem, i.e., nonlinear optimal
control problems. In order to show the feasibility of the proposed
method, two benchmark NOC problems are considered. The
proposed algorithm is evaluated on these two NOC systems and
its results are compared with those obtained by two well-known
evolutionary algorithms, namely GA and DE algorithms, and also
with three improved PSO algorithms. The results show that the
proposed algorithm has better performance than others in terms
of robustness and accuracy.

The rest of the paper is organized as follows: the next section
describes a general form of optimal control problems. In Section 3,
both GA and the DE algorithms are described. Section 4 introduces
PSO algorithm. In Section 5, a brief description of the SQP
algorithm for the solution of optimal control problems is given.
Section 6 introduced the hybrid IPSO–SQP algorithm. Section 7
contains simulation results obtained by the proposed method
when applying it to three benchmark optimal control problems.
Finally, conclusion is presented in Section 8.
2. Optimization problem formulation

Consider a system described by the following nonlinear
differential equation:

_x ¼ f ðxðtÞ,uðtÞ,tÞ ð1Þ

where x(t)ARn is the state vector and the initial state x(0) is given.
u(t)ARm is the control vector bounded by

uminouiðtÞoumax, i¼ 1,2,. . .,m ð2Þ

Furthermore, it may be inequality constrains on state variables
like

ciðXÞr0, i¼ 1,2,. . .,l ð3Þ
The performance index associated with this system is a scalar
function, which can be formulated as follows:

JðuðtÞÞ ¼fðxðtf Þ,tf Þþ

Z tf

0
LðxðtÞ,uðtÞ,tÞdt ð4Þ

where J is a scalar performance index (PI), f(.)is final state cost
function and L(.) is interval cost function. f(.)and L(.) functions are
chosen to achieve an appropriate design goal. The objective is to
determine the optimal control policy u(t) in the time interval
tA[t0, tf] such that PI is minimized or maximized.

To solve this type of problems numerically, there are two
general approaches: indirect and direct methods (Stryk and
Bulirsch, 1992). Indirect method is based on the solution of a
calculus of variations problem through the use of the Pontryagin’s
minimum principle (PMP) (Bryson, 1999). In a direct approach,
the optimal control problem is approximated by a finite dimen-
sional optimization problem, which can be cast in a nonlinear
programming (NLP) form and solved accordingly (Agrawal and
Fabien, 1999). This is achieved through control parameterization.
In our case the control u(t) is assumed to be a piecewise constant
such as (Lopez Cruz et al., 2003)

uðtkÞ ¼ uk, tA ½tk,tkþ1�, k¼ 0,1,. . .,N�1, t0 ¼ 0, tN ¼ tf ð5Þ

As a result N�m parameters determine the control over [0,tf].
The NLP problem is to find the stacked control vector defined by
~u ¼ ½uT

0 ,uT
1,. . .,uT

N�1� ¼ ½
~u1,. . ., ~uN�m�, where ~ui, i¼ 1,2,. . .,m� N are

scalars.
3. Two classes of evolutionary algorithms: GA and DE

In this section, the two well-known evolutionary algorithms,
namely GA and DE, which have been used earlier for solving NOC
problems, are introduced briefly.

3.1. Genetic algorithm (GA)

Genetic algorithm (GA) (Holland, 1975; Goldberg, 1989) is a
population based optimization technique that searches the best
solution of a given problem based on the concepts of natural
selection, genetics and evolution. The search is made starting
from an initial population of individuals, often randomly
generated. An individual is considered to be a possible candidate
solution for the optimization problem in hand. At each evolu-
tionary step, individuals are evaluated using a fitness function.
The evolution (i.e., the generation of a new population) is made by
means of three kinds of operator: breeding, mutation and
selection. Selection involves killing a given proportion of the
population based on probabilistic ‘‘survival of the fittest’’. Killed
individuals are replaced by children, which are created by
breeding the remaining individuals in the population. For each
child produced, breeding first requires probabilistic selection of
two parent individuals, getting a more chance to choose fitter
individuals. Mutation allows new areas of the response surface to
be explored by random alterations of optimization variables. GA
iteratively improved the set of tentative solutions by applying the
aforementioned stages to find a good solution.

In the traditional GA, all the variables of interest must be
encoded as binary digits (genes) forming a string (chromosome).
After a manipulation of binary-coded GA, the final binary digits
are then decoded as original real numbers. On the other hand,
in a real-coded GA, all genes in a chromosome are real numbers.
To deal with practical engineering problems, the real-coded
GA is more suitable than the binary-code GA (Chambers, 1995;
Chang, 2007).
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3.2. Differential evolution (DE)

As other evolutionary algorithms, the differential evolution
(DE) proposed by Price and Storn (1997) is a population based
optimization algorithm. DE starts with the random initialization
of a population of individuals in the search space. Then, evolution
mechanism is applied to parameter vectors. To the next iteration,
only those parameter vectors of the procedure survive that
produce the best performance for an objective function. The
evolution mechanism contains a mutation procedure, which
consists of adding a weighted difference between two vectors
while creating new one and comparing a newly created vector to
the one from an existing population. In order to increase the
diversity of the muted vectors, one introduces the crossover.
Crossover procedure generates trial vector by randomly mixing
the muted vector with the last target vector. If the trial vector
produces a better performance for an objective function than that
compared to, the new vector replaces it in the population. This
procedure is called selection. DE iteratively improved the set of
tentative solutions by applying the aforementioned stages until
satisfactory results are obtained or certain criteria of termination
are met. We recommend the readers to refer to Price and Storn
(1997) and Lopez Cruz et al. (2003) for further details.
4. Particle swarm optimization (PSO)

4.1. Standard PSO

Particle swarm optimization (PSO) is a heuristic population
based optimization algorithm simulating the movement and
flocking of birds (Kennedy and Eberhart, 1995). In the beginning
of search process, a population of candidate solutions, called
particles, is created randomly in the solution space. Each particle
is associated with a velocity. Then, the velocity of every particle is
iteratively adjusted according to the corresponding particle’s
experience and the particle’s companions’ experiences. It is
expected that the particles will move towards better solution
areas. The fitness of every particle can be evaluated according to
the objective function of optimization problem. At each iteration,
the velocity of every particle will be calculated as follows:

vtþ1
i ¼ovt

iþc1r1ðpbestt
i�xt

i Þþc2r2ðgbestt�xt
i Þ ð6Þ

where xt
i is the position of the particle i in tth iteration,pbestt

i is the
best previous position of this particle (i.e., personal best), gbestt is
the best previous position among all the particles in tth iteration
(i.e., global best), o is the inertia weight, c1 and c2 are acceleration
coefficients and are known as the cognitive and social parameters,
respectively. Finally, r1 and r2 are two random numbers in the
range [0, 1]. After calculating the velocity, the new position of
every particle can be worked out:

xtþ1
i ¼ xt

iþvtþ1
i ð7Þ

The PSO algorithm performs repeated applications of the
update equations provided until a stopping criterion is met.

4.2. Inertia weight adaptation and the proposed PSO algorithm

The success of PSO during search is highly dependent on a
good balance between exploration and exploitation. Exploration
allows searching the entire search space by ensuring the
redirection of the search towards new regions, while exploitation
favors a quick convergence towards the optimum. To do a good
balance between exploration and exploitation, one can use an
appropriate adaptation mechanism for inertia weight factor. A big
inertia weight facilitates exploration, but it makes the particle
take long time to converge. Conversely, a small inertia weight
facilitates exploration and makes the particle to converge fast, but
it sometimes leads to local optimal.

Several researchers proposed PSO algorithms with an adaptive
inertia weight (Shi and Eberhart, 1998; Chatterjee and Siarry,
2006; Modares et al., 2010a, 2010b). First of all, a PSO with
linearly decreasing inertia weight (PSO–LDW) is proposed by Shi
and Eberhart (1998). In PSO–LDW, the inertia weight linearly
decreases as follows:

ot ¼ominþ
itermax�t

itermax
:ðomax�ominÞ ð8Þ

where itermax is the maximal number of iterations and t is the
current number of iterations. So as iterations go, o decreases
linearly from omax to omin.

After that several nonlinear inertia weight adaptation mechan-
isms were proposed to enhance the performance of PSO
algorithm. Among them, Chatterjee and Siarry (2006) proposed
the well-known PSO with nonlinearly decreasing inertia weight
(PSO–NDW). The inertia weight starts with a high value omax

and nonlinearly decreases to omin at the maximal number of
iterations. This means that the representations are the same as
those in the PSO–LDW method except that the inertia weight
factor changes according to

ot ¼ominþ
itermax�iter

itermax

� �a
ðomax�ominÞ ð9Þ

As for a¼1, the system becomes a special case of the method
in Shi and Eberhart (1998).

Since the search process of PSO is nonlinear and highly
complicated, linearly and nonlinearly decreasing inertia weight
with no feedback taken from the global optimum fitness cannot
truly reflect the actual search process. In the beginning of the
search process, the particles are far away from the optimum point
and hence a big inertia weight is needed to globally search the
solution space. Conversely, when the best solution found by the
population improves greatly after some iteration, i.e., the particles
find a near optimum solution, only small movements are needed
and inertia weight must be set to small values. Based on this, in
one of our previous works, we proposed an improved PSO
algorithm (Modares et al., 2010a) in which the inertia weight
was set as a function of global optimum fitness during search
process of PSO algorithm as follows:

ot ¼ 1=ð1þexpð�a� FðgbesttÞÞÞ ð10Þ

where F(gbestt)is the fitness of global best in tth iteration. The
parameter a needs to be predefined. It can be set to the inverse of
the value of global optimum fitness in the first iteration (a¼1/
F(gbest1)). In this case, o changes according to the rate of global
best fitness improvement.

However, introducing the same inertia weight for all particles, by
ignoring the differences among particle performances, simulated a
roughly animal background, not a more precise biological model. In
fact, during the search every particle dynamically changes its
position, so every particle is located in a complex environment
and faces a different situation. Therefore, every particle may have
different tradeoffs between global and local search abilities.

Motivated by the aforementioned, to incorporate the differ-
ence between particles in PSO, similar to our recent work
(Modares et al., 2010b), in this paper we developed an improved
PSO (IPSO) in which the value of inertia weight for every particle
in tth iteration is dynamically calculated by

ot
i ¼ 1=ð1þexpð�aFðpbestt

i ÞÞÞ ð11Þ
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This adaptation mechanism is like that described in Eq. (10),
except replacing the global best fitness by the fitness of personal
best fitness. Under the assumption above, it can be concluded that
0.5roio1.

According to Eq. (11), during the search of IPSO algorithm,
while the fitness of a particle is far away from the real global
optimal, the value of inertia weight will be large resulting in
strong global search abilities and locating the promising search
areas. Meanwhile, when the fitness of a particle is achieved near
the real global optimal, the inertia weight will be set small,
depending on the nearness of its best fitness to the optimal value,
to facilitate a finer local explorations and hence accelerate
convergence.
4.3. Performance analysis of the proposed PSO algorithm

In order to analyze the performance of the proposed IPSO, two
constraint benchmark optimization problems (Mathur et al.,
2000) are considered and listed in Table 1. Originally PSO
algorithms are designed to solve unconstrained static optimiza-
tion problems. To our knowledge, the penalty function method
has been the most popular constraint-handling technique due to
its simple principle and ease of implementation (Homaifar et al.,
1994; Joines and Houck, 1994; Coello, 2000). The violations of
constraints of the solutions are incorporated into the objective
function so that the original constrained problems are trans-
formed into unconstrained ones. Thus, in this method, the fitness
function is defined as the sum of the objective function and a
penalty term that depends on the constraint violation.
Table 1
Constrained benchmark optimization problems used for comparison of PSO algorithms

Test functions Opti

f1 max F ¼ x2
1þx2

2þx2
3

s:t:
4ðx1�0:5Þ2þ2ðx2�0:2Þ2þx2

3þ0:1x1x2þ0:2x2x3 r16

2x2
1þx2

2�2x2
3 Z2

F¼1

f2 min F ¼ x2
1þx2

2þ2x2
3þx2

4�5x1�5x2�21x3þ7x4

s:t:
x2

1þx2
2þx2

3þx2
4þx1�x2þx3�x4�8r0

x2
1þ2x2

2þx2
3þ2x2

4�x1�x4�10r0

2x2
1þx2

2þx2
3þ2x1�x2�x4�5r0

F¼�

Table 2
Results of PSO–LDW, PSO–NDW and IPSO algorithms for benchmark functions (popula

Function Best results Average results

PSO–LDW PSO–NDW IPSO PSO–LDW

f1 11.6727 11.6752 11.6794 11.6497

f2 �43.9845 �43.9833 �43.9991 �43.9269

Table 3
Results of PSO–LDW, PSO–NDW and IPSO algorithms for benchmark functions (popula

Function Best results Average results

PSO–LDW PSO–NDW IPSO PSO–LDW

f1 11.6745 11.6776 11.6796 11.6614

f2 �43.9893 �43.9911 �43.9992 �43.9311
To compare the accuracy of IPSO with other aforementioned
PSO algorithms, a maximum iteration of 100 is considered as a
stopping condition. In addition, in all PSO–LDW, PSO–NDW and
IPSO algorithms, we set c1¼c2¼2 as suggested by Shi and
Eberhart (1998). In PSO–LDW and PSO–NDW, o decreases from
0.9 to 0.4. Moreover, in NDW–PSO n is set to 1.2 (Chatterjee and
Siarry, 2006).

Tables 2 and 3 list the results obtained by each algorithm,
where each algorithm is implemented 20 times independently, for
a population size of 20 and 40, respectively. As shown in Tables 2
and 3, it is clear that the worst result obtained by IPSO is similar
to or even better than the best result obtained by others. Also,
Figs. 1 and 2 show how PSO algorithms convergence to the global
optimum for functions 1 and 2, respectively. It is clearly obvious
that the proposed IPSO has a great advantage of convergence
speed compared to PSO–LDW and PSO–NDW algorithms.
5. SQP algorithm

SQP is a nonlinear programming method that starts from a
single searching point and finds a solution using the gradient
information. Although this optimizing method is less time
consuming than the population based search algorithms, it is
highly dependent on the initial estimate of solution (Costa et al.,
2005; Bayón et al., 2009).

The method resembles closely to Newton’s method for con-
strained optimization just as is done for unconstrained optimiza-
tion. SQP is based on iterative formulation and on the solution of
quadratic programming sub-problems. The sub-problem is obtained
.

mal value Lower limits Upper limits

1.68 [�10 �10 �10] [10 10 10]

44.00 [�10 �10 �10 �10] [10 10 10 10]

tion size of 20).

Worst results

PSO–NDW IPSO PSO–LDW PSO–NDW IPSO

11.6565 11.6755 11.5824 11.6062 11.6741

�43.9514 �43.9914 �43.9049 �43.9182 �43.9881

tion size of 40).

Worst results

PSO–NDW IPSO PSO–LDW PSO–NDW IPSO

11.6687 11.6842 11.5946 11.6213 11.6773

�43.9732 �43.9936 �43.9267 �43.9239 �43.9915



Fig. 1. Comparison of convergence of objective function for function 1.

Fig. 2. Comparison of convergence of objective function for function 2.
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by linearizing the constraints and approximating the Lagrangian
function quadratically:

Lðx,lÞ ¼ JðxÞþ
Xm
i ¼ 1

liciðxÞ ð12Þ

At each iteration, an approximation of the Hessian of the
Lagrangian function Hk is made.

The process starts from given iteration xk, then, the following
quadratic programming (QP) sub-problem is formed to solve:

min 1
2dT Hkdþrf ðxkÞ

T d ð13Þ

rciðxkÞ
T dþciðxkÞ ¼ 0, i¼ 1,. . .,me ð14Þ

rciðxkÞ
T dþciðxkÞZ0, i¼me,. . .,m dARn ð15Þ

This sub-problem is a quadratic programming (QP) sub-
problem whose solution is used to form a search direction for a
line search procedure. In other words, the solution is used to form
the next iterate:

xkþ1 ¼ xkþakdk ð16Þ
The step length parameter ak is determined by an appropriate
line search procedure so that a sufficient decrease in a merit
function is obtained. The method is vastly used in optimization
problems, but it is also known that it depends on the initial
estimate (Costa et al., 2005).

A number of authors have successfully applied SQP method to
the solution of optimal control problems. In particular, Goh and
Teo (1988) and Teo et al. (1991) approximate the control variable
as piecewise constant and solve the NLP problem using the SQP
technique.
6. Hybrid IPSO–SQP algorithm for optimal control

The proposed IPSO–SQP is an optimization algorithm combin-
ing an improved PSO (IPSO) algorithm with SQP algorithm, in
order to solve NOC problems. The PSO algorithm is a global
algorithm, which has a strong ability to find global optimistic
result. However, it has a disadvantage that the search around
global optimum is very slow. The SQP algorithm, on the contrary,
has a strong ability to find local optimistic result for NOC problem,
but its ability to find the global optimistic result is weak. Although
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it has advantages in terms of computational robustness and their
usefulness for practical problems, it is usually difficult to choose
appropriate initial solutions.

By combining the IPSO with SQP, a new algorithm referred to
as IPSO–SQP hybrid algorithm is formulated in this paper. Similar
to the PSO algorithm, the IPSO–SQP algorithm’s searching process
is also started from initializing a group of random particles. First,
IPSO algorithm is run to search the global best position in the
solution space. Then SQP algorithm is used to search around the
global optimum. In this way, this hybrid algorithm may find an
optimum more quickly and accurately. The procedure for this
IPSO–SQP algorithm can be summarized as follows:

Step 1: Initialize the positions and velocities of a group of
particles randomly. Each particle is a potential solution for
NOC problem in hand, i.e., a single particle represents the
m�N elements of the stacked control vectors.
Step 2: Evaluate each initialized particle’s fitness value, based
on PI criteria mentioned by Eq. (4), including penalty functions.
Step 3: If the maximal iterative iterations are arrived, go to Step
7, else, go to Step 4.
Step 4: The best particle of the current particles is stored. If the
change between the current best particle fitness value and its
previous one is smaller than a predefined value, go to step 7,
else continue.
Step 5: The positions and velocities of all the particles are
updated according to Eqs. (6) and (7), and then a group of new
particles is generated.
Step 6: Reduce the inertia weight for each particle according to
Eq. (11) and go to step 2.
Step 7: Use SQP algorithm to search around global best, which
is found by IPSO to find finer solutions. In this case, the best
solution obtained by IPSO is considered as the initial guess for
SQP algorithm.
Table 4
Comparison of PSO–LDW, PSO–NDW and IPSO in terms of accuracy and time

required to find a solution for CSTCR problem (population size¼20).

Best results Mean

results

Worst

results

Iteration Elapsed

time (s)

GA 0.14154 0.14979 0.15682 132.78 251.4885

DE 0.13943 0.14781 0.15138 81.45 48.3484

PSO–LDW 0.13892 0.14838 0.15034 99.12 44.7278

PSO–NDW 0.13984 0.14489 0.14953 78.94 34.8278

IPSO 0.13667 0.14083 0.14425 51.38 23.5064

IPSO–SQP 0.13549 0.13552 0.13554 75.14 25.2687
7. Simulation results

In order to show the feasibility of the proposed IPSO–SQP for
solving NOC problems, two benchmark problems are considered:
(1) the continuous stirred-tank chemical reactor and (2) a
mathematical system with nonlinear inequality constraint. Then,
the performance of the proposed IPSO–SQP algorithm is compared
with some heuristic algorithms used earlier for solving NOC
problems, such as real-coded GA (Sarkar and Modak, 2004), DE
(Lopez Cruz et al., 2003) and PSO (Herrera and Zhang, 2009).
Three improved PSO algorithms are used, instead of standard PSO
algorithm with a fixed inertia weight employed by Herrera and
Zhang (2009): PSO–LDW, PSO–NDW and the proposed IPSO
algorithm. The motivation is to show that the proposed IPSO
algorithm is superior to the earlier well-known PSO algorithms for
integrating with SQP algorithm. For all simulations, both c1 and c2

are set to 2 (Shi and Eberhart, 1998) for all PSO algorithms; in
both PSO–TVIW and PSO–NTVIW algorithms omax and omin are
set to 0.9 and 0.4, respectively, and the modulation index, n is set
to 1.2 in PSO–NTVIW (Chatterjee and Siarry, 2006). For GA, the
crossover and mutation rates are considered as 0.8 and 0.1,
respectively (Grefenstette, 1986). For DE, all of its parameters are
the same as in Lopez Cruz et al. (2003). All the methods are coded
in Matlab 7.7 on PC with Pentium V, 7500 MHz/1024 MB RAM.

7.1. Continuous stirred-tank chemical reactor (CSTCR)

CSTCR is an NOC benchmark problem that has been used by
several researchers (Luus and Cormack, 1972; Ali et al., 1997;
Luus, 2000; Lopez Cruz et al., 2003; Bayón et al., 2009) to evaluate
their methods. The state equations for a CSTCR are

_x1 ¼�ð2þuÞðx1þ0:25Þþðx2þ0:5Þexp
25x1

x1þ2

� �
ð17Þ

_x1 ¼ 0:5�x2�ðx2þ0:5Þexp
25x1

x1þ2

� �
ð18Þ

with initial condition X(0)¼[0.09 0.09]T. x1(t) is the deviation
from the steady-state temperature, x2(t) is the deviation from the
steady-state concentration and u(t) is the normalized control
variable that represents the effect of the flow-rate of the cooling
fluid on chemical reactor. The objective is to determine the
unconstrained u * (t) to minimize the quadratic performance
measure:

J¼

Z 0:78

0
½xðtÞ21þxðtÞ22þ0:1u2ðtÞ�dt ð19Þ

The performance measure indicates that the desired objective
is to maintain the temperature and concentration close to their
steady-state values without expending large amount of control
effort.

This optimal control problem provides a good test problem for
optimization procedures and is a member of the list of benchmark
problems proposed in the handbook of test problems in local and
global optimization (Floudas et al., 1999).

Ali et al. (1997) used eight stochastic global optimization
algorithms to solve this problem and their results vary from
J¼0.135 to 0.245. Lopez Cruz et al. (2003) used four evolutionary
algorithms (EA) and compared their results with the first order
gradient method and the IDP. For the first-order gradient
algorithm, they showed that its convergence to the local or global
optimum highly depends on the initial values for the control. In
fact, if the initial conditions are selected appropriately, then it
converges to global optimum, precisely. Also they show that the
CPU time used by IDP is quite long and it may still converge to the
local optimum. Finally, they showed that the minimum obtained
with four EA algorithms varies from J¼0.1358 to 0.1449.

To solve this problem by means of the proposed method, the
time interval [t0, tf] is discretized in N¼13 time intervals, as
done by Lopez Cruz et al. (2003). The search process of GA, DE,
PSO–LDW, PSO–NDW and IPSO algorithms is terminated when
the change in fitness value is smaller than 0.0001 for 10 iterations.
Also, the search process of PSO algorithm is switched to SQP
method, when the change in fitness value is smaller than 0.0001
for 10 iterations

Tables 4 and 5 list the results obtained by each algorithm,
where each algorithm is implemented 20 times independently for
a population size of 20 and 40, respectively. The results indicate in
how many iterations and the necessary time the convergence of
the solution or success is met. The average of elapsed time in 20
runs is considered as a criterion for computational time.
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From these tables, the following results can be concluded. First
of all, it is clearly obvious that IPSO algorithm has better solution
accuracy and less computational time than GA, DE, PSO–LDW and
PSO–NDW algorithms. So, the proposed IPSO algorithm is more
appropriate than other algorithms for combining with SQP
algorithm. Second, it is clear that the computational time for the
proposed hybrid IPSO–SQP algorithm is considerably less than GA,
DE, PSO-LDW and PSO–NDW algorithms. However, since in the
hybrid IPSO–SQP algorithm, when the region of global optimum is
reached by IPSO, the region is fine tuned by running some SQP
iterations; the number of iterations for IPSO–SQP algorithm is
more than IPSO algorithm. But, since the simulation time of SQP
algorithm is small, the computational time of IPSO–SQP is very
close to the computational time of IPSO algorithm. Third, it is
apparent that IPSO–SQP is more accurate and more robust than
other algorithms, since the worst and the best results obtained by
the proposed IPSO–SQP algorithm are very close to each other. In
fact, when SQP is integrated with the IPSO, it produces quality
solutions as compared to the one produced by other algorithms.

Finally, comparing the results of the proposed method with other
heuristic methods reported by Ali et al. (1997) and Lopez Cruz et al.
(2003), it is clear that the proposed method is more robust and more
accurate than other earlier reported methods. Fig. 3 shows the
optimum control trajectory obtained by IPSO–SQP.

7.2. Mathematical system with nonlinear inequality constraint

This system involves a nonlinear inequality constraint and has
been studied by several researchers (Mehra and Davis, 1972; Goh
and Teo, 1988; Vlassenbroeck, 1988; Teo et al., 1991; Elnagar
Table 5
Comparison of PSO–LDW, PSO–NDW and IPSO in terms of accuracy and time

required to find a solution for CSTCR problem (population size¼40).

Best

results

Mean

results

Worst

results

Iteration Elapsed

time (s)

GA 0.14096 0.14693 0.15316 118.45 409.4908

DE 0.13804 0.14548 0.14913 77.82 65.6510

PSO–LDW 0.13814 0.14611 0.14947 82.35 64.0209

PSO–NDW 0.13765 0.14376 0.14843 68.62 45.5656

IPSO 0.13652 0.13955 0.14509 33.47 28.8921

IPSO–SQP 0.13549 0.13551 0.13555 52.68 31.3467

Fig. 3. Optimum control traje
et al., 1995; Mekarapiruk and Luus, 1997). The state equations for
the system are

_x1 ¼ x2 ð20Þ

_x2 ¼�x2þu ð21Þ

_x3 ¼ x2
1þx2

2þ0:005u2 ð22Þ

with initial condition X(0)¼[0 �1 0]T.
The nonlinear inequality constraint to be satisfied is

hðXÞ ¼ x2þ0:5�8ðt�0:5Þ2r0 ð23Þ

The control is bounded by

�20rur20 ð24Þ

The performance index to be minimized is

J¼ x3ðtf Þ ð25Þ

where tf¼1. To solve this problem by means of the proposed
method, the time interval [t0, tf] is discretized in N¼20 time
intervals as done by Mekarapiruk and Luus (1997).

Goh and Teo (1988) solved this problem using the control
parameterization technique, and the result obtained was
J¼0.1816. Mekarapiruk and Luus (1997) proposed a penalty
function and solved this inequality state constraint. They obtained
a result of J¼0.1769.

Again, to show the superiority of the proposed algorithm, the
performance of the IPSO–SQP algorithm is compared with GA, DE,
PSO–LDW, PSO–NDW and IPSO algorithms. Tables 6 and 7 list the
ctory for CSTCR problem.

Table 6
Comparison of PSO–LDW, PSO–NDW and IPSO in terms of accuracy and time

required to find a solution for system with nonlinear inequality constraint

(population size¼40).

Best

results

Mean

results

Worst

results

Iteration Elapsed

time (s)

GA 0.20885 0.27861 0.31069 311.28 1107.9487

DE 0.19854 0.23877 0.29838 184.95 147.6557

PSO–LDW 0.21929 0.25431 0.30194 254.93 170.8563

PSO–NDW 0.19761 0.22635 0.26474 195.84 151.8745

IPSO 0.18153 0.19167 0.20643 141.54 104.7271

IPSO–SQP 0.17277 0.17283 0.17286 169.95 107.3312
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results obtained by each algorithm, where each algorithm is
implemented 20 times independently for a population size of 40
and 60, respectively.

From Tables 6 and 7, again it is clear that the IPSO has less
computational time and also better solution accuracy as com-
pared with GA, DE, PSO–LDW and PSO–NDW algorithms and
hence it is more proper for integrating with SQP algorithm. Also,
the computational time of the proposed hybrid IPSO–SQP
algorithm is less than GA, DE, PSO–LDW and PSO–NDW
algorithms and is a bit more than IPSO algorithm. Once again, it
Table 7
Comparison of PSO–LDW, PSO–NDW and IPSO in terms of accuracy and time

required to find a solution for system with nonlinear inequality constraint

(population size¼60).

Best

results

Mean

results

Worst

results

Iteration Elapsed

time (s)

GA 0.20172 0.25496 0.30525 294.95 1721.9487

DE 0.19523 0.22106 0.26487 169.95 192.1882

PSO–LDW 0.20854 0.23758 0.29561 232.23 220.2269

PSO–NDW 0.19267 0.21759 0.24893 174.92 167.2037

IPSO 0.17781 0.18945 0.20274 123.87 124.0275

IPSO–SQP 0.17276 0.17281 0.17284 145.29 126.2628

Fig. 4. Optimum control trajectory for system w

Fig. 5. Trajectory of the function h(x) in system with nonlinear
is obvious that the hybrid IPSO–SQP algorithm is more robust and
accurate than GA, DE, PSO–LDW, PSO–NDW and IPSO algorithms.
Finally, comparing the results of the proposed method with Goh
and Teo (1988) and Mekarapiruk and Luus (1997), it is concluded
that the proposed method has better accuracy than others.

Fig. 4 shows the optimum control trajectory obtained by
IPSO–SQP. The trajectory of the function of state h(X) is shown in
Fig. 5. As can be seen, the constraint is satisfied throughout the
time interval.
8. Conclusion

To solve NOC problems, we proposed a method based on
combination of an improved PSO (IPSO) algorithm and successive
quadratic programming (SQP) algorithm, namely IPSO–SQP. We
showed that the hybrid method has the advantage of both IPSO
and SQP methods while does not inherent their drawbacks. As the
IPSO algorithm successfully searches all space during the initial
stages of a global search, we used IPSO algorithm at earlier stage
of IPSO–SQP. As long as the change in the fitness of global
optimum is less than a predefined value, the algorithm switches
to SQP to find an accurate solution. The results of the proposed
hybrid method were compared with some heuristic optimization
ith nonlinear inequality constraint problem.

inequality constraint after applying optimal control policy.
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algorithms such as GA, DE, PSO–LDW, PSO–NDW and IPSO, on two
NOC problems. The results showed that the proposed hybrid
method is more robust and accurate than other heuristic
algorithms.
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