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This paper develops the optimal time-step ratio and the critical damping for nonlinear
structural analysis, when using dynamic relaxation method (DRM). The convergence
rate of the DRM depends on the value of the time step and the critical damping factor. In
the present study, the effect of the time-step ratio is separated from the time-step value.
Additionally, the effect of the eigenvalue on the error function is investigated. Using the
eigenvalue definition, the critical damping is updated in each dynamic relaxation (DR)
step to decrease the required computations. Moreover, the optimal time-step ratio is
calculated. It is also shown that the value of the constant time step has no effect on the
rate of convergence. The proposed procedure provides a simple and accelerated DRM,
which can be used in the linear and nonlinear analyses of structures. The efficiency of
the new method was verified by its application to a wide range of typical structures.
The results show that the suggested scheme accelerates the convergence rate of the DR
process.

Keywords: Nonlinear analysis; convergence rate; dynamic relaxation; time-step; critical
damping; iterative process.

Nomenclature

S = Stiffness matrix
P = Force vector
R = Residual force vector
M = Mass matrix

C, c = Damping matrix and damping factor
X, Ẋ, Ẍ = Displacement, velocity, and acceleration vectors
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τk, h = Time-step value
γ = Time-step ratio

εk = Vector of errors in displacement
λ, λi = Eigenvalue

1. Introduction

Using a simple, efficient, and stable algorithm is very important in the nonlinear
structural analysis. Explicit methods satisfy these needs better than the implicit
ones. Furthermore, the explicit techniques require less memory and eliminate round-
off errors. One of these tactics is the dynamic relaxation scheme, which converts a
static problem to dynamic one by assuming mass and damping terms. Bearing this
in mind, the low convergence rate is the most crucial difficulties in its application
to nonlinear analysis, which has to be overcome.

The mathematical basis of the dynamic relaxation method (DRM) is rooted
in the second-order Richardson method, which was presented by Frankel [1950].
Many researchers have used this method to analyze linear systems [Brew and Brot-
ton (1971); Bunce (1972); Cassell and Hobbs (1976); Wood (1971)]. In the 1980s,
Papadrakakis (1981), Underwood (1983), and Qiang (1988) extended the DRM
formulation and proposed relations to calculate the DR parameters automatically.
Subsequently, many papers have shown that the DRM is a powerful technique for
solving engineering problems [Hegyi et al. (2006); Kadkhodayan and Zhang (1995);
Kadkhodayan et al. (1997); Zhang et al. (1994); Zhang and Yu (1989)]. Munjiza
et al. [1996, 1998] presented a clear description of damping cases. They considered
the damping proportional to mass and stiffness and showed that, when the damping
matrix is 2M(M−1S)0.5, all modes are critically damped. Recently, Rezaiee et al.
investigated the dynamic relaxation scheme and its numerical integration [Rezaiee-
Pajand and Alamatian (2008a, b, c); Rezaiee-Pajand and Taghavian Hakkak (2006)].
Additionally, Kadkhodayan et al. [2008] suggested a modified time step.

A new and more general revision of the DR formulation is presented in this work.
It is worth emphasizing that the time effects will be separated into the time step in
the kth step and the time-step ratio. This formulation shows that the constant value
of the time step does not affect the convergence rate. The mass factor is applied in
a general form using the properties of diagonally dominant matrices. Consequently,
the optimal time-step ratio is found, and the effects of the lowest and the highest
eigenvalue are detected.

In addition, the critical damping for the DRM is evaluated. A simple iterative
method is combined with the DR algorithm to calculate the critical damping. It
will be shown that this new process converges much more quickly than the ordinary
algorithm that uses the Rayleigh principle. An alternative formulation of the DR
relations is established based on the idea of critical damping surfaces of Beskos and
Boley (1980). Finally, some numerical examples are solved to show the capability
of the formulation.
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2. Mathematical Bases

Structural analysis requires solving a system of equations. The equations are linear
or nonlinear and can be written in the following matrix form:

SX = P. (1)

In the nonlinear systems, the stiffness matrix S and the force vector P are related
to the displacement vector X. The dynamic relaxation method solves Eq. (1) by
transforming it into the dynamical space. To do so, the inertial and damping forces
must be added to Eq. (1):

MẌ + CẊ + SX = P. (2)

The velocity Ẋ and the acceleration Ẍ are approximated for the DR method by a
central finite difference about time tk. Based on Fig. 1, one can write the following
relations:

Ẋk+1/2 =
1

τk+1
(Xk+1 − Xk)

Ẋk =
1
2
(Ẋk−1/2 + Ẋk+1/2) (3)

Ẍk =
1
τk

(Ẋk+1/2 − Ẋk−1/2).

The mass matrix is usually diagonal and is related to the stiffness matrix and
the time step τk. The damping matrix is defined by C = c M, in which, c

is called damping factor. An iterative process is found by substituting Eq. (3)
into Eq. (2):

Xk+1 = Xk + αM−1Rk + β(Xk − Xk−1). (4)

For convenience, the τk and the τk+1/τk ratio are written as h and γ, respectively.
Other parameters are given below:

α =
2γh2

2 + ch
, β = γ

2 − ch

2 + ch
, Rk = P − SXk.

The stability and the speed of the convergence rate of the process (4) are related
to the values of α and β. Frankel [1950] gave some convergence conditions. He
expanded the Richardson technique and called it “the second-order Richardson

Fig. 1. The intervals of time in the finite difference.
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method.” This procedure can be achieved by using error function as εk = Xk −X∗,
in which X∗ is the exact solution.

εk+1 = εk − αGεk + β(εk − εk−1), G = M−1S. (5)

The G εk term in the second-order Richardson scheme is a system of difference
equations, whereas, in the DR method, the term is a system of linear equations.
By defining the error eigenfunction, Richardson converted the system of difference
equations into separate equations λεk, where λ is a diagonal matrix and involves
the eigenfunctions of G. It is clear that λ is the eigenvalue matrix of G in the DR
method. Consequently, Eq. (5) can be rewritten as:

εk+1 = [(1 + β)I − αλ]εk − βεk−1. (6)

Frankel related εk and εk+1 with the following linear equations:

εk+1 = E(α)εk, (7)

where E(α) is the coefficient matrix. The maximum value of the error is related to
the eigenvalues of the coefficient matrix. The eigenvalue matrix will be written as
ρ, and the following relations are derived:

εk+1 = ρεk, εk = ρεk−1 (8)

[ρ2
i − (1 + β − αλi)ρi + β]

(
εk

i

ρi

)
= 0. (9)

It is important to note that the minimum value of ρi, which satisfies Eq. (9), will
be achieved when the discriminant of the left term of Eq. (9) is zero. This leads to
the following equations:

∆ = (1 + β − αλi)2 − 4β = 0 or 1 + β − αλi = ±2
√

β. (10)

Frankel substituted λ1 and λn into Eq. (10), when the condition 0 < λ1 ≤ λi ≤ λn

was satisfied.

1 + β − αλ1 = +2
√

β and 1 + β − αλn = −2
√

β. (11)

For the optimal numerical convergence, the values of α and β should satisfy Eq. (11).
The following relations hold if the time step is constant:

λ1 =
2
h2

−
2
√

β
α2

h2
, λn =

2
h2

+
2
√

β
α2

h2
, β + 1 =

2α

h2
(12)

ρi =
1

2 + ch
[(2 − h2λi) ±

√
(2 − h2λi)2 − β(2 + ch)2]. (13)
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3. Previous Works

To derive c and h, others have presented some conditions on Eq. (12). For conve-
nience, only the best known relations will be presented in this section. Papadrakakis
[1981] assumed that h2λ1 and h2λn must be symmetric about 2, because the roots
of ρ are symmetric about h2λi = 2 coordinates. He derived h2 as follows:

h2 =
4

λn + λ1
. (14)

If λ1 in Eq. (12) is added to λn, then, Eq. (14) will result. On the other hand,
multiplying these eigenvalues yields another relation, which Papadrakakis presented
to calculate ch:

λn ∗ λ1 =
4
h2

(
1 − β

α2

)
=

(ch)2

h4
⇒ ch = h2

√
λn ∗ λ1. (15)

The combination of Eqs. (14) and (15) yields:

ch =
4
√

λn ∗ λ1

λn + λ1
. (16)

Papadrakakis suggested that the mass matrix is equal to the factor of the diago-
nal entry of the stiffness matrix. Bunce [1972] and Cassell and Hobbs [1976] used
Eqs. (14) and (16), such that their mass matrices differ from those of Papadrakakis.
Underwood [1983] assumed λ1 � λn and wrote Eqs. (14) and (16) in the following
approximate forms:

h2 ≤ 4
λn

, c ≈ 2
√

λ1. (17)

In the Underwood report, the mass is given as mii = (h2/4)
∑

j |sij |. By utilizing
mii =

∑
j |sij |, the maximum value of λn becomes one. This definition was applied

by Qiang [1988] and the following relations were obtained:

h2 =
4

1 + λ1
, ch =

4
√

λ1

1 + λ1
. (18)

All relations presented to this end have the same nature, and the remaining point
of Eqs. (14) and (16) is the effect of h. This paper will show later that the value
of h has no effect on the convergence rate, when the time step is constant. In other
words, the constant h acts only for the compatibility of the units in Eq. (2).

4. The Modified DR Formulation

To eliminate some of the drawbacks of DR, the effects of the time-step and the
time-step ratio are separated in the proposed formulation and new definitions of
the mass and damping matrices are given as below:

M = h2D, C = hcD, (19)
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where D is a diagonal matrix and a function of the stiffness matrix. Consequently,
Eq. (4) can be rewritten as follows:

Xk+1 = Xk + γ{αD−1Rk + β(Xk − Xk−1)}, α =
2

2 + c
, β =

2 − c

2 + c
. (20)

In this formulation, G is equal to D−1S. Taking γ = 1, assuming that the time step
is constant during the iterations, and taking into account the definitions of α and
β, Eq. (9) can be written in the following form:

f(ρi) = ρ2
i − α(2 − λi)ρi + β = 0

ξi = 2 − λi, ∆ = ξ2
i − 4β

α2
= ξ2

i + c2 − 4

ρi =
α

2
(ξi ±

√
∆).

(21)

The convergence rate is dependent on the maximum value of ‖ρ‖. The relation
between the norm of ρ and the damping factor, c, is presented in Fig. 2.

The uppermost and undermost curves respectively belong to the eigenvalues
farthest and nearest from 2. The convergence rate will increase if the largest differ-
ence between 2 and the eigenvalues decreases. If there is at least one λi = 2, the
undermost curve will reach the (2, 0) point. This is the only curve that exists for
the single DOF system. In other words, the SDOF system converges within the first
iteration when c equals 2.

It is worth emphasizing that 2 − λ1 is greater than λn − 2. Consequently, the
uppermost curve belongs to λ1. Although Frankel suggested such a great identifica-
tion, he assumed that λ1 and λn are symmetric about 2, which is not always true.
If they are symmetric about 2, then the curves related to λ1 and λn will coincide.
This case occurs just for the SDOF system. The uppermost curve shows the relation

Fig. 2. c − ‖ρ‖ curves.
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between ‖ρ‖ and c for a general structure. This function can be written as:

‖ρ‖ =




√
2 − c

2 + c
c ≤ ccr

ξmax +
√

ξ2
max + c2 − 4

2 + c
c ≥ ccr

ccr =
√

4λ1 − λ2
1,

(22)

where ξmax = 2 − λ1. The proposed method uses Eq. (22) to calculate the critical
damping. Further, the lowest eigenvalue is found via the power iteration scheme.
The new DR algorithm is presented in Sec. 5. The fastest convergence rate will be
obtained for the critical damping. Showing that, the number of the DR iterations
is calculated using Eq. (22). If ρ will be constant through the DR process, one can
write the following relation:

εj
i = ρiε

j−1
i , j = 1, . . . , k

‖εk‖ = ‖ρ‖k‖ε0‖ or ‖ρ‖k =
‖εk‖
‖ε0‖ =

√
(Xk − X∗)T (Xk − X∗)
(X0 − X∗)T (X0 − X∗)

= eA

k =
A

ln ‖ρ‖

(23)

Equation (23) gives the number of iterations, which is denoted by k. When the time
step is constant, the number of iterations is a function of the allowable error, the
initial error, the damping factor and the maximum value of |2 − λi|. The value of
the time step has no effect in this case. However, it is important to note that the
τk+1/τk ratio affects the total iteration numbers.

The discriminant of Eq. (21) is zero at the critical damping point. If the damping
factor is less than the critical one, then the error factor ρi is a complex number.
In such cases, the error factor changes with time, and the system becomes under
damped. The error factor of the first mode will be real if the damping factor is
greater than ccr. It is possible to choose ci (see Fig. 2) instead of ccr, such that
the ith mode converges critically. The modes with ξ > ξi have a real-error factor
and are over damped, whereas the other modes have complex ρj and are under
damped. Because a structure’s response is a combination of all modes, when c <

ccr, the response vector converges while under damped. The system will be over
damped if the damping factor is greater than cod. Although the damping state
cannot be defined firmly for any chosen ci, nevertheless, the first mode is governed
the system, and it is usually over damped when c > ccr. The first mode effect may
occasionally be eliminated in some load cases, and the response of the structure
converges critically using ci. In this situation, the number of required iterations will
increase if ccr is used.

The diagonal entries of matrix D are also required to be defined. These values are
obtained via Gerschgörin theorem and critical damping definition. Critical damping
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is presented by the system’s eigenvalues. On the other hand, the eigenvalues can
be bounded using Gerschgörin rule. Combination of these two relations gives the
artificial mass definition by Eq. (24). The more details are available in Appendix A.

dii =
ζ

4

∑
j

|sij |, ζ =
2sii∑
j |sij | ≥ 1. (24)

Bearing this in mind, Eq. (24) is more general than the previous similar ones. The
common DRM, which was suggested by Underwood [1983], is obtained by utilizing
ζ = 1.12.

5. The Proposed DR Algorithm

The critical damping is related to the lowest eigenvalue of G. It is usually calcu-
lated using the Rayleigh principle as λ1 = (XTSX)/(XTDX). Bunce [1972] noted
that the Rayleigh quotient typically gives an upper bound for λ1. This leads to
over damping of the first frequency mode. Therefore, the response of the structure
converges slowly. The simplest method for computing a better value for λ1 is the
power iteration given below [Krishnamoorthy and Sen (1991)]:

u1 = {1, 1, 1, . . . , 1}T


vk = Guk

λk = max(vk)

uk+1 = vk/λk

k = 1, 2, 3, . . .

(25)

The result of the power iteration converges to the dominant eigenvalue, λn. How-
ever, it is possible to choose the shift G− a I, such as a ≥ λn. With this shift, one
can calculate the lowest eigenvalue when the process (25) converges to λ1 − a. It
should be noted that the upper bound of λn is 4, and it is not necessary to cal-
culate “a.” Furthermore, the convergence rate depends upon the λ2/λ1 ratio. The
iteration method converges slowly if the first and second natural frequencies are
close to each other. Nevertheless, from a practical viewpoint, the power iteration
usually converges faster than the DR strategy. Therefore, this procedure can be
combined with the DR iteration to obtain a new algorithm. The proposed scheme
uses one step of the power method in each DR step to update the lowest eigen-
value. It should be noted, utilizing several steps of the power technique in each
DR step improves the value of λ1. However, this process increases the number of
computations sharply and decreases the total number of the DR iterations slightly.
In addition of using power iteration, the Rayleigh principle can be employed, too.
Comparing two obtained values for the lowest eigenvalue and selecting the minor
one leads to a better evaluation of critical damping. Furthermore, two parameters
ζ and ϕ are inserted into the strategy to control the value of the artificial mass and
damping. To this end, summing up all the propositions will lead to the suggested
DR algorithm, which is presented in Appendix B.
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It should be noted, comparing the outcomes of Rayleigh and power iteration
method, step (e) of the procedure (56), is sometimes effective. In other words, step
(d) of the power iteration usually gives a better evaluation of the lowest eigenvalue.
In this case, step (e) can be removed from the proposed procedure (56) to reduce the
computation efforts. It is reminded; there is no requirement to assemble the global
stiffness matrix in the common dynamic relaxation method. Because, the product of
SXk is used in the DR algorithm, and it is the vector of internal forces. This vector
is assembled when the elemental stiffness matrices are calculated. Similarly, the out-
come of Suk in the proposed tactic can be obtained without assembling the global
stiffness matrix. Consequently, the required CPU times for evaluation the critical
damping using the power iteration step and the Rayleigh principle are approxi-
mately the same. The suggested algorithm only requires additional memory storages
to keep two vectors Suk and uk.

The time step in the proposed DR algorithm is constant and equal to 1. Utilizing
this strategy, four dynamic relaxation procedures are on hand. In the first process,
the parameters ϕ and ζ are taken zero and 1.1, respectively. In addition, the power
iteration step is removed. Consequently, the common DRM is obtained, which is
proposed by Underwood (1983). This scheme is called M1 in present article. The
M2, M3, and M4 techniques use ϕ = 1 and ζ resulting from Eq. (24). In the M2
procedure, the lowest eigenvalue is evaluated using the Rayleigh quotient. On the
other hand, the lowest eigenvalue of the M3 method is calculated by the power
iteration. The M4 procedure utilizes all steps of the suggested process.

6. Alternative Formulation

The critical damping may also be found using an analytical technique. This is differ-
ent from the common DR formulation, which uses some assumptions and reasoning
with regards to the eigenvalues. Beskos and Boley (1980) presented the idea of criti-
cal damping surfaces. They provided two conditions to evaluate the critical damping
of a general dynamical system. This idea is extended to find the critical damping
of the DR procedure.

Some approximations are used in the common DRM. The first is the approxi-
mation of the derivatives of displacements using the finite difference method. The
second is the linear assumption for error changes. Using these assumptions, Eq. (2)
can be written as Eq. (26). For simplicity, when the time step is constant, one can
write the following matrix equation:[

M
1
h2

(ρ − 2I + ρ−1) + C
1
2h

(ρ − ρ−1) + S
]

εk = 0. (26)

This equation is similar to the one below, which governs the free oscillation of a
dynamical system:

[Mλ2 + Cλ + S]X0eλt = 0. (27)
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In other words, the DR system converts to a free oscillation one by transferring
from the displacement space to the error space. The non-zero responses for Eqs. (26)
and (27) can be achieved, when the determinate of the coefficients matrix will be
zero.

P (ρ) = det
[
M

1
h2

(ρ − 2I + ρ−1) + C
1
2h

(ρ − ρ−1) + S
]

= 0. (28)

Assume that M = h2D and Gεk = λεk, Eq. (28) can be replaced by the following
one:

P (ρ) = det
[
(ρ − 1)2

ρ
+ D−1C

ρ2 − 1
2ρh

+ λ

]
= 0, (29)

where ρ is one of the diagonal members of the matrix ρ. P (ρ) is the characteristic
polynomial of Eq. (26). When the structure is under damped, ρi is a complex
number. If the system is over damped, then all components of ρ will be real numbers.
Based on this discussion and the ideas set forth by Beskos, ρ is written in the
following complex form:

ρ = ρr + id, ρr, d ∈ R, i =
√−1. (30)

One can apply the Taylor’s series for P (ρ), about the point (ρr, d = 0):

P (ρ) = P (ρr, id) = P (ρr, 0) + id
∂P

∂ρ

∣∣∣∣
(ρr ,0)

+
1
2!

(−d2)
∂2P

∂ρ2

∣∣∣∣
(ρr ,0)

+
1
3!

(−id3)
∂3P

∂ρ3

∣∣∣∣
(ρr ,0)

+ · · · = 0. (31)

If the real and imaginary parts are all together zero, then Eq. (31) is identically
zero. 


P (ρr, 0) − d2

2!
∂2P

∂ρ2

∣∣∣∣
(ρr ,0)

+ · · · = 0

∂P

∂ρ

∣∣∣∣
(ρr ,0)

−d2

3!
∂3P

∂ρ3

∣∣∣∣
(ρr ,0)

+ · · · = 0.

(32)

In the critical and over damped cases, some eigenvalues or all of them are real num-
bers. Consequently, to achieve the critical damping, one can cancel the imaginary
part of ρ. When d = 0, Eq. (32) is converted to the following form:


P (ρr, 0) = 0

∂P

∂ρ

∣∣∣∣
(ρr ,0)

= 0.
(33)

In general, it is difficult to solve Eq. (33) because the damping matrix has to be
constructed using q elements of cj . In the q-dimensional cj coordinates, Eq. (29)
presents some curves for the critical or the over damped cases [Beskos and Boley
(1980)]. On the other hand, it is easy to solve Eq. (32) in the DRM because the
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damping matrix has one parameter, and it is related to the mass matrix. Using the
definition (19), the characteristic polynomial can be written as follows:

P (ρ) = det
[(

(ρ − 1)2

ρ
+ c

ρ2 − 1
2ρ

)
I + λ

]
= 0. (34)

Therefore, the necessary conditions for the critical damping are given below:


∣∣∣∣
(

(ρ − 1)2

ρ
+ c

ρ2 − 1
2ρ

)
I + λ

∣∣∣∣ = 0

∂

∂ρ

∣∣∣∣
(

(ρ − 1)2

ρ
+ c

ρ2 − 1
2ρ

)
I + λ

∣∣∣∣ = 0.

(35)

The first relation in Eq. (35) is the same as the following one:

(ρi − 1)2

ρi
+ c

ρ2
i − 1
2ρi

= −λi, (36)

where λi is the ith eigenvalue of G. The second relation of Eq. (35) means that
the slope of the characteristic polynomial must be zero. In other words, at least
one ρi must have a repeated root. Thus, in the critical damping, the discriminant
of Eq. (36) is equal to zero, and ccr is given by Eq. (22). Recalling that, one can
substitute definition (30) into Eq. (36) and finds the same result:

(ρr + id − 1)2

ρr + id
+ c

(ρr + id)2 − 1
2(ρr + id)

= −λi. (37)

Separating the real and the imaginary parts of Eq. (37), two relations are obtained
as follows:{

ρ3
r(2 + c) − 2ρ2

r(2 − λi) + ρr[d2(2 + c) + (2 − c)] − 2d2(2 − λi) = 0

ρ2
r(2 + c) + d2(2 + c) − (2 − c) = 0.

It is clear that d is zero in the critical damping case, and based on that, the following
relations can be derived:{

ρ2
cri(2 + c) − 2ρcri(2 − λi) + (2 − ccri) = 0

ρ2
cri(2 + ccri) − (2 − ccri) = 0.

(38)

The maximum value of ‖ρ‖ defines the convergence rate. This condition can be
added to Eq. (38) as an objective function. As a result, the following nonlinear
optimization program can be established:


maxi ρ2

cri

ρ2
cri(2 + c) − 2ρcri(2 − λi) + (2 − ccri) = 0

ρ2
cri(2 + ccri) − (2 − ccri) = 0

(39)

Specifically, Eq. (38) gives n damping cases with (ccri, ρcri) coordinates. Among
them, the critical case maximizes the value of the error. Therefore, if Eq. (39) is
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solved simultaneously, the following relations result:


ccr =
√

λ1(4 − λ1)

ρcr =
2 − ccr

2 − λ1
=

√
2 − ccr

2 + ccr
.

(40)

Once again, Eq. (22) is proven correct. The alternative formulation gives the same
value for the critical damping as that using the common method.

7. The Time-Step Ratio

The modified DR method with a constant time step was presented in Sec. 4, and
the effect of a variable time step will be evaluated here. For this purpose, taking
into account Eq. (20), the error relation has the following form:

f(ρi) = ρ2
i + αγ(2 − λγi)ρi + βγ = 0, (41)

where new parameters are defined as below:

αγ =
1 + βγ

2
, βγ = γβ, λγi = γ

α

αγ
λi. (42)

Based on the new method of Sec. 6, one can evaluate the critical damping by solving
the following nonlinear programming:


min

(
max

i
ρ2

i

)
ρ2

i (2 + ci) − ρi[2γ(2 − λi) + (2 + ci)(1 − γ)] + γ(2 − ci) = 0

ρ2
i (2 + ci) − γ(2 − ci) = 0

(43)

There are i = 1, 2, . . . , n damping cases for a specific value of γ. Among them, one
case has the maximum value of ‖ρ‖. It should be noted that comparing ‖ρ1‖ and
‖ρn‖ usually gives maxi ρ2

i . If γ changes, the value of maxi ρ2
i will change, too. The

optimal time-step ratio will be in hand when maxi ρ2
i reduces to a minimum. The

error ratios and the damping factors at the extremum points are as below:

ρi =
αγ

2
(ξγi ±

√
∆), ξγi = 2 − λγi, ∆ = ξ2

γi − 4
βγ

α2
γ

(44)

ci =
1

(γ + 1)2
{4γ

√
λi[2 + γ(2 − λi)] − 2(γ − 1)(γλi − γ − 1)}. (45)

Although Eqs. (21) and (44) are alike, it must be noted that λγi is a function
of λi, γ and the damping factor. As a result, the norm of the error ratio here is
more complicated than that in Sec. 6. Consequently, the effect of γ is shown via
an example. The functions of ‖ρ‖ for λ1 = 0.5, λn = 3, γ = 0.8, 1, 1.2, and 1.4
are plotted in Fig. 3. According to Fig. 3, if γ increases, the curves related to λ1

and λn will move down and up, respectively; i.e., when γ is less than 1, the curve
corresponding to λ1 moves up, and the minimum value of ‖ρ‖ increases. As a result,
the number of iterations will increase. By increasing γ from 1, the minimum value
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Fig. 3. c − ‖ρ‖ curves for variable time step.

of ‖ρ1‖ decreases and min ‖ρn‖ increases. Moreover, if γ ≥ 1 increases, then the
number of required iterations will decrease until the minimum value of ‖ρ1‖ and
‖ρn‖ will be the same. After that, λn is a determinative factor in the error ratio,
and the rate of convergence decreases. It is clear that γ can vary until the minimum
point of ‖ρ‖ satisfies the condition of ‖ρ‖ < 1. Otherwise, the DR process will
diverge. Based on this discussion, the optimal time-step ratio can be calculated
when the damping ratios related to λ1 and λn are the same.

c|λ=λ1 = c|λ=λn

λ1

λn

√
2(γ + 1)

λ1
− γ −

√
2(γ + 1)

λn
− γ =

1
2

(
1 − λ1

λn

)
(1 − γ).

(46)

In the SDOF system, for which the lowest and the highest eigenvalues are the same,
Eq. (46) is satisfied for any value of γ. Using the formulation of Sec. 4, there is no
requirement for iteration, and the DRM converges in the first step. As a result, the
time-step ratio is meaningless for the SDOF system.

For multi-DOF systems, it is difficult to solve Eq. (46), and λn must be found.
While later on, the effect of γopt on the iteration reduction will be given numer-
ically, it is worth emphasizing, the required computations are very expensive and
improvement of the total number of iterations is not considerable.

When λn 
 λ1, using the Underwood time step (γ2
opt = 4/λn) gives good results,

but is not the optimal value. It is remembered, Kadkhodayan et al. [2008] have
tried to find the optimal time step numerically. They have suggested minimizing
the square value of the residual force as below:

RFF =
ndof∑
i=1

(rk+1
i )2 =

ndof∑
i=1

(rk
i − τk+1ḟk+1

i )2, (47)
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where ḟk+1
i is the internal force increment of ith degree-of-freedom at the midpoint

of the artificial time step. This parameter has the following relation:

ḟk+1
i =

ndof∑
i=1

sij ẋ
k+1/2
i . (48)

It should be noted that the (k + 1)th time step is sometimes a very large or a
very small number, and in this case, the process may be numerically unstable.
Therefore, the time step should be limited by experimental values. If the time-step
ratio is used, as proposed in the present article, this deficiency is eliminated. By
using the formulation of Sec. 4, one can calculate the optimal time-step ratio in the
kth step as follows:

γk =
(AT Rk)
(AT A)

, A = S(αD−1Rk + β∆Xk). (49)

Numerical experiences indicate that, if one uses a good evaluation of the critical
damping suggested by procedure (56), the Kadkhodayan’s scheme will not be very
effective. Another way of finding the optimal τk+1 was given by Alamatian (2007).
He minimized the square of the residual energy by the following expression:

Πr =
ndof∑
i=1

(∆xk+1
i rk+1

i )2 = (τk+1)2
ndof∑
i=1

[ẋk+1/2
i (rk

i − τk+1ḟk+1
i )]2. (50)

To find the optimal time step from this function, minimal conditions must also be
satisfied. This scheme improves the convergence rate within a few initial iterations.

8. Numerical Examples

Five structures have been chosen to be solved by the new algorithm to verify the
validity and the merit of the proposed scheme numerically.

8.1. Rod structure

Figure 4 shows a single degree of freedom structure. The geometric properties of
the structure are: H = 1 in (0.0254m) and L0 cosφ = 100 in (2.54m). The value of
section area and the modulus of elasticity for rod are 1 in2 (6.4516 ∗ 10−4 m2) and

Fig. 4. TR1 structure.
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107 lb/in2 (68947.58MPa), respectively. The stiffness of spring also is K = 6 lb/in
(1.0508KN/m). A vertical load, P = 1 lb (4.4497N), is applied to the system, and
then it increases using the load factor. The maximum value of λ is 24.

It should be noted, the D matrix in this example is equal to S11/2 and the
eigenvalue of G is 2. Based on these data, the critical damping for this struc-
ture is ccr =

√
λ1(4 − λ1) = 2. It must be emphasized that ccr is an exact value.

Consequently, the proposed algorithm is converged in the first step for the linear
analysis. To show the capability of the suggested tactic, a nonlinear analysis is also
performed. Figure 5 illustrates the load–displacement curve of the structure. It is
worth emphasizing, the results are in good agreement with the other researcher’s
findings [Crisfield (1997); Tatar (2002)]. According to Fig. 5, it can be seen that
extreme nonlinear behavior can be easily traced with the proposed algorithm.

8.2. Truss TR2

In the most cases, the first mode governs the system responses. However, in some
special cases, the effect of the first mode may be eliminated. In these cases, employ-
ing the relation (22) does not present the critical damping. The main aim of this
example is studying one of these special cases. To fulfill the goal, the structure
TR2, which is shown in Fig. 6, is considered. It is a 9-DOF truss. This structure
is subjected to two kinds of loads. The two loading cases are shown in Figs. 6(c)
and 6(d). The truss element properties are A = 1, E = 10, and P = 0.1.

TR2 is analyzed for different values of the damping factor. The final error of the
residual force is 10−6. The dots in Fig. 7 show the number of iterations for both
load cases.

According to Fig. 7, each loading case has also its own critical damping. Further-
more, the relation (23) predicts the number of iterations for loading 2. However, this
is unsuitable for loading 1. To find the reason behind this behavior, the relations
between damping factor and ‖ρ‖ for all modes of the dynamic relaxation system
are shown in Fig. 8.

Fig. 5. The responses curves of TR1.
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(a) (b)

(c) (d)

Fig. 6. Truss TR2: (a) X–Y view, (b) X–Z view, (c) Loading 1 and (d) Loading 2.

Fig. 7. The number of iterations for TR2.
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Fig. 8. The c − ‖ρ‖ curves for TR2.

Figure 8 shows the corresponding critical damping with the first mode is 1.23.
This value is the critical damping of loading 2. On the other hand, the critical
damping factor of loading 1 is defined by the second mode and equals to 1.9. In
particular, the loads in Fig. 6(c) are the special case for which X0 is a zero vector.
Some displacements are zero (equal to the initial displacements) and, therefore,
do not need any iteration. As a result, if a non-zero initial displacement vector
is utilized, the critical damping factor 1.23 is found. To show this special result,
the structure in Fig. 6(c) is analyzed with zero and identity initial displacement
vectors. Figure 9 shows the required number of iterations for the first loading case

Fig. 9. The number of iterations for TR2 subject to loading 1.
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and proves the expected topic. In other words, for most loading cases, Eq. (22) will
give the correct value of the critical damping. It is interesting to note, using the
Rayleigh principle, the convergence rate will increase in loading 1 analysis, because
the displacement vector is swayed by the dominant mode.

8.3. Tower truss

The TR3 is a 48-DOF tower truss structure as shown in Fig. 10. The section modulus
of elasticity for this tower is 2 ∗ 1010. The areas of all sections are the same and
equal to 0.01. The common DR method, presented in Eq. (4), is applied to solve
this truss. For this structure, the effect of the time step will be studied.

Three time steps, 0.5, 1, and 2, are chosen to run the DR process. The number of
iterations and curves related to Eq. (23) are plotted on Fig. 11 for these time steps.
When h is 1, the lowest and the highest eigenvalues of G are 0.0115 and 3.4137,
respectively. In this case, the criterion (17) shows that h ≤ (2/

√
λn) = 1.0825.

Based upon this condition, it is not proper to choose h = 2. It is interesting to
know, when h is 2, the analysis gives the same results. Because, the value of h does
not affect the convergence rate, when the time-step ratio is 1.

8.4. The dome truss

The geometry and the loading of this structure are shown in Fig. 12. Its modulus
of elasticity and the area of its sections are 2.1 ∗ 104 and 450, respectively.

Fig. 10. The tower truss.
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Fig. 11. The number of iterations related to c based on Eq. (4).

(a) (b)

Fig. 12. The TR4 structure: (a) X–Y view and (b) X–Z view.

When TR4 is analyzed by the proposed iterative procedure (56), the damping
factor converges to c = 0.14, which is the critical damping factor. Showing this, the
mentioned truss is analyzed using different values of damping factors. The number
of required iterations corresponding with c is shown in Fig. 13(a). On the other
hand, the critical damping based on the Rayleigh quotient and exact displacements
becomes 0.26. In fact, about a 47% increase in the number of iterations will result
from using the Rayleigh quotient. The convergence curves of ‖Xk‖ for c = 0.05,
0.14, and 0.26 are plotted in Fig. 13(b). These curves show the under-damping,
critical, and over-damping cases.
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(a) (b)

Fig. 13. Analysis of the dome truss: (a) The c–k curve and (b) convergence curves.

Fig. 14. Nonlinear response of the dome truss.

This dome structure has a vicious nonlinear behavior. The suggested dynamic
relaxation technique can trace this behavior until the load limit state. Figure 14
shows the deflection of top-point of the structure when the maximum value of load
is 9000. The aforementioned figure also shows the near exact solution that is found
by employing a displacement control method and a fine incremental deflection. It
is worth emphasizing, the jump in the response curve is rooted in the incremental
load method. The process of finding the lowest eigenvalue does not affect this phe-
nomenon. In other words, the proposed dynamic relaxation procedure can find the
DR parameters even in the case of the structural stiffness changes rapidly.

8.5. Building frame

A six-story moment resistance frame is analyzed in this example. Two linear and
nonlinear behaviors will be studied. Figure 15 shows the geometry of this structure
and its loading. The section properties are presented in Table 1.
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Fig. 15. Frame structure.

Table 1. The properties of sections and material.

Section Member Story A I E

C1 Column 1, 2, 3 76.13 25470 2 ∗ 106

C2 Column 4, 5, 6 66.45 21230
B Beam All 58.84 15610

The p–δ curve for the horizontal displacement of the sixth story is plotted in
Fig. 16. Alamatian (2007) analyzed this structure, and the results for linear and
nonlinear solutions shown by Fig. 16 are the same as those obtained by Alamatian.
Analyzing this frame with nonlinear behavior clearly indicates that the ability of the
proposed technique can give the critical damping, even when the stiffness changes.

8.6. Comparison study

A comparison of the proposed process and the common DR method is presented
for both the linear and nonlinear analyses of the aforementioned structures. TR2 is
analyzed subjected to loading case 1. In the nonlinear analysis, the load step is 0.1
of the final value. The time step is constant and equal to 1, and the admissible
error for the residual force is 10−4. The total numbers of iterations of the common
DRM are presented in Table 2 by kM1. The percentage of the reduced iterations of
method M2 respect to the M1 process is calculated. The techniques M3 and M4 are
also compared with M2 and M3 procedures, respectively. The percentages of the
reduced CPU time of running the new methods are also calculated in the similar
manner. All outcomes are inserted in Table 2.
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Fig. 16. The p–δ curve.

Comparing the M2 and M1 methods shows that using the mass definition of
Eq. (24) decreases the number of iterations in the small structures. However, this
process does not have too much effect for the large systems. On the other hand,
studying the outcomes of methods M3 and M4 confirm the advantage of M3, espe-
cially for large structure. In other words, employing the power iteration step in M3
tactic instead of the Rayleigh principle in the M2 process reduces the total num-
ber of iterations too much. The system TR2 subject to loading 1 is a special case
that the first mode is not effective in the structural response. As it is discussed in
Sec. 8.2, using the Rayleigh principle is better than the power tactic in this system.
It is reminded, the method M4 compare the value of Rayleigh’s ratio and the result
of power iteration step and utilizes the minor one. In the case of the critical damp-
ing of M2 is greater than M3, utilizing the strategy M4 is not also efficient in the
analysis TR2. Table 2 shows that, in comparison with M3, utilizing the process M4
does not always decrease the total number of iterations.

The same conclusion can be obtained by studying the reduced duration time
when the M2, M3, and M4 methods are utilized. It should be noted that the analysis
time of a linear small structure is very little and sensitive. In general, the nonlinear
analyses require appreciable times to run. Consequently, a deduction based on the
CPU time of the nonlinear analyses is more valuable. Comparing the outcomes of
nonlinear analyses show that required time is approximately proportional to the
utilized iterations. As a result, using a better evaluation of the critical damping for
the large structures appreciably decreases the time and the iterations necessary for
convergence. The combination of the iterative procedure and the Rayleigh method,
in method M4, can sometimes help the analyzer to achieve this goal.

Table 2 shows that employing the tactic M4 for the mentioned frame struc-
ture causes a considerable improvement. To find the reason behind this fact, the
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(a) (b)

Fig. 17. The curves of damping factors: (a) dome truss and (b) frame structure.

variations of damping factor over the DRM iterations are shown in Fig. 17 for frame
and also dome structures. Three tactics M1, M2, and M3 are considered. As it is
shown in the mentioned figure, the optimized mass in the M2 tactic, instead of M1,
has no appreciable effect on the critical damping for these structures. On the other
hand, using the power iteration step for the M3 method presents a better evalua-
tion of the critical damping. Figure 17 also shows that the result of the Rayleigh
quotient is less than the outcome of the power tactic for a few steps. These steps
for the foregoing frame system are more than the dome structure. In other words,
the effectiveness of the procedure M4 is different from one structure to another one.
Although, comparing the results of the Rayleigh quotient and the power tactic is
not usually effective but its elimination does not decrease the CPU time.

8.7. The effect of the time-step ratio

In order to study the effect of the time-step ratio, the TR2 to TR4 trusses are
analyzed. The exact values of λ1 and λn are used to calculate γ, and the critical
damping. These values are presented in Table 3. The number of iteration versus
values of γ is also given in Table 3. The results show that the required computations
are very expensive and also the analysis improvement is not significant.

In the following, the effect of the time-step ratio is studied for the TR4 structure.
The dome truss is analyzed based on the formulation of Sec. 7, and the curves of
‖Xk‖ are plotted for different values of γ in Fig. 18. The value of the error ratio is

Table 3. The number of iterations for TR2 to TR4.

No. of Iterations

Truss λ1 λn γopt Eq. (45) ccr|γ = 1 ccr|γopt γ=1 γopt Eq.(45) γopt =
q

4
λn

TR2 0.4317 3.4050 1.05 1.24 1.29 9 9 9
TR3 0.115 3.4137 1.30 0.214 0.485 191 181 183
TR4 0.0049 3.3941 1.32 0.14 0.42 275 252 260
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Fig. 18. The effect of γ on convergence.

calculated from Eq. (44), and is shown in this figure. The critical time-step ratio for
this structure is approximately 1.41. The value of ρ is 0.93, when the value of the
time step is constant. It is clear that the values of γ ≥ γcr cause diverging. If one
uses the time-step ratio very near to the critical value, the numerical process will
diverge. As a result, to solve a system with variable time step, the analyzer should
calculate the exact value for γopt or an approximated value that is less thanγopt.
The reason is that the optimal time-step ratio becomes close to the critical one.

9. Conclusions

In this paper, the effect of time is divided into two components. These parts are the
kth time step and the time-step ratio. It is shown that the value of the constant
time step does not affect the convergence rate. On the other hand, the optimal
time-step ratio is less than 2 and greater than or equal to 1, and within these
bounds, there is a critical value. If one chooses a time-step ratio very close to the
critical one or greater than it, the process will diverge. The time-step ratio less
than 1 does not cause divergence. As discussed earlier, it decreases the convergence
rate. When the time-step ratio is less than the optimal one, the lowest eigenvalue
will govern the convergence rate. For the optimal time-step ratio, the effects of the
lowest and the highest eigenvalue in the error function are the same. Aside from
these cases, the convergence rate will be affected by the highest eigenvalue.

In addition, the critical damping for the DRM is computed and is related to the
lowest eigenvalue, when the time step is constant. One step of the power method is
combined with the DR algorithm to evaluate the critical damping. This new process
converges much faster than the ordinary process that uses the Rayleigh principle.
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If one applies a good measure of the critical damping, using a variable time step
is not required, because the optimal time-step ratio is close to the critical one and
the required computation for the optimal value is expensive. In other words, the
optimal time-step ratio will not considerably reduce the total number of iterations.

Appendices

Appendix A: Finding the artificial masses

The critical damping equation is a half-circle in the λ–c coordinates. The center of
the circle is located at the (2, 0) point with a radius of 2. The damping factor is not
zero for the DR procedure, and as a result, all eigenvalues satisfy the 0 < λ < 4
condition. It must be noted that 2−λ1 is greater than λn − 2. This simplicity gives
the following condition:

λ1 + λn ≤ 4. (51)

If λn governs the error, the condition λ1 +λn ≥ 4 should be satisfied. This condition
is in conflict with 0 < λ < 4 condition. Therefore, the lowest eigenvalue governs
the error when the time step is constant. On the other hand, the condition 0 <

λ1 + λn ≤ 4 satisfies the convergence of the DR process. This condition shows that
λn must be less than 4. It is possible to calculate the upper bound of the highest
eigenvalue by Gerschgörin theorem as shown follows:

|λi − gii| ≤
∑
j �=i

|gij | ⇒ λn ≤
∑

j

|gij | =
1
dii

∑
j

|sij |. (52)

Based on this equation and the λn < 4 condition, dii can be expressed in one of the
following forms:

dii >
1
4

∑
j

|sij | or dii ≥ 1
4

∑
j

|sij |. (53)

Using the equality sometimes satisfies the convergence condition. However, the
inequality condition is occasionally an urgent need. Researchers have typically sug-
gested a factor greater than one. For example, Underwood (1983) proposed a factor
equal to 1.12 to ensure stability. Alamatian (2002) found that this factor can be
changed from one structure to another. Another condition can also be constituted
when S is a diagonally dominant matrix. The S is diagonally dominant if the fol-
lowing conditions are held:

|sii| >
∑
j �=i

|sij | or 2sii >
∑

j

|sij |. (54)

By combining Eqs. (54) and (52), the following relation for the diagonally dominant
matrices can be found:

dii =
sii

2
. (55)
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It should be reminded that Alamatian (2007) gave this definition by another formu-
lation. Based on this discussion, dii will be expressed in a general form as follows:

dii =
ζ

4

∑
j

|sij |, ζ =
2sii∑
j |sij | ≥ 1.

Appendix B: The suggested DR algorithm

(a) Assume k = 0,Xk = ∆Xk = 0 and uk = {1, 1, 1, . . . , 1}T

(b) Compute SXk,Suk, dii =
ζ

4

∑
j

|sij |, and Rk = P − SXk

(c) Calculate Rk = P − SXk, if ‖Rk‖ ≤ εr then STOP

(d) vk = [G − aI]uk = D−1Suk − auk, λk = max(vk),uk+1 = vk/λk, λk
1 = λk + a

(e) λk
R =

XkT
SXk

XkTDXk
, if λk

R < λk
1 ⇒ λk

1 = λk
R

(f) ck =
√

4λk
1 − ϕ(λk

1)2

(g) ∆Xk+1 = αD−1Rk + β∆Xk, α =
2

2 + ck
, β =

2 − ck

2 + ck

(h) Xk+1 = Xk + ∆Xk+1

(i) if ‖∆Xk+1‖ ≤ εx then STOP

(j) k = k + 1, GOTO b

(56)
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