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Introduction

Many structures are exposed to cyclic loads, for example, from
earthquakes excitations or ocean waves. Design codes allow the
use of elastic-plastic analysis to predict load effects, provided that
the designer can demonstrate failure does not occur through non-
linear instabilities, excessive deformations or low cycle fatigue.
Accurate prediction of structural cyclic response requires precise
constitutive models to describe the complex material behavior
under cyclic loads �Hopperstad and Remseth 1995�.

Many efforts have been made in the last few decades to de-
velop new models for accurate simulation of material nonlinear-
ity. As a result, various hardening rules have been presented in the
literature. Prager �1956� proposed the simplest kinematic harden-
ing rule which was a linear relation between the incremental plas-
tic strain and the evolution of the backstress. Prager’s linear
hardening rule was capable of representing the Bauschinger effect
in cyclic loading. However, it failed to simulate ratcheting. In
order to overcome this deficiency, two basic modifications were
made to Prager’s linear hardening rule. First, the idea of a multi-
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surface model was suggested by Besseling �1958� and Mroz
�1967�. In these models, multiple interacting yield surfaces were
adapted and their translation was governed by a linear rule. These
hardening rules presented a better response of materials, but alike
other multilinear models, fail to predict ratcheting. The other
modification made to Prager’s rule was adding a recovery term to
the linear term of the hardening law. This made the prediction of
plastic strain accumulation, i.e., ratcheting, possible. The first
hardening rule proposed in this category was the nonlinear hard-
ening rule of Armstrong and Frederick �1966�. Many hardening
rules have been proposed ever since, using the idea of a strain
hardening term and a recovery term. One of the major develop-
ments in this area was the work of Chaboche et al. �1979�. Their
idea was to decompose the backstress into several components
and regulating each of these components to individually evolve
according to an Armstrong-Frederick �AF� hardening rule. The
idea of decomposing the backstress has become a main interest
since. Chaboche �1991�, Ohno and Wang �1993�, Abdel-Karim
and Ohno �2000�, Kang �2004�, Abdel-Karim �2009�, and
Rezaiee-Pajand and Sinaie �2009� later used a modified version of
the original AF equation in their decomposed models.

Nonlinear finite-element analysis is an essential component of
computer-aided design. In this kind of analysis, finding the an-
swer is usually based on iterative solution of the equilibrium
equations, which leads to incremental strain histories. Afterward,
with the use of the material’s constitutive equations, which char-
acterize the stress as a function of the deformation history, the
updated stresses are obtained. Finally, equilibrium is checked for
the updated stress distribution and, if not satisfied, the iteration
process is continued. One of the important steps in this process is
the stress updating algorithm, which requires a large amount of
calculations, even for simple constitutive models. A three-

dimensional model of a solid structure may have several thousand
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stress points at which stress updating calculations are required
during each load step and in its corrective iterations. This stress
updating is normally performed by numerical integration of the
elastic-plastic constitutive equations.

Since cyclic inelastic analysis often leads to extensive compu-
tations, it is equally important to develop accurate, robust and
efficient computational algorithms. In the past several years, new
integration techniques based on the internal symmetries of simple
constitutive models have been developed. The internal symmetry
group of the constitutive model ensures that the plastic consis-
tency condition will be exactly satisfied at the end of each time
step if the numerical process can take it into account �Hong and
Liu 1999, 2000, 2001; Liu 2003, 2004�. Auricchio and Beirão da
Veiga �2003� converted the original nonlinear differential problem
of von-Mises plasticity with linear hardening into a dynamical

system Ẋ=AX for an augmented stress vector X. Then, they de-
veloped a new numerical scheme by employing an exponential
map, exp�An�t�, as an approximation to the mentioned system.
Further improvements were made to this scheme and consistent
methods with a second-order accuracy were developed �Artioli et
al. 2006; Rezaiee-Pajand and Nasirai 2007�. By considering von-
Mises plasticity with a combination of the linear isotropic and
Armstrong-Frederick nonlinear kinematic hardening, Artioli et al.
�2007� presented an integration algorithm based on exponential
maps.

The main objective of this work is the development of an
exponential-based algorithm for integrating the cyclic plasticity
models. In this investigation, the cyclic plasticity model includes
the von-Mises yield criterion and multicomponent nonlinear ki-
nematic hardening. Isotropic hardening is not considered in this
study, and it is assumed that the material is stabilized after several
load cycles. The consistent tangent operator is derived for the
suggested integration method, ensuring a quadratic rate of the
asymptotic convergence, when used with the Newton-Raphson
solution procedure. Moreover, the forward Euler method and its
consistent tangent operator are presented to compare the results
with the new exponential maps technique.

To simplify the suggested formulations, all second-order ten-
sors are considered as nine components column vectors by order-
ing the tensor components in a vector format. Due to the
symmetry of the second-order tensors, the number of independent
components will reduce to six. It is worth emphasizing that the
definition of the trace operator and the Euclidean norm must be
modified.

Constitutive Models

Kinematic hardening, i.e., the translation of the yield surface in
stress space, is the main primary reason for ratcheting. To com-
plete this view, ratcheting is due to unclosed hysteresis loops.
Thus, in order to develop and verify a model for ratcheting, it is
essential to study the ratcheting responses of stabilized materials.
This means that the parameters affecting the isotropic hardening,
i.e., the change of the yield surface size, should not be included
during the model development for ratcheting. Furthermore, all the
kinematic hardening parameters should be determined using the
experiments performed on the stabilized material. In this formu-
lation, an associated von-Mises plasticity model with nonlinear
kinematic hardening in the small strain domain is adopted. The
total strain and stress, � and �, are decomposed into deviatoric

and volumetric components as follows:
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� = s + pi with p =
1

3
tr��� �1�

� = e +
1

3
�vi with �v = tr��� �2�

In these relationships, tr�� indicates the trace operator and i
=vector corresponding to the second-order identity tensor. s , p ,e
and �v are the deviatoric stress, the volumetric stress, the devia-
toric strain, and the volumetric strain, respectively. The volumet-
ric component is treated elastically by the following equation:

p = K�v �3�

where K=material bulk modulus. The deviatoric strain is decom-
posed into elastic and plastic parts as follows:

e = ee + ep �4�

The elastic deviatoric part, ee, is related to the deviatoric stress by
the elastic shear modulus, G, as given in the following equation:

s = 2Gee = 2G�e − ep� �5�

For the shifted or effective stress, �, the following relation is
defined:

� = s − � �6�

Here, �=deviatoric part of the backstress and locates the center
of the yield surface in the deviatoric plane. The von-Mises yield
surface is as follows:

F = ��� − R = 0 �7�

where R=constant radius of the yield surface for a stabilized ma-
terial. Rate of the deviatoric plastic strain is defined by the fol-
lowing equation:

ėp = �̇n �8�

The term �̇ is a proportionality factor which defines the magni-
tude of the deviatoric plastic strain and n is a vector which defines
the direction of the deviatoric plastic strain, which, for an associ-
ated flow rule is normal to the yield surface at the contact point.
This can be expressed in the following form:

n =
�F

��
=

�

���
=

�

R
�9�

The most important feature for ratcheting simulation in cyclic
plasticity constitutive models is the kinematic hardening rule,
which dictates the translation of the yield surface during a plastic
strain increment. In this formulation, the multicomponent form of
the back stress is used as follows:

�̇ = �
i=1

m

�̇i �10�

where m=number of components of the deviatoric back stress
vector. The nonlinear evolutionary rule of each component, �i, is
defined below

�̇i = Hkin,i�̇n − �̇Ai�i �11�

In this equation, Hkin,i=material parameters and responsible for
strain hardening and Ai=scalar functions, which express the dy-
namic recovery of each component of deviatoric back stress. In
this study, five different relations for the Ai function relevant to

five well-known nonlinear kinematic hardening models are used.
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These functions are given in the following lines:
1. Chaboche model �Chaboche 1986�

Ai = Hnl,i �12�

2. Chaboche model with a threshold �Chaboche 1986�

�Ai = Hnl,i for i � 3

Ai = Hnl,i�1 −
ā

��i�
� for i = 4 � �13�

3. Ohno-Wang model-1 �Ohno and Wang 1993�

Ai = Hnl,i�nT �i

��i�
�H	�i

T�i −
3

2

Hkin,i

Hnl,i
�2� �14�

4. Ohno-Wang model-2 �Ohno and Wang 1993�

Ai = Hnl,i�nT �i

��i�
�
 Hnl,i

Hkin,i
���i��qi

�15�

5. AbdelKarim-Ohno model �Abdel-Karim and Ohno 2000�

Ai = Hnl,i�i + Hnl,i�nT �i

��i�
− �i�H	�i

T�i −
3

2

Hkin,i

Hnl,i
�2�

�16�

In the given equations, ā, qi, Hnl,i, and �i=material parameters;
H=Heaviside step function; and � �=MacCauley bracket, i.e.,
�x�= �x+ �x�� /2. The Kuhn-Tucker loading-unloading conditions
are as follows:

�̇ � 0, F � 0, �̇F = 0 �17�

It should be added that plastic flow occurs if �̇�0 and elastically
when �̇=0.

Forward Euler Method

In this section, an explicit numerical scheme, called the forward
Euler method, which integrates the constitutive model, will be
discussed. In this method, the consistency condition must be en-
forced at the end of each time step. This will be done by project-
ing the nonconsistent final solution onto the updated yield
surface.

Basic Requirements

Attaining the derivative of Eq. �6� with respect to time and using
Eqs. �5�, �8�, and �11�, the following equation is achieved:

�̇ = 2Gė − 2G�̇n − 
�
i=1

m

Hkin,i��̇n − 
�
i=1

m

Ai�i��̇ �18�

Multiplying this equation by n, and using the consistency condi-
tion, the proportionality factor �̇ can be evaluated as below

�̇ =
2G�nTė�

2Ḡ − nT�
i=1

m

Ai�i

�19�

¯
where G has the following form:
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2Ḡ = 2G + �
i=1

m

Hkin,i �20�

At this stage, Eqs. �19� and �8� can be used to calculate �̇ and the
deviatoric plastic strain, respectively. In the next section, an ex-
plicit integration strategy is developed.

Integration Scheme

At first, it will be assumed that the step is elastic and a trial
solution for the end of the time step, i.e., tn+1, is considered as
follows:

en+1
p,TR = en

p

sn+1
TR = sn + 2G�e

�n+1
TR = �n

�n+1
TR = sn+1

TR − �n+1
TR �21�

The following relation will also be valid:

�e = en+1 − en �22�

If the trial solution is admissible, i.e., ��n+1
TR ��R, then the step is

elastic and the final solution at the end of the load step is taken as
the trial one. Otherwise, plastic correction will be needed. To do
this, a scalar parameter must be calculated to divide the whole
step into an elastic and a plastic phase. This scalar can be calcu-
lated by using the following relations:

�2G��e + sn − �n�2 = R2

D�2 + 2C� + M = 0

D = �2G�e�2, C = 2G�eT�sn − �n�, M = �sn − �n�2 − R2

� =
�C2 − DM − C

D
�23�

Afterward, the deviatoric stress and the effective stress at the
contact stress point can be written as

sc = sn + 2G��e

�c = sc − �n �24�

Introducing 	=��= �̇�1−���t, the increment of the deviatoric
plastic strain can be expressed as follows:

�ep = 	nc �25�

where nc=normal vector to the yield surface at the contact stress
point. In a fully explicit manner, by choosing the contact values
for n and Ai in Eq. �19�, the following relationship can be written:

	 =
2G�nc�T�1 − ���e

2Ḡ − �nc�T�
i=1

m

Ai
c�n,i

�26�

Eqs. �25� and �26� will give the increment of the deviatoric plastic
strain in the present load step. By using the following relations,
the updated deviatoric stress and the center of the yield surface
will be achieved:

s� = sn + 2G��e − �ep�
n+1
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�n+1,i = �n,i + Hkin,i�ep − 	Ai
c�n,i

�n+1 = �
i=1

m

�n+1,i �27�

Since the consistency condition is not automatically satisfied in
this procedure, the final stress point will not be located on the
yield surface. Therefore, the following correction will be made to
the solution to guarantee the satisfaction of the consistency con-
dition:

af = ��nn+1
T �n+1� �2 − ��n+1� �2 + R2 − nn+1

T �n+1�

�n+1 = �n+1� + afnn+1

sn+1 = sn+1� + afnn+1 �28�

In these equations, nn+1=normal vector to the yield surface at the
end of load step and af =parameter that enforces the consistency
condition by scaling the stress vector.

Discrete Consistent Tangent Operator

An elastic-plastic tangent operator is needed to develop the struc-
ture stiffness matrix in a finite-element analysis. To achieve the
quadratic rate of asymptotic convergence for Newton’s technique,
the tangent operator must be consistent with the numerical
method employed to integrate the plasticity rate equations. Con-
sistency implies that the updated stress predicted by the tangent
operator must match the updated stress predicted by the integra-
tion procedure to the first order. By linearization of the discrete
time procedure, the elastic-plastic tangent operator will be devel-
oped. This means that ��� /���n+1 is needed. Taking the derivative
of Eq. �1� with respect to �n+1 and considering Eqs. �3� and �6�,
the following relation will be achieved:

��n+1

��n+1
= 
 ��n+1

�en+1
+

��n+1

�en+1
�Idev + K�iiT� �29�

where

Idev = I −
1

3
�iiT� �30�

At this stage, the terms ��n+1 /�en+1 and ��n+1 /�en+1 in Eq. �29�
must be calculated as follows:

��n+1

�en+1
=

��n+1�

�en+1
+

�af

�en+1
�nn+1�T + af

�nn+1

�en+1
�31�

��n+1

�en+1
= �

i=1

m
��n+1,i

�en+1
�32�

��n+1,i

�en+1
= Hkin,i

��ep

�en+1
−

�	

�en+1
�Ai

c�n,i�T − 	�n,i
 �Ai
c

�en+1
�T

�33�

The derivative of Ai
c is presented in Appendix I. Furthermore, the

derivatives of the other vectors appearing in the above equations

are given in Appendix II.
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Exponential-Based Method

Application of exponential-based technique for integrating model
equations of cyclic plasticity models will be presented in this
section. First, by defining an augmented stress vector, the nonlin-
ear differential equations of the constitutive model will be con-
verted to a set of quasi-linear differential equations. Then, a
numerical scheme based on the exponential maps is used to solve
the augmented differential equation system. At the end of this
section, a tangent operator consistent with the new integration
algorithm is calculated.

Augmented Differential Equation System

In this section, it is intended to convert the original associated
von-Mises plasticity model with nonlinear kinematic hardening,
i.e., Eq. �7�, into the following nonlinear differential system:

Ẋ = BX �34�

where X=augmented generalized stress vector with n+1 dimen-
sions and has the following form:

X = 	X0�̄

X0 � = 	Xs

X0 � �35�

The parameter �̄ is a nondimensional effective stress vector with
the following definition:

�̄ =
�

R
�36�

Using Eqs. �6� and �5� leads to the following equation:

� = 2Ge − 2Gep − � �37�

Taking the derivative in time from the last equation and using
Eqs. �10� and �11� gives the following result:

�̇ = 2Gė + �̇�
i=1

m

Ai�i − 
�
i=1

m

Hkin,i + 2G�ėp �38�

By inserting Eq. �8� into Eq. �38� and using Eq. �9�, the following
differential equation can be obtained:

�̇ + 2Ḡ
�

R
�̇ = 2G�̇ �39�

where Ḡ has been given in Eq. �20� and �̇ is defined by the
following relation:

�̇ = ė +
�̇

2G�
i=1

m

Ai�i �40�

Eq. �39� is valid for both of the elastic ��̇=0� and plastic phase.

Now, using the nondimensional effective stress �̄, which is de-
fined in Eq. �36�, the following equation can be achieved:

�̇̄ +
2Ḡ

R
�̇�̄ =

2G

R
�̇ �41�

0
At this stage, the following integrating factor, X , is introduced:
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X0�̇̄ + X02Ḡ

R
�̇�̄ =

d

dt
�X0�̄� �42�

After taking the derivative of the last equation and comparing
both of its sides, the following result is obtained:

Ẋ0 =
2Ḡ

R
�̇X0 �43�

Solving this ordinary differential equation, with the initial condi-
tions X0=1 and �=0, leads to the following solution:

X0��� = exp
2Ḡ

R
�� �44�

Multiplying Eq. �41� by X0 and comparing the result with Eq.
�42�, the following result is obtainable:

d

dt
�X0�̄� = X02G

R
�̇ �45�

Now, by introducing the vector Xs=X0�̄, the last equation will be
converted to the following form:

Ẋs =
2G

R
X0�̇ �46�

Eq. �43� indicates that during the elastic phase ��̇=0�, X0 will be
constant. On the other hand, in the plastic phase, X0 will be a
variable. By taking the scalar product of Eq. �45� with the vector

�̄, the following relationship can be proven:

X0

2

d

dt
��̄�2 + Ẋ0��̄�2 = X02G

R
�̇T�̄ �47�

Since in the plastic phase, ��̄�=1, the following equation can be
derived:

Ẋ0 =
2G

R
�̇TX0�̄ �48�

Eqs. �35�, �46�, and �48� can be written in the compact form of

Ẋ=BX, in the same way as it was presented in Eq. �34�. It should
be added that B is a control matrix as defined below

B =
2G

R
O ė

0T 0
� elastic phase

B =
2G

R  O �̇

�̇T 0
� plastic phase �49�

In these equations, O and 0 are a null matrix and a null vector,
respectively. It is worth emphasizing that the parameter �̇, which

existed in the definition of vector �̇ through Eq. �40�, can be
specified with Eq. �19�.

Stress Updating Algorithm

For calculation purposes, one may approximate the specified
controlled-strain path by a rectilinear strain path, such that ė is
constant during each time step, denoted by ėn at a discrete time
t= tn. In conventional finite-element analysis, the constitutive
quantities at time tn, such as sn , en , �n, and �n are all known
and the updated strain, en+1, is also known at the time t= tn+1. The

suggested numerical algorithm must integrate the plasticity rate
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equations over the time increment to determine the updated stress
and constitutive quantities. This means solving the system of dif-
ferential Eq. �34� with the following initial value:

X0 = 	X0
s

1
� = ��0

R

1
� �50�

The solution of the dynamical system �34� is available in power
series’ form or in a more compact exponential maps form, as
follows:

Xn+1 = exp��tB�Xn �51�

In the elastic phase, the control matrix B is constant and �tB may
be written as follows:

�tB = �tBe =
2G

R
O �e

0T 0
� �52�

where �e=�tė=en+1−en is the strain rate vector. On the other
hand, the control matrix B will not be constant during the plastic
phase. However, in a fully explicit manner one may assume that B
is constant during each �t time step. The known value of B at the
beginning of each time step, Bn, is the value considered through-
out the time interval. This can be expressed as follows:

Xn+1 = exp��tBn�Xn = GnXn �53�

In the plastic phase, �tBn can be expressed as follows:

�tBn =
2G

R
 O ��

��T 0
� �54�

�� = �e +
nn

T�e

2Ḡ − nn
T�

i=1

m

An,i�i

�
i=1

m

An,i�n,i �55�

As a result, the following relationships will be valid:

Ge = � I
2G

R
�e

0T 1
� elastic step �56�

Gp = I + �a − 1���̂��̂T b��̂

b��̂T a
� plastic step �57�

��̂ =
��

����
�58�

a = cosh�g�; b = sinh�g�; g =
2G

R
���� �59�

Updating the Center of the Yield Surface

At the end of a time step, the center of the yield surface must be
updated. By integrating Eq. �11�, the following relations will be
achieved:

�n+1,i − �n,i =�
tn

tn+1

�Hkin,iė
p − �̇Ai�i�dt �60�

As it is clear in Eq. �12�, the parameter Ai is a constant scalar in

the Chaboche model. It should be reminded that for the other

010

ution subject to ASCE license or copyright. Visithttp://www.ascelibrary.org



nonlinear kinematic hardening models which are presented in
Eqs. �13�–�16�, Ai will not be constant. If it is assumed that Ai is
constant during each time step, i.e., Ai=Ai,n, and �i be approxi-
mated by its values at the start and end of the time step, i.e., �i

=1 /2��n,i+�n+1,i�, Eq. �60� will lead to the following form:

�n+1,i − �n,i = Hkin,i�ep −
	

2
Ai��n,i + �n+1,i� �61�

In this equation, 	=�n+1−�n. By using Eq. �44�, the following
result can be found:

	 =
R

2Ḡ
ln
Xn+1

0

Xn
0 � �62�

Manipulating Eq. �61� will lead to the following result:

�n+1,i =
1

2 + 	Ai
�2Hkin,i�ep + �2 − 	Ai��n,i� �63�

Summing the components of the back stress vector in Eq. �63�
leads to the following equation for the center of the yield surface:

�n+1 = H̄kin�ep + a �64�

where the other parameters are as follows:

H̄kin = �
i=1

m
2Hkin,i

2 + 	Ai
�65�

a = �
i=1

m
2 − 	Ai

2 + 	Ai
�n,i �66�

Using �n+1=sn+1−�n+1 along with Eq. �64�, the following equa-
tion for �ep will be achieved:

�ep =
1

2G + H̄kin

�sn + 2G�e − a − �n+1� �67�

Finally, inserting the above relation into Eqs. �64� and �63�, the
back stress vector and its components at the end of the load step
can be calculated.

Elastic-Plastic Steps

Like many predictor-corrector integration algorithms, each step is
started by computing a trial value of the augmented stress vector,
by assuming an elastic behavior, as follows:

Xn+1
TR = GeXn �68�

If the trial estimation is admissible, i.e., �Xn+1
s,TR��Xn+1

0,TR, then the
variables at time tn+1 are taken as the trial values. Note that Xn+1

0,TR

is equal to Xn
0, since in the elastic prediction X0 is not changed. If

the trial solution is not admissible, then the step is plastic. There-
fore, this step can be divided into two parts: an elastic deforma-
tion, followed by a plastic deformation. Parameter �, which
denotes the elastic and the plastic parts of such a step, can be
calculated with the use of Eq. �23�. Parameters C, D, and M in the

augmented stress space could be presented as follows:
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D = 
2G

R
Xn

0��e��2

; C =
2G

R
Xn

0�Xn
s�T�e; M = �Xn

s�2 − �Xn
0�2

�69�

The contact stress augmented stress vector which is related to the
intersection of stress path with the yield surface can be computed
by the following equations:

Xc = GcXn �70�

Gc = � I
2G

R
��e

0T 1
� �71�

Since �1−���e denotes a fully plastic step, the updated stress at
the end of the time step can still be computed by Eq. �57� with the
following modifications:

g =
2G

R
��1 − ����� �72�

�� = �e +
�nc�T�e

2Ḡ − �nc�T�
i=1

m

Ai
c�n,i

�
i=1

m

Ai
c�n,i �73�

where Ai
c=value of Ai at the contact stress point, i.e., Ai

c

=Ai��n ,nc�.

Discrete Consistent Tangent Operator

In this section, it is intended to present the tangent operator that is
consistent with the new exponential-based integration scheme.
Referring to Eq. �29�, the terms ��n+1 /�en+1 and ��n+1 /�en+1

must be calculated. Using the definition of Xs=X0�̄ and referring
to Eq. �36�, the following equality will be valid:

Xn+1
s =

Xn+1
0

R
�n+1 �74�

Attaining the derivative of the last equation with respect to en+1,
gives the below result:

�Xn+1
s

�en+1
=

�n+1

R

 �Xn+1

0

�en+1
�T

+
Xn+1

0

R

��n+1

�en+1
�75�

Manipulating Eq. �75�, leads to the following relation:

��n+1

�en+1
=

R

Xn+1
0

�Xn+1
s

�en+1
−

R

�Xn+1
0 �2Xn+1

s 
 �Xn+1
0

�en+1
�T� �76�

At this stage, the derivatives of Xn+1
s and Xn+1

0 are needed. Using
Eq. �53� and assuming a general elastic-plastic load step, the fol-
lowing equations can be written:

Xn+1 = GpGeXn �77�

Xn+1
s = Xn

s + �a − 1����̂TXn
s���̂ + �

2G

R
Xn

0�e

+ �a − 1��
2G

Xn
0���̂T�e���̂ + bXn

0��̂ �78�

R
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Xn+1
0 = b���̂TXn

s� + b�
2G

R
Xn

0���̂T�e� + aXn
0 �79�

As it is seen, the derivatives of the mentioned terms are far more
complicated. These expressions are presented in Appendix III. On
the other hand, addressing Eq. �63�, to completely define the de-
rivative of �n+1, the derivatives of its components must be driven
as follows:

��n+1,i

�en+1
=

2Hkin,i

2 + 	Ai
c

��ep

�en+1
−

Ai
c

2 + 	Ai
c�n,i
 �	

�en+1
�T�

−
	

2 + 	Ai
c�n,i
 �Ai

c

�en+1
�T�

− Ai
c2Hkin,i�ep + �2 − 	Ai

c��n,i

�2 + 	Ai
c�2 
 �	

�en+1
�T

− 	
2Hkin,i�ep + �2 − 	Ai

c��n,i

�2 + 	Ai
c�2 
 �Ai

c

�en+1
�T

�80�

The derivatives of parameter 	 and vector �ep, which appeared in
the last equation, can be calculated referring to Eqs. �62� and �67�,
respectively. These are given below

�	

�en+1
=

R

2Ḡ

1

Xn+1
0

�Xn+1
0

�en+1
�81�

��ep

�en+1
= −

1

�2G + H̄kin�2
�sn + 2G�e − a − �n+1�
 �H̄kin

�en+1
�T

+
1

2G + H̄kin


2GI −
�a

�en+1
−

��n+1

�en+1
� �82�

To calculate the derivatives of parameter H̄kin and also vector a,
Eqs. �65� and �66� are used. Finally, the results are as follows:

�H̄kin

�en+1
= − �

i=1

m
2	Hkin,i

�2 + 	Ai
c�2

�Ai
c

�en+1
− �

i=1

m
2Ai

cHkin,i

�2 + 	Ai
c�2

�	

�en+1
�83�

�a

�en+1
= − �

i=1

m
4	

�2 + 	Ai
c�2�n,i
 �Ai

c

�en+1
�T�

− �
i=1

m
4Ai

c

�2 + 	Ai
c�2�n,i
 �	

�en+1
�T� �84�

The derivative of Ai
c is presented in Appendix I.

Numerical Examples

An elastic-plastic constitutive relationship depends on deforma-
tion history. Therefore, an incremental analysis is needed to trace
the variation of displacement, strain and stress along with the
external forces. In each load step, the equilibrium of the external
force and equivalent force of stress acting on nodal points must be
satisfied. In fact, two processes are involved in solving nonlinear
equilibrium equation. In the first one, the algorithm is used for
solving nonlinear simultaneous equations. Most of these ap-
proaches are Newton like and need tangential stiffness matrix of
structure for a fast convergence. To establish the structural stiff-
ness matrix, a tangent operator, i.e., �� /��, at each sample point

of elements must be calculated. Another main action is the inte-
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gration scheme. For a given stress state and deformation history,
this algorithm is used to determine the stress increment, ��,
which corresponds to a strain increment, ��. The integration pro-
cedure must be performed at every gauss point of elements for
each load step and corrective iterations as well. The tangent op-
erator which is used in the first algorithm must be consistent with
the integration scheme of the second one.

This study is focused on the integration scheme, and all nu-
merical presentations are pointwise. The selected problems can be
classified in three categories. In the first one, i.e., stress updating
examples, an input strain history is assumed and the stress output
will be calculated. In this category, accuracy and rate of conver-
gence of the presented integration strategy are explored through a
piecewise strain history using different time steps. In the second
category, i.e., strain updating examples, an input stress history is
considered and the strain history will be computed. Here, the
objective is to validate the tangent operator through a Newton
like, path independent strategy. In the third category, a mixed type
control example with some components of stress controlled and
also the other components of strain controlled will be presented.

All the strain and stress paths are considered linear to eradicate
the discretization errors. It must be mentioned that, each integra-
tion scheme operates under the restriction of a constant strain rate
vector. For a finite size load step, this leads to a linear approxi-
mation of a curved path. The use of this approximation introduces
discretization errors. These errors are in addition to the ones from
the integration of the plasticity rate equations.

In order to show the robustness of the suggested exponential-
based formulation, all the outputs are compared with the results of
the classical forward Euler method. Lacking the exact solution of
the investigated problems, the classical forward Euler technique
with a very fine load step ��t=1
10−5 s� is used to produce
required exact solutions. As it is intended to get reasonable re-
sults, mechanical characteristics of a kind of carbon steel
�CS1026� is adopted. The material is considered to be stabilized
and no isotropic hardening is available. The general parameters of
stabilized CS1026 are as follows �Bari and Hassan 2000�:

E = 181,330 MPa; R = 106 MPa; � = 0.302

To avoid lengthening, only three different ratcheting models,
which are the most common ones, are chosen. The characteristics
for these models and the acronyms that are used in the numerical
presentations are as follows �Bari and Hassan 2000�:
1. Ch3: Chaboche model-three decomposed rule

Hkin,1−3 = 275,792/59,093/2,091 MPa

Hnl,1−3 = 16,330/653/7

2. Ch4T: Chaboche model-fourth rule with a threshold

Hkin,1–4 = 275,792/59,093/2,091 MPa

Hnl,1–4 = 16,330/653/9/4,082

ā = 28 MPa

3. OW: Ohno-Wang model-2 with 12 segments

Hkin,1–12 = 146,813/166,459/11,583/1,728/50,658/20,

919/15,973/10,094/3,939/1,135/450/919 MPa

Hnl,1–12 = 36,908/11,385/6,310/4,046/3,015/1,743/1,
004/478/241/97/41/16
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Stress Updating Examples

A biaxial nonproportional strain path is considered. The strain
components’ histories and the corresponding path are represented
graphically in Figs. 1 and 2. In these figures, the parameter �y0 is
the first yielding strain in a uniaxial loading history, i.e., �y0

=�3 /2�R /E�. All the other strain components are equal to zero.
The updated stress history corresponding to this strain history is
calculated with the new exponential-based method and also with
the forward Euler algorithm for the sake of comparison. The re-
sults are achieved using a practical load step size ��t
=0.0125 sec�. The nondimensional or relative error of the up-
dated stress is defined by the following equation:

En
� =

��n − �n
��

R
�85�

where �n
�=exact stress vector at time tn. Figs. 3–5 show the ac-

curacy of the exponential maps scheme in comparison with the
classical forward Euler method for three different nonlinear kine-
matic hardening models. The diagrams show that the proposed
exponential-based strategy gives a better approximation of the
updated stress. It must be mentioned that the assumed load step is
the largest one that allows the forward Euler method to converge.
As it can be seen in Fig. 5, in the Ohno-Wang hardening model,
even with this load step, the classical technique diverges. In order

Fig. 1. Strain components history for Path 1

Fig. 2. Strain Path 1
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to better investigate the rate of convergence of these algorithms,
the average total error is introduced as follows:

ET
� =

1

N�
n=1

N
��n − �n

��
R

�86�

where the parameter N=total number of the load steps. By adopt-
ing different size of the load steps, the total error is computed for

Fig. 3. Stress relative error of Path 1, Ch3, �t=0.0125 s

Fig. 4. Stress relative error of Path 1, Ch4T, �t=0.0125 s

Fig. 5. Stress relative error of Path 1, OW, �t=0.0125 s
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both schemes assuming the Ch3 kinematic hardening model. Af-
terwards, the results are plotted in Fig. 6. It is easy to find, in a
logarithmic space of this diagram, the relationship between the
total error and the number of substeps is linear. The slope of each
line represents the convergence rate of the corresponding proce-
dure. It shows that, although both algorithms have first order ac-
curacy, but the classical method will diverge with the large load
steps.

For a better demonstration of the performance of the new for-
mulation, another nonproportional strain history is considered.
This history and its path are presented in Figs. 7 and 8, respec-
tively. The accuracy of the suggested exponential maps scheme in
comparison with the classical forward Euler method is shown in
Figs. 9–11. Like the previous example, three different nonlinear
kinematic hardening models are considered. It is evident that the
updated stresses calculated by the new method have better accu-
racy.

At this stage, it is intended to test computation time for three
different integration algorithms. In a pointwise problem, the com-
putation time on a normal CPU for a single stress point is very
short. To give a measurable CPU time, the strain history of Fig. 1
is repeated 50 times with a total time of 350 s. For a convincible
demonstration, the formulation of backward Euler method, which
is an implicit algorithm and was presented comprehensively by
Kobayashi and Ohno �2002�, is also tested. The total error in all
three strategies is kept the same. Results are presented in Table 1.
The proposed algorithm requires the shortest computation time

Fig. 6. Stress total error of Path 1, Ch3

Fig. 7. Strain components history for Path 2
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and runs about 19% faster than the forward Euler method, which
is known as a rapid scheme. The longer CPU time of the back-
ward Euler method is due to its inherence iterative loops.

Strain Updating Examples

In these pointwise problems, the objective is to test the second-
order convergence rate of the elastoplastic consistent tangent,
through a Newton algorithm in a load-driven manner with the
iterative process. A biaxial nonproportional stress history is con-

Fig. 8. Strain Path 2

Fig. 9. Stress relative error of Path 2, Ch3, �t=0.0125 s

Fig. 10. Stress relative error of Path 2, Ch4T, �t=0.0125 s
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sidered as input, which is graphically represented in Fig. 12. In
addition, the corresponding stress path is shown in Fig. 13. All
other stress components are assumed to be equal to zero. The
strain history corresponding to this stress history is updated. The
results are obtained by the new exponential-based scheme and
also with the forward Euler algorithm that is used for assessment.
A practical time discritization with the size of �t=0.0125 s is
used. The nondimensional or relative error for the updated strain
can be defined by the following equation:

En
� = 2G

��n − �n
��

R
�87�

where �n
�=exact strain vector at time tn and �n=numerical solu-

tion. Figs. 14–16 show the accuracy of the exponential maps
formulation in comparison with the classical forward Euler
method for three different nonlinear kinematic hardening models.

Table 1. Efficiency of the Algorithms for 50 Cycles of the Strain Path 1

Algorithm

Step
per

second
Total
steps

CPU
time
�s�

Exponential maps, present study 50 17,500 3.42

Forward Euler, present study 80 28,000 4.08

Backward Euler,
Kobayashi and Ohno �2002�

80 28,000 10.43

Fig. 11. Stress relative error of Path 2, OW, �t=0.0125 s

Fig. 12. Stress components history for Path 1
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As it is clearly seen from these figures, better approximation of
the updated strain is computed by the exponential-based method.
To examine the rate of convergence, the relative Euclidean norms
of error in the Newton iterations for each time step are defined by
the following relation:

En
i =

��n
i − �n�

��n
1 − �n�

�88�

where �n and �n
i =convergence strain and its ith estimation in time

tn, respectively. To demonstrate the second-order convergence of

Fig. 13. Stress Path 1

Fig. 14. Strain relative error of Path 1, Ch3, �t=0.0125 s

Fig. 15. Strain relative error of Path 1, Ch4T, �t=0.0125 s
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tangent operators, which is used in the Newton method, the rela-
tive Euclidean norms En+1

i is presented in Tables 2–4 for succes-
sive iterations in two arbitrary times t=4 s and t=8 s for stress
Path 1 and assuming Ch3, Ch4T, and OW kinematic hardening
models. These tables show that the developed technique has a
quadratic convergence rate.

For a better demonstration of the performance of the new al-
gorithm, another stress history is considered. This history and its
path are presented in Figs. 17 and 18, respectively. The accuracy
of the exponential maps scheme in comparison with the classical

Table 2. Typical Convergence Value, the Relative Euclidean Norms for
Stress Path 1, Ch3

Iteration

t=4 s t=8 s

Present work Forward Euler Present work Forward Euler

1 1.0000
10+00 1.0000
10+00 1.0000
10+00 1.0000
10+00

2 1.9425
10−02 7.5063
10−03 1.7301
10−02 7.0197
10−03

3 6.9269
10−04 1.2485
10−04 6.5925
10−04 8.6491
10−05

4 1.5624
10−06 8.6073
10−08 1.0787
10−06 4.4021
10−08

5 1.3229
10−09 6.3856
10−10 8.0845
10−10 2.2237
10−10

Table 3. Typical Convergence Value, the Relative Euclidean Norms for

Iteration

t=4 s

Present work Forwar

1 1.0000
10+00 1.0000


2 1.9688
10−02 7.8751


3 3.2264
10−04 4.9188


4 1.4544
10−06 9.9829


5 6.8672
10−10 3.5754


Table 4. Typical Convergence Value, the Relative Euclidean Norms for

Iteration

t=4 s

Present work Forwar

1 1.0000
10+00 1.0000


2 3.1021
10−02 3.2216


3 1.0106
10−03 2.1634


4 5.6509
10−06 7.1581


5 7.9444
10−09 4.7867


Fig. 16. Strain relative error of Path 1, OW, �t=0.0125 s
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forward Euler method is shown in Figs. 19–21. Like the previous
example, three different nonlinear kinematic hardening models
are considered. It is clear that the updated strains calculated with
the exponential-based method have better accuracy.

The assumed multicomponent nonlinear kinematic hardening
models have the ability to predict ratcheting. In the following, an
example is presented to verify the facility of the new numerical
algorithm in predicting ratcheting. A broad set of the ratcheting
data, which includes uniaxial to complex biaxial ratcheting re-
sponses of the stabilized carbon steels, have been developed by
Hassan and Kyriakides �1994a,b�. The prescribed cyclic loading
history is shown in Fig. 22. This diagram involves the unsym-
metrical axial stress cycles with a mean stress �m=45 MPa and
an amplitude stress �a=220 MPa. The simulation for a single
stress-controlled hysteresis loop by the Chaboche model using
three decomposed rules �Ch3� is carried out. Forward Euler
method and the new exponential-based scheme, with a practical
load step of the size �t=0.01 s, are used and the results are
compared with the exact solution. As it was mentioned before, the
exact solution is computed by the classical forward Euler with
�t=1
10−5 s. Fig. 23 shows that the responses of the new nu-
merical strategy are very close to the exact solution, even with the

Path 1, Ch4T

t=8 s

Present work Forward Euler

1.0000
10+00 1.0000
10+00

1.7362
10−02 7.3051
10−03

4.5388
10−04 2.9991
10−04

1.5367
10−06 3.6325
10−07

9.9118
10−10 7.1873
10−09

Path 1, OW

t=8 s

Present work Forward Euler

1.0000
10+00 1.0000
10+00

1.3257
10−02 2.4345
10−03

1.9917
10−03 5.6377
10−05

8.9509
10−07 1.2599
10−07

1.0466
10−08 3.1633
10−09

Fig. 17. Stress components history for Path 2
Stress

d Euler

10+00

10−03

10−04

10−07

10−08
Stress

d Euler

10+00

10−03

10−05

10−08

10−10
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large considered load step. Moreover, stress versus plastic strain
relation computed with the exponential-based technique for 45
load cycles is shown in Fig. 24. It should be mentioned that in
stress-controlled problems, several stress updating calculations
are needed to get a converged solution. As the exponential map
method is more accurate in stress updating than the forward Euler
method, the improvement of the accuracy in stress-controlled ex-
amples is much higher than the strain controlled problems.

To verify the ability of the new developed numerical algorithm
to solve the different hardening models, the plastic axial strain at

Fig. 18. Stress Path 2

Fig. 19. Strain relative error of Path 2, Ch3, �t=0.0125 s

Fig. 20. Strain relative error of Path 2, Ch4T, �t=0.0125 s
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positive stress peaks of the uniaxial cycles are plotted and com-
pared with the experiment results �Bari and Hassan 2000�. Fig. 25
shows the solutions of Chaboche model, using three decomposed
rules with two different values for Hnl,3. The prediction of the
ratcheting, by the means of the Ohno-Wang kinematic hardening
model, is also shown in Fig. 26. To demonstrate the effect of
nonlinearity induced by the power qi on the ratcheting simula-
tions, three different values for this parameter, which are qi

=0.2 /0.45 /0.70, are considered. It is worth emphasizing that the

Fig. 21. Strain relative error of Path 2, OW, �t=0.0125 s

Fig. 22. Stress history for uniaxial ratcheting

Fig. 23. Stress-plastic strain relation for the first load cycle, Ch3,
�t=0.01 s
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smaller the value of the qi, the more nonlinear the decomposed
rules are. In other words, if this value decreases, the rate of the
ratcheting increases.

Mixed Type Control Example

A biaxial nonproportional strain history is considered. The non-
zero input strain components’ histories and the corresponding
path are represented graphically in Figs. 27 and 28. All the stress

Fig. 24. Stress-plastic strain relation calculated with the new pre-
sented method for 45 load cycles, Ch3, �t=0.001 s

Fig. 25. Axial plastic strain at positive stress peaks of uniaxial
cycles, Ch3, new presented method, �t=0.001 s

Fig. 26. Axial plastic strain at positive stress peaks of uniaxial
cycles, OW, new presented method, �t=0.001 s
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components not corresponding to the two controlled-strain com-
ponents are identically equal to zero. For the sake of comparison,
the updated stress and strain history are calculated with the new
exponential-based method and also with the forward Euler algo-
rithm. A load step with the size of �t=0.0125 s is considered.
The relative errors of updated stress, Eq. �85�, and also updated
strain, Eq. �87�, are computed for Ch3, Ch4T, and OW kinematic
hardening models. The results, which are illustrated in Figs.
29–34, show the performance of the exponential-based method.

Conclusions

The von-Mises yield function, in the small strain domain, along
with a class of multicomponent forms of nonlinear kinematic
hardening rules are considered in this study. Application of
exponential-based methods in integrating constitutive equations
for a class of cyclic plasticity models has been proposed. Further-
more, a detailed formulation is presented for the forward Euler
method to compare the results with the new exponential-based
technique. The consistent tangent operator for the exponential-
based algorithm and also for the classical forward Euler algorithm
is developed. This operator could be used to construct the stiff-
ness matrix of a structure and eventually guarantees the quadratic
rate of convergence for solving nonlinear simultaneous equations
in a finite-element analysis. A wide range of the numerical test is
carried out. As it was clearly shown, the exponential-based tech-
nique gives very accurate updated stress values that are consistent
with the yield surface. Without any doubt, this robustness of the

Fig. 27. Strain components history for mixed control example

Fig. 28. Strain path for mixed control example
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Fig. 29. Stress relative error for mixed control example, Ch3, �t
=0.0125 s
Fig. 30. Strain relative error for mixed control example, Ch3, �t
=0.0125 s
Fig. 31. Stress relative error for mixed control example, Ch4T, �t
=0.0125 s
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Fig. 32. Strain relative error for mixed control example, Ch4T, �t
=0.0125 s
Fig. 33. Stress relative error for mixed control example, OW, �t
=0.0125 s
Fig. 34. Strain relative error for mixed control example, OW, �t
=0.0125 s
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presented formulation would enable the analysts to enlarge the
time step in the process of the stress updating and significantly
reduces the computation time in the global finite-element analy-
sis.

Appendix I. Derivatives of Parameter Ai
c for Different

Kinematic Hardening Models

For Chaboche models which are presented in Eqs. �12� and �13�

�Ai
c

�en+1
= 0 �89�

For Ohno-Wang model-1 which is given in Eq. �14�:

�Ai
c

�en+1
= Hnl,iH	�nc�T �n,i

��n,i�
�H	�n,i

T �n,i −
3

2

Hkin,i

Hnl,i
�2� �nc

�en+1

�n,i

��n,i�

�90�

For Ohno-Wang model-2 which is presented in Eq. �15�

�Ai
c

�en+1
= Hnl,iH	�nc�T �n,i

��n,i�
�
 Hnl,i

Hkin,i
��n,i��qi �nc

�en+1

�n,i

��n,i�
�91�

For AbdelKarim-Ohno model which is given Eq. �16�:

�Ai
c

�en+1
= Hnl,iH	�nc�T �n,i

��n,i�
− �i�H	�n,i

T �n,i

−
3

2

Hkin,i

Hnl,i
�2� �nc

�en+1

�n,i

��n,i�
�92�

Appendix II. Derivatives Appeared in the Consistent
Tangent Operator of the Forward Euler Method

The required formulations for forward Euler technique are as fol-
lows:
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Appendix III. Derivatives Appeared in Consistent
Tangent Operator for the Exponential-Based Method

The following formulations are the derivatives needed for the
suggested strategy:
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