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ACCURATE SOLUTIONS FOR GEOMETRIC NONLINEAR
ANALYSIS OF EIGHT TRUSSES#

M. Rezaiee-Pajand and A. R. Naghavi
Department of Civil Engineering, Ferdowsi University of Mashhad,
Mashhad, Iran

This paper investigates the analytical solution to eight individual trusses. They are
two- and three-dimensional structures. In addition, explicit expressions for the tangent
stiffness matrix, critical loads, bifurcation points and limit points as well as equilibrium
paths are also assessed. Necessary discussions are provided for different values of
effective parameters. As a final objective, the validity of the results obtained by the
analytical method is verified by the numerical arc-length technique.

Keywords: Bifurcation point; Critical point; Eigenvalue; Equilibrium path; Explicit solution; Limit
point; Stability; Tangent stiffness matrix.

INTRODUCTION

Nonlinear solutions are usually carried out through numerical analysis.
Various techniques are available to trace the equilibrium path. Among these, the
arc-length method is one of the most robust techniques at hand (Bashir-Ahmed
and Xiao-Zu, 2004). However, this method still lacks the ability to analyze certain
structures. For example, when encountered with structures, which are unstable at
the initial state, the arc-length method fails to provide an acceptable solution.
In order to overcome this deficiency and attain an effective analysis technique
for trusses, Toklu took advantage of the local search method (Toklu, 2004).
This method has the ability to trace any variation of the equilibrium path and
can take into account both geometrical and material nonlinearity. However, the
computational costs of such analyses are extremely high.

A lot of investigation has been carried analytically in the area of large
deformation. Due to space constraint, only a few of the related studies are briefly
mentioned here. Ji and Waas determined the exact critical load of a sandwich beam
based on the classic theory of elasticity (Ji and Waas, 2007). Pi et al. evaluated
the critical load of a curved beam with semi-rigid supports (Pi et al., 2008). Vega-
Posadal et al. analyzed the large deformation and post-buckling behavior of a beam
with semi-rigid supports (Vega-Posadal et al., 2007). The effect of the longitudinal
stress gradient on elastic buckling of thin homogeneous plates with various support
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ACCURATE SOLUTIONS FOR GEOMETRIC NONLINEAR ANALYSIS 47

conditions was considered by Yu (Yu and Schafer, 2007). Oztorun utilized elements
with six degrees of freedom at each node to analyze spatial structures (Oztorun,
2006). In his method, the stiffness matrix of the element can be exactly determined.
Luo et al. took advantage of the transformation matrix to explicitly obtain the
tangent stiffness matrix and the equilibrium condition (Luo et al., 2007). Pederson
proved that in order to determine the tangent stiffness matrix based on Green’s
strains, there is no need for numerical integration and an explicit solution can be
obtained (Pedersen, 2006). Kress et al. resolved the exact characteristic equations
for a two-dimensional beam with large deformations (Kress et al., 2006).

Many effective numerical techniques have been developed up to this date and
are widely used for nonlinear analysis. However, the pursuit of exact analytical
solutions is still in progress. In 2006, Ligaro and Valvo managed to analyze
pyramidal trusses and found closed-form solutions (Ligaro and Valvo, 2006).
Such problems and their solutions not only have curricular significance, but can
also be treated as benchmark problems. Future researches and their formulations,
related computer programs and numerical findings can initially be verified via these
benchmark problems. This study is concentrated on analytical solutions of eight
geometrically nonlinear trusses.

POTENTIAL ENERGY FUNCTION OF A STRUCTURE

If the potential energy function of a small structure is explicitly determined
in terms of its nodal displacements, the equilibrium equations and the tangent
stiffness matrix would be attainable. Afterwards, the equilibrium path, critical load
values, secondary equilibrium paths, and other properties can also be obtained. The
potential energy function of a structure is defined in the following form (Felippa,
1999):

� = U − V (1)

where � and U are respectively the potential energy and strain energy functions
of the structure and V is the potential energy function of the applied loads. The
potential energy function of the applied loads, V , is obtained using the following
equation:

V = p�q�T �u� (2)

In this equation, p is loading factor, q is the constant load vector and �u� is
the nodal displacement vector. For a total Lagrangian formulation, the Green–
Lagrange strains and the second Pialo–Kirchhoff stresses are employed (Crisfield,
1991). For a single truss element, the Green–Lagrange strain is uniform throughout
the element and will attain the following value (Felippa, 1999):

e = L2 − L2
0

2L2
0

(3)
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48 REZAIEE-PAJAND AND NAGHAVI

where L and L0 are the current and initial length of the element, respectively. The
current length is calculated according to the nodal displacements which will lead to
the strain energy as follows:

U = 1
2
A0EL0e

2 = A0E

8L3
0

�L2 − L2
0�

2 (4)

In the above equation, A0 is the cross-section of the element at the beginning of the
analysis and E denotes the elastic modulus. By inserting Eqs. (2) and (4) into Eq.
(1), the total potential energy of a single truss element is attained in the following
form (Felippa, 1999):

� = U − V = 1
2

n∑
i=1

�A0EL0e
2�i − p�q�T �u� (5)

In this equation, n is the number of elements in the structure. Differentiating Eq.
(5) with respect to nodal deformations once results in the equilibrium condition
and differentiating it for the second time leads to the tangent stiffness matrix. The
equilibrium path can be obtained by finding an exact solution to the resulting set of
equilibrium equations. In the proceeding text, a number of trusses will be analyzed
according to this technique.

CLOSED-FORM SOLUTIONS

The analytical solution to a number of trusses will be obtained in this
section. These examples consist of two- and three-dimensional trusses with simple
geometrical arrangements and few degrees of freedom. It is obvious that by
increasing the degrees of freedom or by rearranging the truss to a more complex
structural form, finding an exact solution would be either much more elaborate or
even impossible.

Triangular Truss with Three Elements

The first example is illustrated in Fig. 1. The cross-section of all elements is
assumed to be A0 and the initial lengths are determined in multiples of l. These
parameters can be given any numerical value.

If the origin of the coordinate system is attached to the point where the
elements intersect (point A), the strain energy function of the truss and the potential
energy function of the external loads can be determined as follows:

U = A0

8l3

[
��x − 3l�2 + �y + 4l�2 − 25l2�2

125
+ ��x + 3l�2 + �y + 4l�2 − 25l2�2

125

+ �x2 + �y + 4l�2 − 16l2�2

64

]
(6)

V = p�qxx + qyy� (7)
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ACCURATE SOLUTIONS FOR GEOMETRIC NONLINEAR ANALYSIS 49

Figure 1 Triangular three-element truss.

In these equations, x and y determine the position of point A after deformation has
taken place. The applied load at the point A is denoted by qx and qy. By inserting
Eqs. (6) and (7) into Eq. (1), the total potential energy function of structure is
obtained in the following form:

� = A0E

64000l3
�4048ly�x2 + y2�+ 253�x2 + y2�2 + 64l2�72x2 + 253y2��− p�qxx + qyy��

(8)

Differentiating this equation with respect to x andy leads to the equilibrium
equations as follows:



��

�x
= A0E

64000l3
�9216l2x + 8096lxy + 1012x�x2 + y2��− pqx = 0

��

�y
= A0E

64000l3
�32384l2y + 8096ly2 + 4048l�x2 + y2�+ 1012y�x2 + y2��− pqy = 0

(9)

The second derivative of the potential energy function with respect to the nodal
displacements is equal to the tangent stiffness matrix. Therefore, this matrix is
obtained in the following form:

�KT 	 =
A0E

64000l3

[
9216l2 + 2024x2 + 8096ly + 1012�x2 + y2�

8096lx + 2024xy

8096lx + 2024xy
32384l2 + 24288ly + 2024y2 + 1012�x2 + y2�

]
(10)

In order to analyze the stability of the structure, the eigenvalues of the tangent
stiffness matrix must be determined. The points, at which either one or both
eigenvalues of the tangent matrix become zero, correspond to structural instability.
In other words, any external load capable of translating the node A to these
points will cause the structure to buckle. By using the following definitions of the
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50 REZAIEE-PAJAND AND NAGHAVI

intermediate parameters, c and d:

c = 5200l2 + 506x2 + 4048ly + 506y2

d =
√
8386816l4 + 2631200l2x2 + 64009x4 + 117230058l3y + 1024144lx2y
+ 5561952l2y2 + 128018x2y2 + 1024144ly3 + 64009y4

(11)

The eigenvalues of the tangent stiffness matrix can be obtained as follows:




1 =

(
A0E

16000l3

)
�c + d�


2 =
(

A0E

16000l3

)
�c − d�

(12)

In this equation, 
i represents the ith eigenvalue of the tangent stiffness matrix.
Equating 
1 = 0 will produce the following results:




x = ±
√
−5200l2 − 6072ly − 795y2 + 16

√−11967l4 − 109296l3y − 13662l2y2√
759

x = ±
√
−5200l2 − 6072ly − 795y2 − 16

√−11967l4 − 109296l3y − 13662l2y2√
759

(13)

Each of the values of x in Eq. (13) can attain a real value. Therefore, four different
curves can be obtained by 
1 = 0. Although the solution of 
2 = 0 will have the
same form, the two eigenvalues will not become equal to zero simultaneously.
The type of the critical point is determined based on the form of the load vector
and the eigenvector of the tangent stiffness matrix. Figure 2 illustrates the curves
corresponding to the relations given in Eq. (13). The axes of this figure represent
the values of x and y in a dimensionless form, i.e., x

l
� y

l
. As can be seen in this

figure, each of the eigenvalues will attain a zero value somewhere on the curve. This
eigenvalue will have opposite signs inside and outside the curve. Therefore, these
curves represent the critical points of the structure. The discontinuities observed
at the top and bottom of the curves are the result of the solutions given in Eq.
(13). These discontinuities imply the fact that the structure does not have multiple
bifurcation points. In the proceeding text, the structural response will be obtained
for various loading conditions.

Zero-Loaded Structure By introducing the following load into Eq. (9):

qx = qy = 0 (14)
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ACCURATE SOLUTIONS FOR GEOMETRIC NONLINEAR ANALYSIS 51

Figure 2 Curves corresponding to zero eigenvalues.

The following equilibrium condition is obtained:




A0E

64000l3
�9216l2x + 8096lxy + 1012x�x2 + y2�� = 0

A0E

64000l3
�32384l2y + 8096ly2 + 4048l�x2 + y2�+ 1012y�x2 + y2�� = 0

(15)

The solutions of the above equation represent the points at which the zero-loaded
structure will be in equilibrium. The critical points are responsible for such states of
the structure. The solution to Eq. (15) is as follows:



x = 0

y =



0

−4l

−8l
(16){

x = ±2�62551l

y = −4l

Vertical Loading By introducing the following values into Eq. (9):

qx = 0� qy = 1 (17)

the equilibrium equations are obtained as follows:




A0E

64000l3
�9216l2x + 8096lxy + 1012x�x2 + y2�� = 0

A0E

64000l3
�32384l2y + 8096ly2 + 4048l�x2 + y2�+ 1012y�x2 + y2�� = p

(18)
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52 REZAIEE-PAJAND AND NAGHAVI

In order to determine the response of the structure under this load, the parameter
f is defined as follows:

f = 64000l3p
A0E

(19)

By utilizing this equation, the solutions to the equilibrium equations will take the
following form: {

x1 = 0

f = y�32384l2 + 12144ly + 1012y2�
(20)

{
x2 = ±0�0628695

√−2304l2 − 2024ly − 253y2

f = −36384l3 − 9216l2y
(21)

Since two individual relations exist for the equilibrium path, it can be deduced that
the structure has a bifurcation point. Considering the symmetry of the structure and
the applied load, the structure will deform in a symmetrical manner. Therefore, the
primary deformation path will correspond to x = 0. This implies the fact that the
primary path is obtained by using Eq. (20). In order to determine the critical load,
the results given in Eq. (20) are introduced into Eq. (13). Based on the equity x = 0,
the critical points are calculated as follows:



x1 = 0

y1 =
4
253

�−253l± l
√
27577�

f1 = ±24196�7l3

(22)




x2 = 0

y2 =
4
3
�−3l± l

√
3�

f2 = ±24929�2l3

(23)

The bifurcation point, the secondary path of the truss is determined by Eq. (21).
The primary path becomes unstable at a point corresponding to y = 4

253 �−253l+
l
√
27577�. The structure changes path at this point and traces the secondary path

afterwards. Because of structural symmetry, the sign of x on the secondary path
can be positive or negative, which is determined by the structural imperfections.
The secondary path has a bifurcation point at y = 4

253 �−253l− l
√
27577� which the

structure returns to the primary path. The only critical point of the secondary path
lies at its intersection with the primary path. This path has no other critical points.
In case the primary unstable path is traced beyond the bifurcation point, the value
of the loading parameter will increase until the structure reaches the limit point.
After passing the limit point, the loading parameter decreases until it attains a zero
value aty = 0, which afterwards the loading parameter changes signs. The primary
and secondary equilibrium paths of the structure are illustrated in Fig. 3. In this
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ACCURATE SOLUTIONS FOR GEOMETRIC NONLINEAR ANALYSIS 53

Figure 3 Equilibrium path of the three-element truss under vertical loading.

figure, the vertical axis represents f

10000 . In order to eliminate unknown factors, the
value of l is assumed unity in these curves. Figure 3(b) demonstrates the primary
and secondary equilibrium paths of the structure on the �y − f� plane. The dashed
line corresponds to the secondary path. Also, the analytically obtained equilibrium
path and the one predicted by the spherical arc-length scheme are compared in
Fig. 3(b). In this figure, the validity of the suggested closed-form solution is verified
by the numerical technique (Bashir-Ahmed and Xiao-Zu, 2004). Figure 3(a) shows
the primary and secondary equilibrium paths in the �x − y − f� coordinate system.

Horizontal Loading The equilibrium condition of this loading case can be
obtained by introducing the following values into Eq. (9):

qx = 1� qy = 0 (24)

Referring to Eq. (19), the equilibrium equations are determined in the following
form: {

9216l2x + 8096lxy + 1012x�x2 + y2� = f

32384l2y + 8096ly2 + 4048l�x2 + y2�+ 1012y�x2 + y2� = 0
(25)

The solutions to this set of equations are as follows:

{
y1 = −4l

f = x�−6976l2 + 1012x2�
(26)

{
y2 = 0�5

(− 8l− 8
√
l2 − 0�0625x2

)
f = 9216l2x

(27)

{
y3 = 0�5

(−8l+ 8
√
l2 − 0�0625x2

)
f = 9216l2x

(28)
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54 REZAIEE-PAJAND AND NAGHAVI

Considering the fact that the primary equilibrium path is the one which passes the
original undeformed state of the structure, this path will correspond to Eq. (28).
Inserting Eq. (28) into Eq. (13), the following value is obtained for the critical point:


x = ±4l

y = −4l

f = ±36864l3
(29)

These results indicate asymmetrical bifurcation points for the structure. After the
structure reaches these states, it will deform according to Eq. (26). The critical
points lying on this path are determined by introducing Eq. (26) into Eq. (13). The
coordinates of these points are as follows:



x1 = ±4l

√
109
759

y = −4l

f = ∓7049�65l3

(30)



x2 = ±4l

y = −4l

f = ±36864l3
(31)

The points given in Eq. (30) are limit points. The structure traces its primary
deformation path (Eq. (28)) at this state. Therefore, these points do not have any
significant value. It should be mentioned that these limit points lie on the secondary
path (Eq. (26)). On the other hand, the points indicated by Eq. (31) are bifurcation
points. These points lie on the intersection of the primary and secondary paths.
Figure 4 illustrates the primary and secondary equilibrium path of the structure. In
this figure, similar to Fig. 3, the vertical axis represents f

10000 . In order to eliminate
any influence of unknown variables, the value of l is taken as unity. The projection
of the primary and secondary equilibrium path on the �x − f� and �y − f� planes is
shown in Figs. 4(a) and 4(b), respectively. Also, Fig. 4(a) demonstrates a comparison
between the result obtained by the analytical and the spherical arc-length methods.
Figure 4(c) presents these paths in the �x − y − f� coordinate system. In these
figures, the primary path is indicated by a solid line, while the dashed line represents
the secondary path.

Planar Rotationally Truss

For the pyramidal truss presented by Ligaro and Valvo (2006), if the value
of H is set to zero, the structure given in Fig. 5 will be obtained. This structure is
a regular truss consisting n elements with the initial length of B. The initial cross-
section of each element is assumed to be A0. The supports were located on a circle
which its center is at the intersection of the elements. The angle between each two
element is equal to � = 


n
. Considering a spatial behavior, the structure is expected

to be unstable in its initial undeformed state.
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Figure 4 Equilibrium path of the three-element truss under horizontal loading.

The cylindrical coordinate system will be utilized in the analysis of this
structure. The origin of this coordinate system is attached to at the intersection of
the elements (point O). The potential energy function is written and simplified to
the following form:

U = nA0E

8B3
�2B2r2 + �r2 + z2�2�

Figure 5 Planar rotationally truss.
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56 REZAIEE-PAJAND AND NAGHAVI

V = p�qrr × cos��− �p�+ qzz�

� = U − V = nA0E

8B3
�2B2r2 + �r2 + z2�2�− p�qrr × cos��− �p�+ qzz� (32)

In this equation, r, z, and � represent the position of the node O after deformation.
The loading values in the plane of the structure (radial direction) and perpendicular
to the plane of the structure are denoted by qr and qz, respectively. The angle
between the direction of the load and the polar axis is indicated by �p. By
differentiating Eq. (32), the equilibrium equations are obtained in the following
form: 



��

�r
= nA0E

8B3
�4B2r + 4r�r2 + z2��− pqr × cos��− �p� = 0

1
r

��

��
= pqr × sin��− �p� = 0

��

�z
= nA0E

8B3
�4z�r2 + z2��− pqz = 0

(33)

The tangent stiffness matrix is written as

�KT 	 =


�rr �r� �rz

��r
1
r2
��� ��z

�zr �z� �zz




= nA0E

8B3



4B2 + 8r2 + 4�r2 + z2� 0 8rz

0 4B2 + 4�r2 + z2� 0

8rz 0 8z2 + 4�r2 + z2�


 (34)

In order to analyze the stability of the structure, the eigenvalues of the tangent
stiffness matrix must be attained. Mathematical manipulation yields the following
results:




1 =
nA0E

8B3
�4B2 + 4�r2 + z2��


2 =
nA0E

4B3
�B2 + 4r2 + 4z2 −

√
B4 + 4B2r2 − 4B2z2 + 8r2z2 + 4z4�


3 =
nA0E

4B3
�B2 + 4r2 + 4z2 +

√
B4 + 4B2r2 − 4B2z2 + 8r2z2 + 4z4�

(35)

Since the square value and the square root of all the terms have a positive sign,
the values of 
1 and 
3 will always be greater than zero. Therefore, only one of
the eigenvalues (
2� can become equal to zero implying the fact that no multiple
bifurcation points exist for the structure. In order to assess the critical point, the
value of 
2 will be equated to zero in Eq. (35). The solution to the resulting equation
is as follows:

r = ±
√
−B2

6
− z± B

6

√
B2 − 24z2 (36)
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The response of the structure under different loading conditions will be discussed in
the proceeding text.

Zero-Loaded Structure The equilibrium equations will take the following
form for the zero-loaded structure:


nA0E

8B3
�4B2r + 4r�r2 + z2�� = 0

nA0E

8B3
�4z�r2 + z2�� = 0

(37)

The following values are the solution to the above equation:{
r = 0

z = 0
(38)

Therefore, the only equilibrium state of the structure is at its original form.
Considering the results obtained for the zero-loaded structure, it can be predicted
that the structure has no limit points.

Vertical Loading For this case, the equilibrium equations are assessed by
introducing the following equations into Eq. (33):

qz = 1� qr = 0 (39)

which leads to the following set of equations:

nA0E

8B3
�4B2r + 4r�r2 + z2�� = 0

nA0E

8B3
�4z�r2 + z2�� = p

(40)

In order to find the solution to this equation, the parameter ��f�� is defined as:

f = 8B3p

nA0E
(41)

Considering the last equation, the following results are obtained:

{
r1 = 0

z1 = 0�629961f
1
3

(42)



r2 = ±

√
−B2 − 0�0625

f 2

B4

z2 = −0�25
f

B2

(43)
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58 REZAIEE-PAJAND AND NAGHAVI

Since the structure is symmetric with respect to the Z axis, the nodal displacements
will also have symmetry with respect to the same axis. Therefore, Eq. (42) will
correspond to the primary equilibrium path of the structure. It should be noted that
Eq. (43) is not an equilibrium path. This is due to the fact that in the expression
determined for r2, the term under the square root sign is a negative number for any
value of f . Therefore, r2 will never be a real number. Considering the fact that only
one relation exists for the equilibrium path, it can be deduced that the structure does
not have a bifurcation point.

In order to find the instability points and the critical loads, Eq. (42) is
introduced into Eq. (36). The value of r is equated to zero in Eq. (36). The only
solution to the resulting equation will have the following form:



r = 0

z = 0

f = 0

(44)

Therefore, the original configuration of the structure is an unstable state. This point
is a limit point at which the structure will go under large deformations if a load
is applied. For this loading case (vertical loading), the structure does not have any
other critical point. Hence, the entire equilibrium path will be at a stable state.
Figure 6 illustrates the equilibrium path of the structure. The vertical axis of this
figure represents f

1000 . In order to eliminate the influence of any unknown variables,
the value of B is set to unity.

Since this structure is unstable at its original configuration, the spherical arc-
length method is not capable of analyzing it. Therefore, the equilibrium paths
cannot be compared to one another.

Figure 6 Equilibrium path of the planar rotationally truss (vertical loading).
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Radial Loading The equilibrium equations will take the following form for
this loading case:




nA0E

8B3
�4B2r + 4r�r2 + z2�� = p

p× sin��− �p� = 0

nA0E

8B3
�4z�r2 + z2�� = 0

(45)

Utilizing Eq. (41), the solution to the last equation can be obtained as follows:

z = 0

� = �p
f = r�4B2 + 4r2�

(46)



z = 0

� = �p + 


f = −r�4B2 + 4r2�

(47)

Similar to the last loading case, only one equilibrium path exists. Therefore, the
structure will not have a bifurcation point. In order to find the critical load, the
value of z is set to zero in Eq. (36). This leads to the following result for the critical
point: 


r = 0

z = 0

f = 0

(48)

The initial configuration is its only unstable state of the structure which is a simple
bifurcation point. It should be mentioned that the existence of a bifurcation point
at the onset of loading does not have any significance and is only a mathematical
property. Figure 7 compares the equilibrium path obtained by the analytical method
to the one obtained by the spherical arc-length technique. The values B = 1 and
A0E = 2 are used in the analysis. The number of elements �n� is set to 4. This figure
demonstrates that both strategies yield similar results.

Three-Element Suspended Truss

The third example is illustrated in Fig. 8. The cross-section of the elements
is denoted by A0. It should be noted that the variables A0 and l can assume any
given value. By locating the origin of the coordinate system at node A, the potential
energy function of the structure can be attained in the following form:

� = A0E

64000l3
�48ly�x2 + y2�+ 253�x2 + y2�2 + 64l2�72x2 + 253y2��− p�qxx + qyy�

(49)
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60 REZAIEE-PAJAND AND NAGHAVI

Figure 7 Equilibrium paths obtained by the analytical and spherical arc-length scheme (radial loading).

Differentiating this equation with respect to nodal displacements will yield the
following relations for the equilibrium equations:




A0E

64000l3
�9216l2x + 96lxy + 1012x�x2 + y2��− pqx = 0

A0E

64000l3
�32384l2y + 96ly2 + 48l�x2 + y2�+ 1012y�x2 + y2��− pqy = 0

(50)

�KT 	 =
A0E

64000l3

[
9216l2 + 2024x2 + 96ly + 1012�x2 + y2�

96lx + 2024xy

96lx + 2024xy
32384l2 + 288ly + 2024y2 + 1012�x2 + y2�

]
(51)

Figure 8 Three-element suspended truss.
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The eigenvalues of the tangent stiffness matrix are written in the following form:

c = 5200l2 + 506x2 + 48ly + 506y2


1 =

A0E

16000l3
�c − d�


2 =
A0E

16000l3
�c + d�

(52)

In order to analyze the stability of the structure and determine the critical loads, the
roots of the eigenvalues must be evaluated. If the value of 
1 is equal to zero in Eq.
(52), the solutions of the equation are obtained as follows:

x = ±
√
−1121200l2

64009
− 24ly

253
− y2 + 16

√
10067565099l4 + 69500112l3y + 732647014l2y2

64009
√
3

(53)

x = ±
√
−1121200l2

64009
− 24ly

253
− y2 − 16

√
10067565099l4 + 69500112l3y + 732647014l2y2

64009
√
3

(54)

It can be shown that the results of Eqs. (53) and (54) are not real numbers.
Therefore, this structure does not have a critical point. Equation (53) is considered
for this matter. If the term under the square root (denoted by u� is differentiated
with respect to y, the following equation will be obtained:

du

dy
= − 24l

253
− 2y + 8

69500112l3 + 1465294028l2y

64009
√
3×√

10067565099l4 + 69500112l3y + 732647014l2y2
(55)

In order to find the minimum and maximum values of u, its derivative with respect
to y is equated to zero. Doing so leads to the following values of u and y:



y = − 12l

253

u = −194256l2

64009

(56)

Utilizing the second derivative test, it can be proven that this point is a relative
maximum point. Since the derivative exists for any value of y, and it does not have
any root other than the one mentioned, the relative maximum point will also be the
absolute maximum point. Hence, the function u will always have a negative value.
This leads to the fact that in Eq. (53) a real value cannot be obtained for x. Figure 9
illustrates the variation of u as a function of y. In this figure, the horizontal and
vertical axes represent y

l
and u

l2
, respectively.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
F
e
r
d
o
w
s
i
 
U
n
i
v
e
r
s
i
t
y
 
o
f
 
M
a
s
h
h
a
d
]
 
A
t
:
 
1
8
:
2
5
 
6
 
F
e
b
r
u
a
r
y
 
2
0
1
1



62 REZAIEE-PAJAND AND NAGHAVI

Figure 9 Variation of u

l2
in terms of y

l
.

Zero-Loaded Structure For this loading condition, the equilibrium
equations take the following form:




A0E

64000l3
�9216l2x + 96lxy + 1012x�x2 + y2�� = 0

A0E

64000l3
�32384l2y + 96ly2 + 48l�x2 + y2�+ 1012y�x2 + y2�� = 0

(57)

which has the following solution:

{
x = 0

y = 0
(58)

Vertical Loading The equilibrium equations can be written as follows for this
state of loading:




A0E

64000l3
�9216l2x + 96lxy + 1012x�x2 + y2�� = 0

A0E

64000l3
�32384l2y + 96ly2 + 48l�x2 + y2�+ 1012y�x2 + y2��− p = 0

(59)

In order to find the solution to this equation, the variable f is defined as follows:

f = 64000l3p
A0E

(60)

Using Eq. (60), the response of the structure is attained as follows:

{
x = ±0�0628695

√−2304l2 − 24ly − 253y2

f = 0�00395257l2�−110592l+ 5�86035× 106y�
(61)
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Figure 10 Equilibrium path of the three-element suspended truss under vertical loading.

{
x = 0

f = y�32384l2 + 144ly + 1012y2�
(62)

A comparison between the equilibrium path obtained by the analytical and the
spherical arc-length method is presented in Fig. 10.

Horizontal Loading The following equation represents the equilibrium
equation for this loading condition:


A0E

64000l3
�9216l2x + 96lxy + 1012x�x2 + y2��− p = 0

A0E

64000l3
�32384l2y + 96ly2 + 48l�x2 + y2�+ 1012y�x2 + y2�� = 0

(63)

The response of the above equation is shown in Fig. 11.
The solution of this equation can be obtained using Eq. (60), leading to the

following:

c =
√
−8096l2 − 36ly − 253y2

d = √
12l+ 253y


x = ±c
√
y

d

f = ∓
(
819315× 106l2y

3
2 c

d3
+ 36432ly

5
2 c

d3
+ 256036y

7
2 c

d3

− 9216l2
√
yc

d
− 96ly

3
2 c

d
− 1012y

5
2 c

d

)
(64)
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Figure 11 Equilibrium path of the three-element suspended truss under horizontal loading.

Three-Dimensional Bi-Pyramidal Symmetric Truss

The forth example is presented in Fig. 12. This structure consists of two
pyramidal trusses joined together at the point A. The properties of these two trusses
are similar, i.e. this structure is symmetric with respect to point A. The initial cross
section and length of the elements are equal to A0 and l0, respectively.

Similar to the pyramidal truss discussed earlier, a cylindrical coordinate system
will be used to construct the total potential energy function. The origin of this
coordinate system is attached at the center of the circle which the support of one
of the pyramids is located. The positive sense of the Z axis is towards the point A.

Figure 12 Bi-pyramidal symmetric truss.
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After simplifying the relations, the total potential energy function of the structure
can be written in the following form:

U = nA0E

4l30
�5H4 + 2B2r2 − 12H3z− 4Hz�r2 + z2�+ �r2 + z2�2 + 2H2�r2 + 5z2��

V = p�qrCos��− �p�+ qz�z−H��

� = U − V (65)

In this equation, r, z and � represent the location of the point O after deformation.
The loading values are respectively qr and qz in the radial and Z-axis directions.
The angle between the direction of the load and the polar axis is �p. Differentiating
the total potential energy function of the structure (Eq. (65)) with respect to nodal
displacements, the equilibrium equations are obtained in the following form.




��

�r
= nA0E

l30
�r�B2 +H2 + r2 − 2Hz+ z2��− pqr Cos��− �p� = 0

1
r

��

��
= pqr Cos��− �p� = 0

��

�z
= nA0E

l30
�z−H��3H2 + r2 − 2Hz+ z2�− pqz = 0

(66)

Considering the equilibrium equations, the tangent stiffness matrix is written as
follows:

�KT 	 =
(
nA0E

l30

)B2 +H2 + 3r2 − 2Hz+ z2 0
0 B2 +H2 + r2 − 2Hz+ z2

2r�z−H� 0

2r�z−H�
0

5H2 + r2 − 6Hz+ 3z2


 (67)

The eigenvalues of the tangent stiffness matrix are determined as follows:

c = B2 + 6H2 + 4r2 − 8hz+ 4z2


1 =
(
nA0E

l30

)
�B2 + �H − z�2 + r2�

(68)


2 =
(
nA0E

2l30

)
�c − d�


3 =
(
nA0E

2l30

)
�c + d�

It is observed that the values of 
1 and 
3 are both positive in the last equations.
This is deduced by the fact that these eigenvalues are the sum of square rooted and
squared terms. On the other hand, 
2 is the eigenvalue that its value can be equal
to zero. Therefore, the truss will not have a multiple bifurcation point.
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66 REZAIEE-PAJAND AND NAGHAVI

The following text will discuss 
2. Setting 
2 equal to zero will result in Eqs.
(70) and (71). An intermediate variable similar to Eq. (69) is utilized to give these
results:

a = −3B2 − 2H2 − 6r2

b =
√
9B4 − 12B2H2 + 4H4 + 24B2r2 − 48H2r2 (69)

z = 1
12

�12H ± 2
√
6×√

a− b� (70)

z = 1
12

�12H ± 2
√
6×√

a+ b� (71)

du

dr
= −12r + 48B2r − 96H2r√

9B4 − 12B2H2 + 4H4 + 24B2r2 − 48H2r2
(72)

In order to find the maximum value of u, the above equation is equated to zero and
solved for r. The result of this process is given below:


r1 = 0

r2 = ±
√−5B4 − 4B2H2 + 12H4

2
√
6
√
B2 − 2H2

(73)

In these equations, r2 is not a correct answer, since introducing it into Eq. (72) will
give a non-zero value. The reason that such an answer is obtained lies in the method
of solving the equation. In order to solve du

dr
= 0, the square root term is kept at

one side of the equation, while the other terms are taken to the other side. Both
sides are powered by two afterwards. In the case where for a specific value of r the
two sides have the opposite sign, they will both have positive values after they are
powered by two. Any r resulting from such conditions will not be a correct answer
to the equation. This is the case for r2.

Therefore, the only answer to Eq. (72) is r = 0. The second derivative test
shows that this point is a relative maximum and for the considered domain, the
function attains its maximum value at this point. This maximum value is given in
the following equation. It can be proven that this value will always be negative.

umax = −3B2 − 2H2 +
√
9B4 − 12B2H2 + 4H4�74� (74)

Hence, this structure will never buckle. Figure 13 shows the variation of u
H2 as a

function of r
H
and B

H
. It can be seen in this figure, when B

H
and r

H
approach zero, the

value of u
H2 will also approach zero. The vertical axis represents u

H2 in this figure.
The response of the structure under different loading cases will be discussed

in the proceeding text.

Zero-Loaded Structure The solution to this loading condition is the points
at which the structure is in equilibrium without the application of any external
loads. Since the structure does not have a critical point and a limit point cannot
exist, it can be predicted that the only solution to this loading case is the original
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Figure 13 Variation of u

H2 in terms of B
H

and r
H
.

state of the structure. For a truss under zero-loading, the equilibrium equations can
be written in the following form:{

r�B2 +H2 − 2Hz+ z2 + r2� = 0

�z−H��3H2 + r2 − 2Hz+ z2� = 0
(75)

The solution to this equation is as follows:{
r = 0

z = H
(76)

This result is consistent with the previous prediction.

Loading on the ((Z)) Axis Introducing the following loading values into
Eq. (66):

qz �= 0� qr = 0 (77)

will lead to the equilibrium equations as follows:



A0E

l30
�r�B2 +H2 + r2 − 2Hz+ z2�� = 0

A0E

l30
�z−H��3H2 + r2 − 2Hz+ z2� = p

(78)

In order to find the solution to this equation, the variable f is defined in the
following form:

f = pl30
nA0E

(79)
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Based on this relation, the solution to Eq. (78) takes the following form:

{
r = 0

f = −3H3 + 5H2z− 3Hz2 + z3
(80)

{
r = ±√−B2 −H2 + 2Hz− z2

f = B2H − 2H3 − B2z+ 2H2z
(81)

The primary equilibrium path passes the original point (undeformed state) of the
structure. Therefore, this path is determined by Eq. (80). It should be mentioned
that equation (81) does not represent an equilibrium path. This is due to the
fact that for the given expression of r, the term under the square root is always
a negative value, and will not result in a real number. Figure 14 illustrates the
equilibrium path of the structure for this loading condition (Eq. (80)). In this figure,
the vertical axis represents f

H3 . The horizontal axis shows the dimensionless value of
z
H
. As it is seen in the figure, the structure demonstrates a hardening behavior. This

hardening characteristic of the structure eliminates the possibility of buckling. Also,
this figure compares the equilibrium path predicted by the analytical method to the
one obtained by the arc-length technique.

Loading in the Radial Direction The equilibrium equation for this loading
case will be as follows:



A0E

l30
�r�B2 +H2 + r2 − 2Hz+ z2�� = pCos��− �p�

pCos��− �p� = 0

A0E

l30
�z−H��3H2 + r2 − 2Hz+ z2� = 0

(82)

Figure 14 Equilibrium path of the bi-pyramidal symmetric truss due to loading in the ��Z�� direction.
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ACCURATE SOLUTIONS FOR GEOMETRIC NONLINEAR ANALYSIS 69

Considering Eq. (79), the solution to this equation is in the following form:



� = �p
z = �5�2H ± 2�82843

√−H2 − �5r2�

f = r�B2 − 2H2�

(83)



� = ±
+ �p
z = �5�2H ± 2�82843

√−H2 − �5r2�

f = −r�B2 − 2H2�

(84)



� = �p
z = H

f = r�B2 + r2�

(85)



� = ±
+ �p
z = H

f = −r�B2 + r2�

(86)

It should be mentioned that Eqs. (83) and (84) do not give real values. Hence,
the equilibrium path of the structure is presented by Eqs. (85) and (86). The
representative curves of these two equations in three-dimensional space are similar.
In other words, only one equilibrium path exists for this loading condition, which
is the primary path. Figure 15 illustrates the equilibrium path of this truss. In this
figure, the horizontal and vertical axes represent the dimensionless values of r

B
and

f

B3 , respectively. In addition, the equilibrium path obtained by the arc-length scheme
is compared to the path of Eq. (85) in this figure. It can be mathematically proved
that if the cross-section of the elements in one pyramid is at least 10 times the cross-
section of the other, the possibility of buckling will exist for the structure. Such a
truss is considered in the following text.

Figure 15 Equilibrium path of the bi-pyramidal symmetric truss under radial loading.
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70 REZAIEE-PAJAND AND NAGHAVI

Three-Dimensional Bi-Pyramidal Asymmetric Truss

For the truss illustrated in Fig. 16, if the cross-section of the elements in one
pyramid is assumed to be 10 times the cross-section of the other (A1 = 0�1A0�, the
structure will no longer be symmetrical and buckling will take place. All the previous
assumptions still hold for the current structure. The total potential energy function
for this structure will be in the following form after simplification:

U = nA0E

8l30
�1�9H4 + 2�2B2r2 + 1�1r4 − 2�4H3z+ 2�2r2z2 + 1�1z4

+H2�−1�4r2 + 0�2z2�+H�−0�8r2z− 0�8z3��

V = p�qrr Cos��− �p�+ qzz� (87)

� = U − V

Differentiating this equation with respect to displacements leads to the following
equilibrium equations:




��

�r
= nA0E

8l30
�4�4B2r − 2�H2r + 4�4r3 − 1�6Hrz+ 4�4rz2�− pqr Cos��− �p� = 0

1
r

��

��
= pqr Sin��− �p� = 0

��

�z
= nA0E

8l30
�−2�4H3 + 0�4H2z+ 4�4r2z+ 4�4z3 +H�−0�8r2 − 2�4z2��− pqz = 0

(88)

Figure 16 Three-dimensional bi-pyramidal asymmetric truss.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
F
e
r
d
o
w
s
i
 
U
n
i
v
e
r
s
i
t
y
 
o
f
 
M
a
s
h
h
a
d
]
 
A
t
:
 
1
8
:
2
5
 
6
 
F
e
b
r
u
a
r
y
 
2
0
1
1



ACCURATE SOLUTIONS FOR GEOMETRIC NONLINEAR ANALYSIS 71

If the last equation is differentiated with respect to nodal displacements, the tangent
stiffness matrix will be attained as follows:

�KT 	 =
(
nA0E

8l30

)4�4B
2 − 2�8H2 + 13�2r2 − 1�6Hz+ 4�4z2

0
−1�6Hr + 8�8rz

0 −1�6Hr + 8�8rz

4�4B2 − 2�H2 + 4�4r2 − 1�6Hz+ 4�4z2 0
0 0�4H2 + 4�4r2 − 4�8Hz+ 13�2z2



(89)

With the definition of the variables c and d, the eigenvalues of the tangent stiffness
matrix are obtained as follows:

c = 4�4B2 − 2�4H2 + 17�6r2 − 6�4Hz+ 17�6z2

d =
√
B4 − 1�45455B2H2 + 0�528926H4 + 1�45455B2Hz− 1�05785H3z

− 4B2z2 + 3�43802H2z2 − 2�90909Hz3 + 4z4



1 =
nA0E

8l30
�4�4B2 − 2�8H2 + 4�4r2 − 1�6Hz+ 4�4z2�


2 =
nA0E

8l30

(
c − 4�4d

2

)


3 =
nA0E

8l30

(
c + 4�4d

2

)
(90)

All of these eigenvalues can be equal to zero. In the proceeding text, the roots of
each eigenvalue will be evaluated for different loading conditions.

Zero-Loaded Structure The equilibrium equations for this loading case will
take the following form:



nA0E

8l30
�4�4B2r − 2�H2r + 4�4r3 − 1�6Hrz+ 4�4rz2� = 0

nA0E

8l30
�−2�4H3 + 0�4H2z+ 4�4r2z+ 4�4z3 +H�−0�8r2 − 2�4z2�� = 0

(91)

The solution to this equation is as follows:

{
r = 0

z = H
(92)
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72 REZAIEE-PAJAND AND NAGHAVI

Vertical Loading The following relations are the equilibrium equations
resulting from this loading case:



nA0E

8l30
�4�4B2r − 2�H2r + 4�4r3 − 1�6Hrz+ 4�4rz2� = 0

nA0E

8l30
�−2�4H3 + 0�4H2z+ 4�4r2z+ 4�4z3 +H�−0�8r2 − 2�4z2�� = p

(93)

In order to solve this equation, the variable f is defined in the following form:

f = 8l30p
nA0E

(94)

The solution is obtained as follows:{
r = 0

f = 0�2�−12H3 + 2H2z− 12Hz2 + 22z3�
(95)

{
r = ±0�301511

√−11B2 + 7H2 + 4Hz− 11z2

f = 0�2�4B2H − 14�5455H3 − 22B2z+ 14�5455H2z�
(96)

Since the primary equilibrium path of the structure passes through the origin
point, Eq. (95) will be presenting it. If the equalities relevant to the primary path
are introduced into Eq. (90), the critical point will be assessed in the following
form:




r = 0

z = 0�113636
(
1�6H + 7�2

√−1�49383B2 +H2
)

f = −2�38017H3 − 3�6B2
√−1�49383B2 +H2

+ 2�38017H2
√−1�49383B2 +H2

(97)




r = 0

z = 0�113636
(
1�6H − 7�2

√−1�49383B2 +H2
)

f = −2�38017H3 + 3�6B2
√−1�49383B2 +H2

− 2�38017H2
√−1�49383B2 +H2

(98)



r = 0

z = 0�234305H

f = −2�38144H3

(99)



r = 0

z = 0�129332H

f = −2�37889H3

(100)
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ACCURATE SOLUTIONS FOR GEOMETRIC NONLINEAR ANALYSIS 73

Eqs. (97) and (98) represent multiple bifurcation points. If the geometry of
the structure had the condition B ≤ H

√
0�66942, these points would lie on the

equilibrium path. In this case, the stable path of the structure would be according
to Eq. (96) after bifurcation. It should be mentioned that the value of � in Eq.
(96) may take any value. If in the case B = H

√
0�66942, the two bifurcation points

will coincide and the secondary equilibrium path will become a single point. Eqs.
(99) and (100) correspond to limit points. For any ratio of B

H
, these points will

be on the equilibrium path. For trusses which have bifurcation points, bifurcation
may take place before or after the limit point, depending on the geometry of the
structure. In addition, these points may even coincide with each other and form a

triple-bifurcation point. With the condition B =
√

2
3H , a triple-bifurcation point will

exist. Figure 17 illustrates the equilibrium path of a truss where the ratio B
H
is equal

to ((0.5)). Hence, the multiple bifurcation point lies on the equilibrium path. In this
figure, the vertical axis represents the dimensionless value f

H3 . The secondary path
is indicated by a dashed line. Figure 17(a) shows the projection of the equilibrium
path on the �f − z� plane, while this path in the three-dimensional �f − z− r� space
is given in Fig. 17(b). In these figures, the axes r and z correspond to dimensionless
values r

H
and z

H
, respectively. Also, Fig. 17(a) compares the equilibrium path

obtained by the analytical and the arc-length methods.

Figure 17 Equilibrium path of the asymmetric bi-pyramidal truss under vertical loading (a) (((f − z��)
plane and (b) (((f − z− r��) space.
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74 REZAIEE-PAJAND AND NAGHAVI

Radial Loading For this loading case, the equilibrium equations will take the
following form:




nA0E

8l30
�4�4B2r − 2�H2r + 4�4r3 − 1�6Hrz+ 4�4rz2�− pCos��− �p� = 0

p Sin��− �p� = 0

nA0E

8l30
�−2�4H3 + 0�4H2z+ 4�4r2z+ 4�4z3 +H�−0�8r2 − 2�4z2�� = 0

(101)

Based on Eq. (94) and by defining the intermediate parameters c and d, the solution
will be as follows:

c =
√
−6H3 +H2z− 6Hz2 + 11z3

d = √
2H − 11z


r = ± c

d

� = �p

f = ±0�2
(−132H3c

d3
+ 22B2c

d
− 14H2c

d
+ 22H2zc

d3
− 8Hzc

d

− 132Hz2c

d3
+ 22z2c

d
+ 242z3c

d3

)
(102)

It can be proven that the eigenvalues of the tangent stiffness matrix are positive
for the entire equilibrium path. Therefore, this structure will never buckle under
radial loading. At the onset of loading, the z component of the free node (node
A) has the value of H . This value will decrease with the application of the load.
In the respective relation for d in Eq. (102), the term under the square root
will become negative when z > 2

11H . Therefore, the term under the square root
in the respective relation for c should also be negative, which happens when z <

H . The value of f becomes extremely large as z approaches 2
11H . The rate at

which f increases is greater than the z component. In other words, the structure
has a hardening behavior. This hardening characteristic eliminates the possibility
of buckling. Figure 18 shows the equilibrium path of this structure under radial
loading. Figure 18(a) illustrates the projection of the equilibrium path on the (z− f�

axis, while the projection of this path on the �r − f� plane is given in Fig. 18(b).
Figure 18(c) illustrates the equilibrium path of the structure in three-dimensional
space.

It has been shown that this truss has a very specific behavior. Its response
under vertical loading is similar to the regular pyramidal truss. While under
horizontal loading, it behaves alike the three-member suspended truss. In the
proceeding text, the characteristics of some other two-dimensional trusses will be
discussed briefly.
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ACCURATE SOLUTIONS FOR GEOMETRIC NONLINEAR ANALYSIS 75

Figure 18 Equilibrium path of the asymmetric bi-pyramidal truss under radial loading.

Semi-Circle Truss

The geometry of the semi-circle truss is given in Fig. 19. This truss consists of
n members at 


n−1 intervals. The radius of the circle is denoted by r. The only free
node is located at the center of the circle where the origin of the coordinate system
will be attached.

Figure 19 Semi-circle truss with �n� members.
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76 REZAIEE-PAJAND AND NAGHAVI

The total potential energy function of this truss is presented by the following
equation:

U = A0E

8r3

n∑
i=1

((
x − rCos

(
i− 1
n− 1




))2

+
(
y + rSin

(
i− 1
n− 1




))2

− r2

)2

(103)

The analytical results of this example with n = 3 and n = 5 are given in the
following.

Three-Member Semi-Circle Truss Figure 20 shows the three-member semi-
circle truss.

For this case, the total potential energy function takes the following form:

� = A0E

8r3
�4ry�x2 + y2�+ 3�x2 + y2�2 + 4r2�2x2 + y2��− p�qxx + qyy� (104)

The equilibrium equations are obtained as follows:



��

�x
= A0E

8r3
�16r2x + 8rxy + 12x�x2 + y2��− pqx = 0

��

�y
= A0E

8r3
�8r2y + 8ry2 + 4r�x2 + y2�+ 12y�x2 + y2��− pqy = 0

(105)

The tangent stiffness matrix is assessed as follows:

�KT 	 =
A0E

8r3

[
16r2 + 24x2 + 8ry + 12�x2 + y2� 8rx + 24xy

8rx + 24xy 8r2 + 24ry + 24y2 + 12�x2 + y2�

]
(106)

It can be proven that this structure will never buckle. In order to find the solution
to the structure, the variable f is defined as follows:

f = 8r3p
A0E

(107)

Figure 20 Three-member semi-circle truss.
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The response of the structure under different conditions is provided in the
following.

1. Zero-loading

{
x = 0

y = 0
(108)

2. Vertical loading

{
x = 0

f = 8r2 + 12ry + 12y2
(109)

3. Horizontal loading

c =
√
−2r2 − 3ry − 3y2

d = √
r + 3y

x = ±c

√
y

d

f = ∓
(
24r2y

3
2 c

d3
− 36ry

5
2 c

d3
− 36y

7
2 c

d
+ 16r2c

√
y

d
+ 8ry

3
2 c

d
+ 12y

5
2 c

d

)(110)

In the last equation, y must be positive in order for x and f to have real values.

Five-Member Semi-Circle Truss Figure 21 shows this structure.
For this structure, the total potential energy function is attained as follows:

� = A0E

8r3
�4�1+√

2��x2 + y2�ry + 5�x2 + y2�2 + 4r2�3x2 + 2y2��− p�qxx + qyy�

(111)

Figure 21 Five-member semi-circle truss.
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78 REZAIEE-PAJAND AND NAGHAVI

The equilibrium equations take the following form:



��

�x
= A0E

8r3
�24r2x + 8rxy�1+√

2�+ 20x�x2 + y2��− pqx = 0

��

�y
= A0E

8r3
�16r2y + 8ry2�1+√

2�+ 4r�1+√
2��x2 + y2�+ 20y�x2 + y2��− pqy = 0

(112)

The tangent stiffness matrix is obtained as follows:

�KT 	 =
A0E

8r3

[
24r2 + 40x2 + 8ry�1+√

2�+ 20�x2 + y2�

8rx�1+√
2�+ 40xy

8rx�1+√
2�+ 40xy

16r2 + 24ry�1+√
2�+ 40y2 + 20�x2 + y2�

]
(113)

This truss will never buckle as well. According to Eq. (106), the response of the
structure under different loading conditions will be assessed in the following.

1. Zero-loading {
x = 0

y = 0
(114)

2. Vertical loading {
x = 0

f = y�16r2 + 28�9706ry + 20y2�
(115)

3. Horizontal loading

c =
√
−1�65685r2 − 3ry − 2�07107y2

d = √
r + 2�07107y



x = ±c
√
y

d

f = ∓
(
33�1371r2y

3
2 c

d3
− 60ry

5
2 c

d3
− 41�4214y

7
2 c

d3
+ 24r2c

√
y

d

+ 19�3137ry
3
2 c

d
+ 20y

5
2 c

d

)
(116)

In the last equation, similar to Eq. (110), y must be positive.

Two-Member Truss

Figure 22 illustrates the two-member truss. The initial cross-section of the
elements is equal to A0 and l can be given any value. The origin of the coordinate
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Figure 22 Geometry of the two-member truss.

system is positioned at A. The location of B is denoted by x and the distance of
node C from the point A is equal to y. The applied loads at B and C are equal to
qx and qy, respectively.

The total potential energy function of this structure is assessed as follows:

� = A0E

109l3
�125�−10000l2 + x2�2 + 64�−15625l2 + x2 + y2�2�− p�qxx + qyy� (117)

The equilibrium equations take the following form:



��

�x
= A0E

109l3
�500x�−10000l2 + x2�+ 256x�−15625l2 + x2 + y2��− pqx = 0

��

�y
= A0E

109l3
�256y�−15625l2 + x2 + y2��− pqy = 0

(118)

The tangent stiffness matrix is determined as follows:

�KT 	 =
A0E

109l3

[
1512x2 + 500�−10000l2 + x2�+ 256�−15625l2 + x2 + y2�

512xy

512xy
512y2 + 256�−15625l2 + x2 + y2�

]
(119)

Critical points can be obtained after the structure is solved for each loading
condition. In order to attain the response of the structure, the variable f is defined
as follows:

f = 109l3p
A0E

(120)
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80 REZAIEE-PAJAND AND NAGHAVI

1. Zero-loading {
x = 0

y = 0{
x = ±109�109l

y = 0
(121){

x = ±100l

y = ±75l{
x = 0

y = ±125l

2. Vertical loading
The primary equilibrium path is presented by the following equation:{

x = 0�0727393
√
2�25× 106l2 − 64y2

f = 0�00529101y�−1�8× 108l2 + 32000y�
(122)

The secondary path will be according to:{
x = 0

f = y�−4× 106l2 + 256y2�
(123)

The critical points of the primary path are determined as follows:

B �



x = 0

y = ±187�5l

f = ±9375× 105l3

L �



x = 106�15951l

y = ±43�30127l

f = ∓27492894�43l3
(124)

This path has two symmetric bifurcation points marked by B. Two limit points
also exist and are denoted by L. The secondary path, aside a bifurcation point,
has a limit point as well. The location of this limit point is as given below:

L �



x = 0

y = ±125√
3
l

f = ∓192450089�7l3

(125)

It should be mentioned that at this point, the deformation of the structure lies
on the primary equilibrium path.
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3. Horizontal loading
The primary equilibrium path is expressed as follows:{

y = √
15625l2 − x2

f = x�−5× 106l2 + 500x2�
(126)

The secondary equilibrium path is presented by the following equation:{
y = 0

f = x�−9× 106l2 + 756x2�
(127)

The critical points of the primary path are given below:

B �



x = ±125l

y = 0

f = ±351562500l3

L �



x = ±57�73517l

y = 110�86771l

f = ∓192450089�7l3
(128)

With the exclusion of the bifurcation point, which is at the intersection of the
primary and secondary paths, the critical point of the secondary equilibrium path is
as follows:

L �



x = ±500l

3
√
7

y = 0

f = ∓377964473l3

(129)

It should be reminded that all limit points lying on the secondary path have no
significance. This is due to the fact that at the occurrence of these points, the
structure deforms on the primary path. In other words, the structure will never take
the geometric shape attributed to these points.

CONCLUSION

This paper investigates analytical solutions to important geometrically
nonlinear benchmark problems. A Series of structural trusses under various loading
conditions are considered in this study. Stress-strain linearity, large deformations
and ideal hinges are the primary assumptions in the development of the closed-
form solutions. Post-buckling and equilibrium paths, as well as critical points,
are obtained through the mathematical procedures. In addition, some equilibrium
paths of structures are also determined by this technique. Necessary discussions are
provided for different values of effective parameters. In contrast to initial analyst
guesses, and based on this investigation, it is possible to design structural trusses to
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have both hardening and geometric nonlinear behavior. These classes of structures
are very stiff and stable under any severe loading.

In order to determine the validity of the results, the equilibrium paths
calculated by the analytical scheme are compared to the ones obtained by the
spherical arc-length technique. It has been demonstrated that both strategies
produce the same response, and therefore, the validities of the closed-form
solutions are certified. The structural problems considered in this paper and their
corresponding solutions can be considered as benchmark problems in the field of
geometric nonlinear analysis. By utilizing the same analytical procedure, some other
complex static paths can be found. In general, the standard numerical schemes could
not pass these kinds of the curves. It should be emphasized that one of the difficult
numerical techniques is calculating the secondary path in bifurcation points. This
study has found some of the mentioned paths.
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