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Abstract: In this paper, new schemes are presented for the dynamic relaxation �DR� method so that the snap-through and the snap-back
regions can be traced automatically. These procedures are based on the minimization of the residual force �MRF� and minimization of the
residual energy �MRE�, and they are capable of updating the load factor in each DR iteration. The suggested techniques are perfectly
automatic. Therefore, they do not require any additional parameters such as arc length, incremental displacement, etc. For numerical
verification, some frame and truss structures, all possessing geometrical nonlinear behaviors, are analyzed. Tracing the statical path shows
that both the MRF and MRE methods can be used successfully in structures with snap-through and snap-back regions. The numerical
results indicate that the MRE scheme traces the statical path with a greater number of increments than the MRF. While the jumping
probability of the MRE is less than that of the MRF, the analysis time may increase in the MRE. Also, a comparison between the proposed
DR methods and arc-length approach shows that the MRF and MRE procedures can present the limit points with higher accuracy.
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Introduction

Finite-element or finite difference formulation leads to a system
of simultaneous equations that show the behavior of structures.
The stiffness relationships can be written as follows:

�S��D� = �F� = �P� �1�

Here, �S� is the structural stiffness matrix and �D�, �F�, and �P� are
displacement and the internal and external force vectors, respec-
tively. Nonlinear effects such as elastic-plastic or large deforma-
tion behaviors lead to a complicated system of equations. In these
cases, the stiffness matrix or even the external load vector will be
a function of displacement. By solving Eq. �1�, the displacement
vector can be calculated. Other quantities such as strains and
stresses can be explicitly calculated based on the displacements.
Therefore, the final stage of each analysis can be completed by
employing an equation solver. It is important to choose a power-
ful procedure that can be useful for a variety of problems. In this
paper, the dynamic relaxation �DR� technique is used.

In 1965, DR was introduced by Day �Day 1965� and then
followed by other researchers such as Otter �Otter 1966�. This
iterative technique was used for solving a system of simultaneous
linear and nonlinear equations. The mentioned procedure may be
explained by either mathematical or physical theories. Math-
ematically, the DR formulation is based on the second-order Ri-
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chardson role, which was developed by Frankel �Frankel 1950�.
Physically, the DR scheme can be illustrated by the steady-state
response of an artificial dynamic system with a fictitious density
�Welsh 1967; Cassell et al. 1968�.

The first application to nonlinear problems, postbuckling
analysis, and large deflection plates was performed by Rushton
�Rushton 1968, 1970, 1972�. Brew and Brotton formulated the
DR method by using a first-order dynamic equilibrium relation-
ship �Brew and Brotton 1971�. Some alternative formulations
have been presented for fictitious mass �Wood 1971�, critical
damping �Bunce 1972�, and estimation of steady-state displace-
ment �Alwar et al. 1975�. Turvey and Wittrick applied DR method
to the postbuckling of laminated composite plates �Turvey and
Wittrick 1973�. Furthermore, the Gerschgörin circle theory has
been used for fictitious mass in nonlinear problems �Cassell and
Hobbs 1976�. DR scheme has also been used to analysis of mem-
brane structures �Barnes 1975� and form finding analysis �Bames
1977�. Moreover, DR method, based on kinetic damping theory,
was applied to unstable rock mechanism �Cundall 1976�. In other
applications, the DR algorithm has been used for nonlinear analy-
sis of plates �Frieze et al. 1978; Turvey 1978, 1979�.

The first error analysis of DR iterations was performed by
Papadrakakis who described an automatic procedure for the se-
lection of DR parameters �Papadrakakis 1981�. Moreover, Under-
wood presented another interesting formulation for the explicit
DR method �Underwood 1983�. The implicit DR method has also
been formulated �Felippa 1984�. Additionally, DR procedure has
been used to obtain the nonlinear static response of pretension
cable roofs �Lewis et al. 1984� and finite-element analysis of
bending plates �Shawi and Mardirosion 1987�. In some papers,
alternative formulations have been presented for fictitious time
and damping �Shizhong 1988� and estimation of steady-state dis-
placement �Zhang and Yu 1989�. Other researchers have used the
DR algorithm for different engineering problems �Turvey and
Salehi 1990; Bardet and Proubet 1991�.

Another use of the DR scheme in the postbuckling analysis

was performed by Ramesh and Krishnamoorthy, in which they
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independently combined the DR algorithm with the incremental
displacement approach and arc-length procedure �Ramesh and
Krishnamoorthy 1993, 1994�. In the other papers, alternative fic-
titious damping based on the Rayleigh’s principle �Zhang et al.
1994� and DR applications in elastic-plastic and buckling prob-
lems of plates have been studied �Kadkhodayan and Zhang 1995;
Kadkhodayan et al. 1997�. Using the principle of minimum po-
tential energy of surface tension, DR approach was used for form
finding of lightweight tension structures that include prestressed
cable nets and fabric membranes �Lewis and Lewis 1996�.

Several papers in the present decade deal with some well-
known DR applications such as shape-finding analysis �Wood
2002; Han and Lee 2003� and the elastoplastic large deflection
analysis of annular sector plates �Turvey and Salehi 2005�. Fur-
thermore, the DR method has been combined with neural net-
works to increase model accuracy of tensegrity structures �Domer
et al. 2003�. In a recent book, Topping and Ivanyi concentrated on
the computational aspects of analysis and design of cable mem-
brane structures using the DR method �Topping and Ivanyi 2007�.
The modified fictitious time step has been formulated based on
minimization of the residual force in each DR iteration �Kadkho-
dayan et al. 2008�. Recently, the DR strategy has been used for
nonlinear dynamic analysis of structures �Rezaiee-Pajand and
Alamatian 2008�.

Based on the literature review, a few DR algorithms, such as
the one presented by Ramesh, can trace the snap-through and
snap-back regions. This paper tries to formulate a new DR
method, which can solve the problems with snap-through and
snap-back behaviors. For this purpose, a variable external load is
considered. In other words, the original contribution of this paper
is to optimize the choice of the load increment in each DR itera-
tion. This optimization will improve the ability of the DR method
for tracing the snap-through and snap-back regions of the equilib-
rium path. To reach this goal, the load factor of each DR iteration
is calculated by two proposed approaches: minimization of re-
sidual force and minimization of residual energy. For numerical
verification, some frame and truss structures with nonlinear be-
havior are analyzed.

DR Method

Both mathematical and physical theories are used in the DR for-
mulation. According to the DR method, an equivalent static sys-
tem, Eq. �1�, is shifted to an assumed dynamic space by adding
artificial inertia and damping forces as follows:

�M�n�A�n + �C�n�V�n + �S�n�D�n = �F�n = �P�n �2�

where �V�n and �A�n=artificial velocity and acceleration vectors
and �M�n and �C�n=fictitious mass and damping matrices of the
nth iteration of DR, respectively. The steady-state response of this
artificial dynamic system is the solution of Eq. �1� when the in-
ertia and damping forces are zero. There are different approaches
to derive the DR iterative relationships. In a common formulation,
such as the Papadrakakis scheme or the Underwood procedure,
mass and damping matrices are assumed to be diagonal, and the
explicit central finite difference integration is used. Consequently,
DR iterative relationships are obtained as follows �Underwood
1983�:

vi
n+1/2 =

2mii − �nCii
n vi

n−1/2 +
2�n

n ri
n i = 1,2, . . . ,q �3�
2mii + � Cii 2mii + � Cii
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Di
n+1 = Di

n + �n+1vi
n+1/2 i = 1,2, . . . ,q �4�

where �n, mii, and Cii=fictitious time step, diagonal elements of
mass, and damping matrices, respectively. Notation q denotes the
number of degrees of freedom and ri

n is the residual force of the
ith degree of freedom, i.e., �R�n in the nth iteration

�R�n = �M�n�A�n + �C�n�V�n = �P�n − �F�n �5�

Using Gerschgörin’s circle theory, the fictitious mass is obtained
as follows �Underwood 1983�:

mii
n �

��n�2

4 �
j=1

q

�sij
n � i = 1,2, . . . ,q �6�

In the explicit DR procedure introduced by Underwood, damping
matrix is assumed to be proportional to the diagonal mass matrix
as given below

�C�n = cn�M�n �7�

Here, cn is the damping factor of the nth DR iteration. The theory
of critical damping and the Rayleigh’s principle �Chopra 2002�
are used to estimate fictitious damping factor �Zhang et al. 1994�

cn = 2	 ��D�n�T�F�n

��D�n�T�M�n�D�n �8�

In the most common DR algorithms, constant fictitious time is
used ��=1�. This paper tries to trace the snap-through and snap-
back regions of statical path which cannot be achieved by the
common DR algorithms. To fulfill this goal, two different criteria,
i.e., minimization of residual force and minimization of residual
energy, are used to calculate the load factor in each DR iteration.

Variable Load in DR Iterations

In the DR iterations, the external load vector is assumed to be
constant. Therefore, the common DR method cannot trace the
snap-through and snap-back regions and the statical path jump
around these points. Fig. 1 shows such behaviors of DR scheme
in which statical paths have been transferred from A to B and
from C to D. In other words, true curves between A and B and C
and D cannot be traced by the common DR iterations.

In general, there are several procedures for tracing the
postbuckling path such as the method of artificial springs,
the displacement incrementation procedure, the current stiffness
parameter scheme, arc-length methods, etc. �Ramesh and Krish-

Fig. 1. Schematic behavior of common DR method in the snap-
through and snap-back regions
namoorthy 1993�. Some of these techniques have been used in the
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DR algorithm. The application of DR tactic to the analysis of
structures, which exhibit snap through and snap back, is not new.
A long ago, Rushton showed how to analyze mode changes using
DR strategy �Rushton 1970�. Moreover, Turvey presented a DR
analysis of the snap buckling of tapered imperfect circular plates
�Turvey 1978�. On the other hand, Ramesh and Krishnamoorthy
developed the displacement incrementation procedure for the DR
method �Ramesh and Krishnamoorthy 1993�. In this scheme, se-
lection of controlling displacement is difficult for the case of large
structures. To mediate this difficulty, they proposed a variable-
arc-length procedure. In this method, the square of the total dis-
placement of one degree of freedom �to be selected by the
analyst� is set equal to the square of the total arc length. There-
fore, a second-order equation is obtained for the load factor.

The total arc-length and incremental displacement methods are
not perfectly automatic. They allow the selection of some param-
eters such as the referenced degree of freedom, which have non-
zero external loads, incremental displacement, and arc length. As
a result, personal judgment has a considerable effect on the effi-
ciency of the method. The load factor, however, is calculated from
a second-order equation. This equation may have two different
roots where the appropriate root should be selected based on the
approach given by Crisfield �Crisfield 1981�. If this second-order
equation does not have real root, the load factor should be calcu-
lated by other existing techniques.

Based on the above discussion, methods such as incremental
displacement and arc length are not attractive enough to use with
the DR scheme because they cannot start and run automatically.
Here, new formulations are proposed for correcting the load fac-
tor of DR iterations in structures with snap-through and snap-back
regions. These techniques are based on the minimization of both
the residual force and the residual energy of DR iterations. For
this purpose, the load factor is introduced as an independent vari-
able as follows:

�R�n = �n�P�ref − �F�n �9�

Here, �n and �P�ref are the load factor and the reference load
vector, respectively. By this definition, the load factor can be
modified in each iteration. A new condition is required for calcu-
lating this additional variable. Minimization of residual force
and residual energy provides new conditions for calculating the
load factor. In the following lines, each condition is formulated
separately.

Minimization of Residual Force

The residual or out-of-balance force function is one of the factors
that control the convergence of DR iterations. It can be defined as
follows:

RFF = �
i=1

q

�ri
n�2 �10�

where RFF=residual force function of the nth DR iteration.
Kadkhodayan et al. minimized the residual force of the artificial
dynamic system to calculate fictitious time step �Kadkhodayan
et al. 2008�. This algorithm cannot be used in snap-through and
snap-back analyses because the external load is constant in the
related formulation. In other words, they minimized the residual
force of the artificial dynamic system to calculate the fictitious
time step and assumed a constant external load in all iterations.
In this study, the external load is variable in each DR iteration

and the fictitious time step is constant ��=1�. The load factor
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in the present paper is calculated by minimizing the residual
force.

Substituting Eq. �9� into Eq. �10� leads to the following result:

RFF = 
�
i=1

q

pi,ref
2 ���n�2 − 2
�

i=1

q

pi,reff i
n��n + �

i=1

q

�f i
n�2 �11�

Here, RFF is a second-order equation of the load factor. The
necessary condition for minimization of this function is that its
first-order derivative with respect to the load factor is equal to
zero

�RFF

��n = 0 → �n =

�
i=1

q

pi,reff i
n

�
i=1

q

pi,ref
2

�12�

Based on the second-order derivative test, a sufficient condition
for minimization of the RFF is written as follows:

�2RFF

���n�2 � 0 → 2�
i=1

q

pi,ref
2 � 0 �13�

The last inequality is valid for all step of analyses. Therefore, the
load factor formulated from Eq. �12� minimizes the RFF of the
structure. This relation can be used in each DR iteration for cor-
recting the load factor so that the nearest position to the equilib-
rium state is obtained. As a result, the jumping probability is
reduced.

Minimization of Residual Energy

In each DR iteration, the residual force creates a displacement
increment that approaches zero by converging DR iterations. This
incremental displacement is called the out-of-balance displace-
ment and has the following relationship:

��D�n+1 = �n+1�V�n+1/2 �14�

If the out-of-balance force vector �Eq. �9�� is multiplied by the
transpose residual displacement vector �Eq. �14��, the residual
energy function �REF� can be defined as follows:

REF = �n+1�
i=1

q

vi
n+1/2ri

n �15�

Substituting velocity and residual force from Eqs. �3� and �9�,
respectively, a second-order equation of the load factor is ob-
tained

REF = Z1
n��n�2 + Z2

n�n + Z3
n �16�

Here, Z1
n, Z2

n, and Z3
n are defined as follows:

Z1
n = 2�n�n+1�

i=1

q
�pi,ref�2

2mii + �nCii

Z2
n = �n+1�

q
pi,ref

2mii + �nCii
��2mii − �nCii�vi

n−1/2 − 4�nf i
n�
i=1
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Z3
n = �n+1�

i=1

q
f i

n

2mii + �nCii
�2�nf i

n − �2mii − �nCii�vi
n−1/2� �17�

The necessary condition for minimization of REF is that its first
derivative with respect to the load factor is equal to zero

�REF

��n = 0 → 2Z1
n�n + Z2

n = 0 → �n = −
Z2

n

2Z1
n �18�

By substituting Eq. �17� into Eq. �18�, the load factor can be
obtained as follows:

�n =

�
i=1

q
pi,ref

2mii + �nCii
�4�nf i

n − �2mii − �nCii�vi
n−1/2�

4�n�
i=1

q
�pi,ref�2

2mii + �nCii

�19�

It is clear that the REF is minimized when its second-order de-
rivative with respect to the load factor is greater than zero

�2REF

���n�2 � 0 → 2Z1
n = 4�n�n+1�

i=1

q
�pi,ref�2

2mii + �nCii
� 0 �20�

The inequality �20� is valid for all analyses. Therefore, the load
factor formulated from Eq. �19� minimizes the REF of the struc-
ture. It is worth mentioning that this formulation leads to a unique
load factor that can be used in each DR iteration.

From a mathematical point of view, the load factors predicted
by Eqs. �12� and �19� minimize the residual force and residual
energy of each DR iteration, respectively. These relationships are
different. If the minimum residual force �MRF� criterion is used,
the load factor is only a function of external and internal force
vectors �Eq. �12��. In other words, a fictitious mass, damping, and
time step do not have a direct effect on the choice of the load
factor. The load factor formulated from the minimum residual
energy �MRE� criterion �Eq. �19��, however, is a function of all
DR parameters. The main similarity between the MRF and MRE
procedures is the load factor, which can be calculated explicitly in
both tactics. Moreover, these techniques utilize an unconditional
process for evaluating the load factor. Generally, two calculated
load factors have different values. For a single degree of freedom
system, with q=1, and damping factor of cn=2 /�n, both MRF and
MRE strategies lead to the same value for the load factor, i.e.,
�n= fn / pref.

DR Algorithm with Variable Load Factor

In the previous section, two groups of formulations have been
presented for calculating the load factor of the DR iteration.
Based on these formulations, the DR algorithm can be written as
follows:
1. Assume values for initial artificial velocity �null vector�, ini-

tial displacement �null vector or convergence displacement
on the previous increment, if available�, fictitious time step
��=1�, maximum load factor ��max�, and convergence crite-
rion for the out-of-balance force �eR=1.0�10−6� and the ki-
netic energy �eK=1.0�10−12�.

2. Construct a tangent stiffness matrix and internal force vector.
3. Calculate a fictitious diagonal mass matrix using Eq. �6�.
4. Find a fictitious damping factor by Eq. �8�.
5. Correct the load factor from Eq. �12� or Eq. �19� for the MRF
or MRE criteria, respectively.
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6. Calculate an out-of-balance force vector using Eq. �9�.
7. If 	�i=1

q �ri
n�2�eR, go to 12; otherwise, continue to 8.

8. Update the artificial velocity vector using Eq. �3�.
9. If �i=1

q �vi
n+1/2�2�eK, go to 12; otherwise, continue to 10.

10. Update the displacement vector using Eq. �4�.
11. Go to 2.
12. Print the results of the current increment.
13. If ���max, stop; otherwise, continue to 14.
14. �=�+1
15. Go to 2.

Here, the symbols MRF and MRE are used for the minimiza-
tion of RFF and REF, respectively. It is clear that the suggested
algorithm is perfectly automatic. In other words, a unique load
factor is calculated from each scheme. Moreover, the proposed
methods do not require any additional parameters such as incre-
mental displacement or arc length. Therefore, personal judgment
has no effect on the efficiency of the suggested techniques. It is
worth emphasizing that procedures like arc-length approaches do
not run perfectly automatic because of golden values such as arc
lengths or incremental displacements. Suitable and consistent se-
lection of these values has a great effect on the efficiency of the
tactic. The proposed schemes �minimization of residual force and
residual energy� eliminate these difficulties.

Numerical Examples

For numerical verification of the suggested methods, some frame
and truss structures, with elastic geometrically nonlinear behav-
ior, have been analyzed. To solve these problems, the writers have
written in Fortran Power Station software a computer program for
numerical studies. In all analyses, maximum load factor was as-
sumed to be 10 ��max=10�. It should be noted that maximum load
factor depends on the reference and final load of structure as
follows:

�max =� �
i=1

q

pi
2

�
i=1

q

pi,ref
2

�21�

Here, pi is the final load which should be applied to the ith degree
of freedom. As a result, the maximum load factor can be calcu-
lated automatically from the structural loading properties.

Toggle Frame

Fig. 2 shows a two-member frame that has been analyzed ex-
perimentally and analytically �Wood and Zienkiewicz 1977�.
This structure is used to verify the ability of the proposed
techniques for tracing the statical path. The reference load �P�,
modulus of elasticity, cross-sectional area, and moment area of

12 2 2

Fig. 2. Toggle frame
frame members are 44.28 N, 71�10 N /mm , 118.06 mm , and
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374.61 mm4, respectively. This structure is analyzed by the Felip-
pa’s frame element, which was introduced by the corotational
finite-element formulation �Felippa 1997�. Ten of these elements
were selected to analyze toggle frame.

To convince the readers about the accuracy of DR method, a
comparison study is necessary between DR results and other well-
known numerical techniques such as the Newton-Raphson �NR�
strategy. For this purpose, a constant load, i.e., 150 N, is applied
to the frame. This structure is analyzed with DR and NR schemes
separately. The top displacements of the frame, which is calcu-
lated from the DR and NR methods, are 4.6197 and 4.5992 mm,
respectively. Results show that the DR method has a suitable
accuracy which is perfectly compatible with NR technique. It
should be noted that extensive numerical analyses of different
structures confirm the accuracy of DR algorithm.

Afterward, the toggle frame is analyzed by applying the vari-
able load factor and using proposed algorithms �MRF and MRE
processes�. Fig. 3 shows the statical path of the upper node ver-
tical deflection. Both the MRF and MRE procedures present the
same and complete equilibrium path. For comparing these tech-
niques, the number of the load increments and total DR iterations
have been inserted in Table 1. It is clear that the MRE traces the
statical path with more points than the MRF. Therefore, the more
consistent equilibrium path can be obtained. By increasing the
equilibrium points, however, the total DR iterations increase.
Hence, analysis time of the MRE was greater than the MRF.

Space Truss

Fig. 4 shows a space truss with 21 degrees of freedom �Ramesh
and Krishnamoorthy 1993�. The axial rigidity of bar elements is

Table 1. Number of Load Increments and DR Iterations in the Numerical
Analyses

Structure Method

Number
of load

increments

Total
number of

DR iterations

Toggle frame MRF 120 16,795

MRE 782 109,172

Star truss
under symmetric load

MRF 60 4,162

MRE 136 11,406

Star truss
under asymmetric load

MRF 93 11,325

MRE 278 44,296

Shallow space truss MRF 149 61,656

MRE 454 158,190

0
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6

8

10

0 5 10 15 20

Displacement in the Z direction [mm]

Lo
ad
Fa
ct
or

MRF
MRE

Fig. 3. Load-deflection curve of the toggle frame
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960,510 N. In this example, Felippa’s element, which was intro-
duced by the total LaGrange finite-element formulation, was used
�Felippa 1997�. Each bar of space truss is considered as one ele-
ment in the finite-element model. This structure was analyzed for
two kinds of loading that have been inserted in Table 2. First, the
symmetric loads are applied to the truss. Figs. 5 and 6 show the
load-deflection curves of Nodes 1 and 2, respectively. This load-
ing causes snap-back behavior in Node 1. It is clear that when the
MRF is used, a jump occurs in the statical path between load
factors of 6 and �4. The MRE, however, traces the equilibrium
path completely and without any load or displacement jumping.
As a result, the MRE procedure may be more efficient than the
MRF technique.

To clarify the specification of the proposed techniques, the
asymmetric loading was applied to the space truss �Table 2�. The
load-deflection curves of vertical and horizontal displacements of
Node 1 have been plotted in Figs. 7 and 8, respectively. Further-
more, Fig. 9 shows the load-deflection path of the vertical dis-
placement of Node 2. Both the MRF and MRE procedures could

Table 2. Load Cases of the Space Truss

Load case Node number

Reference
load value

�N�

Symmetric load 1 50

2, 3, 4, 5, 6, 7 25

Asymmetric load 1 37.5

5, 6 75

Fig. 4. Space truss: �a� X-Y view; �b� X-Z view
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Fig. 5. Load-deflection curve of Node 1 of the space truss under
symmetric load
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trace the snap-back and snap-through regions. In spite of the same
accuracy, the MRE requires more iteration than the MRF. As a
result, the MRE method uses more computing time than the MRF
scheme.

Shallow Truss Dome

The space truss shown in Fig. 10 has 168 members and 147
degrees of freedom �Powell and Simons 1981�. The maximum
elevation is 1,790.22 mm. This structure includes many degrees
of freedom, and it has highly nonlinear behavior. The axial rigid-
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Fig. 6. Load-deflection curve of Node 2 of the space truss under
symmetric load
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Fig. 7. Load-deflection curve of Node 1 of the space truss under
asymmetric load
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Fig. 8. Load-deflection curve of Node 1 of the space truss under
asymmetric load
114 / JOURNAL OF STRUCTURAL ENGINEERING © ASCE / JANUARY 201

Downloaded 18 Dec 2010 to 217.219.244.39. Redistrib
ity of bar elements is 105 N. Once again, Felippa’s element was
used �Felippa 1997�. Each bar of space truss is considered as one
element in the finite-element model. The reference load applied to
the top of the truss is 100 N. This example is employed to com-
pare the proposed MRF and MRE procedures with arc-length
method, which is the most common approach for tracing the snap-
through and snap-back regions. For arc-length analysis, numbers
of necessary iteration �JD�, maximum iteration �Jmax�, acceptable
error, and incremental load factor in the prediction step of the first
increment ���1

1� are 6, 20, 104, and 1, respectively. The results of
arc-length analysis have been taken from the paper by Powell and
Simons �Powell and Simons 1981�. Fig. 11 shows the variation of
tip displacement of shallow truss dome versus the load factor. It is
clear that the configuration of statical path obtained from the
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Fig. 9. Load-deflection curve of Node 2 of the space truss under
asymmetric load

Fig. 10. Shallow truss dome: �a� X-Y view; �b� X-Z view
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Fig. 11. Load-deflection curve of the tip node of the shallow truss
dome
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MRF and MRE procedures is the same as the one calculated by
the arc-length method. In other words, both of proposed DR tech-
niques and also arc-length approach present the unique curve for
the snap-through and snap-back analysis, and their results are
perfectly compatible.

It should be added that numbers of load increments for the
MRF and MRE techniques are higher than the arc-length method.
It seems that the significant weakness of the MRF and MRE
procedures compared with the arc-length approach is the very
large number of load increments required to trace the deformation
path. This weakness can be covered by some unique specifica-
tions of proposed DR schemes. As it can be seen in Fig. 11 �also
in Figs. 7 and 9�, the number of load increment increases around
the limit points. This property helps to estimate the limit points
with a very suitable accuracy. In other words, the accuracy of the
MRF and MRE techniques for predicting the limit points is higher
than the arc-length method.

On the other hand, the process of calculating the load factor in
the proposed DR methods �MRF and MRE� is perfectly auto-
matic. These formulations do not need any additional parameters
to calculate the load factor and trace the snap-through and snap-
back regions. However, for performing arc-length analysis, some
parameters such as the number of necessary iteration �JD� and
maximum iteration �Jmax� should be selected based on previous
analyses or experiences.

Finally, it seems that another significant weakness of the MRF
and MRE procedures compared with arc-length method is the
very large number of DR iterations required to trace the deforma-
tion path. It is worth emphasizing that DR iterations are per-
formed just by vector operations, while the arc-length process
needs matrix calculations in each iteration. Since the matrix cal-
culation is much more than the vector one, the number of itera-
tions is not a suitable parameter to compare the abilities of these
two strategies. It should be noted that a system of simultaneous
equations should be solved in each arc-length iteration, while
each DR iteration is performed by calculating Eqs. �3� and �4�.

Concluding Remarks

This paper has developed two new procedures for tracing the
snap-through and snap-back regions based on MRF and also
MRE criteria for DR method. The mathematical formulation leads
to the closed-form equations which are consistent with the DR
iterations. The resulted algorithms are perfectly automatic and do
not need the analyst intervention. Moreover, the MRF and MRE
formulations lead to an unconditional process for calculating the
load factor. Generally, two calculated load factors have different
values.

A wide range of numerical examples, with geometrical nonlin-
ear behavior, have shown that new techniques can present the
snap-through and snap-back regions of the structural statical path.
These analyses illustrate that the MRE presents a more accurate
and consistent equilibrium path than the MRF. In other words, the
MRE scheme can trace the complicated load-deflection paths
without any jumping. However, the number of the load incre-
ments needed for the MRE is higher than the number needed for
the MRF.

Based on comparison study with the other common methods
such as arc-length approach, the numbers of increments used by
the proposed DR techniques are considerably high. Although this
need increases the analysis time, the high number of increments,

which is commonly required around the limit points, causes that
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the proposed MRF and MRE algorithms can present the limit
points with a very suitable accuracy. Moreover, because the pro-
posed schemes are perfectly automatic, they eliminate the need
for additional or constant parameters such as arc length or incre-
mental displacement.

Notation

The following symbols are used in this paper:
�A�n 	 artificial acceleration vector of nth iteration;

cn 	 artificial damping factor of nth iteration;
�C�n 	 artificial damping matrix of nth iteration;
�D� 	 displacement vector;
�F� 	 internal force vector;

�M�n 	 artificial mass matrix of nth iteration;
�P� 	 external load vector;

�P�ref 	 reference load vector;
q 	 number of degrees of freedom;

�R� 	 unbalanced force vector;
�S� 	 stiffness matrix;

�V�n 	 artificial velocity vector of nth iteration;
Z1

n, Z2
n, Z3

n 	 formulation parameters of nth increment;
�n 	 load factor of nth DR iteration; and

�max 	 maximum load factor.

Superscripts

N 	 iteration number of DR method.

Subscripts

i 	 each degree of freedom of structure.
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