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SUMMARY

Rate plasticity equations for the case of Drucker–Prager’s model in small strain regime are considered.
By defining an augmented stress vector, the formulations convert the original problem into a quasi-linear
differential equation system. Two new exponential mapping schemes for integrating model equations are
proposed. In addition, two traditional schemes for solving the dynamical system in an explicit manner
are discussed. The two semi-implicit schemes developed pose higher accuracy and better convergency.
Error contours are provided for all four methods to display the accuracy of each scheme. In order to
compare the results, these contours for the classical one-step backward Euler integration method are also
displayed. Accuracy and efficiency along with the rate of convergency of the existing and the proposed
methods are examined by numerical examples. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A non-linear finite element analysis of structures is usually based on iterative solution of equilibrium
equations. Upon these, incremental strain histories are generated. Then updated stresses due to
given strains are obtained. The constitutive equations of the material characterize stress as a
function of the deformation history. Finally, the equilibrium equations are checked for the updated
stress distribution and, if violated, the iteration process continued. One of the important steps in
the above procedure is the stress-updating algorithm. The stress-updating procedure requires a
large amount of calculations, even for simple plasticity models. A solid three-dimensional model
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may have several thousand stress points at which updating stress calculations are required in
each load step and in its corrective iterations. Due to the non-linearity of constitutive equations,
stress updating may not be performed in an exact manner. This process is normally performed by
numerical integration of elastoplastic constitutive equations.

Drucker–Prager’s yield criterion is frequently adopted to simulate the behavior of geomaterials.
While it is one of the simplest yield functions, it still poses several challenges not encountered
in the widely used von-Mises’ yield function. One of the simplest and commonly used methods
for integration of Drucker–Prager’s plasticity model is the one-step backward Euler integration
method. This scheme is widely used in commercial codes for its simplicity, accuracy and stability.
An accurate numerical solution for Drucker–Prager’s model was presented by Loret and Prevost
[1]. As mentioned there and also investigated in this work, the method is very time consuming and
may be used only as a benchmark for more rapid and less accurate numerical methods. Genna and
Pandolfi [2] presented a two-step integration scheme for the rate plasticity equations of Drucker–
Prager’s model with linear mixed hardening. The method was based on a tangent predictor and
a non-radial return corrector. The accuracy of their scheme was not significantly better than that
of the one-step backward Euler method, but it could handle the singularity point of the yield
function.

In the past several years, further attention has been paid to develop new integration techniques
based on the internal symmetries of simple constitutive models. If the numerical procedure can
take the internal symmetry of the constitutive model into account, the plastic consistency condition
is completely satisfied at the end of each time step [3–5]. Auricchio and Beirão da Veiga [6]
converted the original non-linear differential problem of von-Mises’ plasticity into a dynamical
system Ẋ= AX for an augmented stress vector X. Then they developed a new numerical scheme
by employing an exponential map, exp(An�t), as an approximation to the above system. Artioli
et al. [7] enhanced this method to obtain a fully consistent algorithm. Finally, further improvements
were made to this scheme and consistent methods with a second-order accuracy were developed
[8, 9]. Liu [10] investigated the internal symmetry of a constitutive model of Drucker–Prager’s
type and converted this model into a dynamical system Ẋ= AX using two separate approaches.
The solution of this system was based on exponential maps in an explicit manner.

In the present study, Liu’s work [10] is explained through introducing new and less compli-
cated parameters and by offering additional numerical tests. In addition, two new stress-updating
algorithms are offered in a semi-implicit manner with great accuracy and rapid convergency. To
completely display the accuracy of all formulations, their iso-error maps are drawn and compared
with the contours corresponding to the classical Euler’s backward method. Furthermore, to in-
vestigate the accuracy and rate of convergency of all schemes, a pointwise strain-controlled load
history with different time steps is considered, and the respective error graphs are plotted.

To simplify the descriptive and numerical part of the work, all second-order tensors are consid-
ered as 9-component column vectors by ordering the tensor components in a vector format. Owing
to the symmetry of second-order tensors, the number of independent components may be reduced
to 6. Clearly, the definition of the trace operator and the Euclidean norm must be modified.

2. BASIC MODEL

An associative Drucker–Prager’s plasticity model in a small strain domain is adopted. It is supposed
that the material behavior is perfectly plastic with no hardening. The total stress and strain, e and r,
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Figure 1. Drucker–Prager’s yield surface in: (a) principal stress space and (b) deviatoric planes.

are decomposed into deviatoric and volumetric components as follows:

r= s + pi with p= 1
3 tr(r) (1)

e= e + 1
3 �vi with �v = tr(e) (2)

where ‘tr’ indicates the trace operator and i is the vector corresponding to the second-order
identity tensor. s, e, p and �v are the deviatoric stress, deviatoric strain, hydrostatic stress and
volumetric strain, respectively. The original Drucker–Prager’s criterion, formulated in 1952, is
a simple modification of the von-Mises’ criterion, where the influence of the hydrostatic stress
component on the failure is introduced by the inclusion of an additional term

f =√
J2 + �p − �y = 0 (3)

where J2 is the second invariant of the deviatoric stress tensor. �y, the yield stress in pure shear,
and � are material parameters which are constant in a perfect plasticity model. These parameters
are related to the angle of friction and the cohesion of a geomaterial. These relationships are
available in many references, e.g. Chen and Han [11]. Drucker–Prager’s criterion defines a cone
in the principal stress space as presented in Figure 1(a).

As shown in Figure 1(b), the radius of the yield surface in the �-plane is
√
2�y and the radius

of the yield surface in any other deviatoric plane will be
√
2(�y − �p). In this figure �′

1, �
′
2 and �′

3
are the projections of the principal axes on the deviatoric plane. By rearranging Equation (3), the
yield function can be written as

F = 1
2 s

Ts − (�y − �p)2 = 0, �y − �p>0 (4)

The total strain and volumetric strain increments are considered as the sum of an elastic and a
plastic part

ė= ėe + ėp (5)

�̇v = �̇ev + �̇pv (6)
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Note that, in contrast to the von-Mises’ criterion, the volumetric component is not treated elastically.
The total stress increment for isotropic materials is given by the generalized Hooke’s law

ṙ= 2Gėe + (K − 2
3G)�̇evi (7)

where G and K are the shear and bulk module, respectively. These two constants with �y and �
are four material parameters that may be determined by experiments. Using Equations (1) and (7),
one obtains

ṗ= K �̇ev (8)

In an associative flow rule, plastic strain increment is normal to the yield surface and its length is
defined by �̇ as follows:

ėp = �̇
�F
�r

(9)

Using Equation (4), the above equation leads to

ėp = �̇

[
s + 2�

3
(�y − �p)i

]
(10)

Considering tr(s) = 0, one obtains

�̇pv = 2��̇(�y − �p) (11)

Substituting Equations (6) and (11) into Equation (8) yields

ṗ= K �̇v − 2�K �̇(�y − �p) (12)

The increment of deviatoric stress, ṡ, is obtained by considering the increment of elastic deviatoric
strain and the elastic shear modulus as follows:

ṡ= 2Gėe = 2G(ė − ėp) (13)

Using Equations (5) and (2), one obtains the following equation:

ėp = ėe − 1
3 �̇

p
v i (14)

Substituting Equations (10) and (11) into the above equation yields

ėp = �̇s (15)

Finally, using Equations (15) and (13), the following equation is achieved:

ṡ= 2Gė − 2G�̇s (16)

Equations (12) and (16) are constitutive equations in terms of deviatoric and dilatational compo-
nents. The Kuhn–Tucker loading–unloading conditions are

�̇�0, F�0, �̇F = 0 (17)

The material behaves plastically if �̇>0 and elastically when �̇ = 0. According to Equation (17)
there are two phases: (i) �̇>0 and F = 0 or the ON phase and (ii) �̇ = 0 and F�0 or the OFF
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phase. In order to explain the ON–OFF switch, finding a relationship for �̇ is necessary. This can
be accomplished by combining Equations (12) and (16) with the following consistency condition:

Ḟ = 0 (18)

or

sTṡ + 2� ṗ(�y − �p) = 0 (19)

which leads to

�̇ = GsTė + �K (�y − �p)�̇v
2H(�y − �p)2

(20)

where H is a material constant defined by

H :=G + �2K (21)

Since the denominator of Equation (20) is positive, the following criteria for plastic irreversibility
that is based on the Kuhn–Tucker conditions, Equation (17), will be revealed:

GsTė + �K (�y − �p)�̇v > 0 and F = 0 ⇔ ON phase

GsTė + �K (�y − �p)�̇v � 0 or F<0 ⇔ OFF phase
(22)

3. AUGMENTED DIFFERENTIAL EQUATION SYSTEM (ALGORITHM I)

Liu [10] used the constitutive differential Equations (12) and (16) and converted them into the
following dynamical system that could be solved by an exponential map algorithm:

Ẋ= AX (23)

where X is an augmented stress vector with n + 2 dimensions and will be derived later. In the
present study, in order to express Liu’s approach and to avoid the complexity arising from selecting
only the independent stress components, all nine stress components are considered. Furthermore,
in the present derivation, a less complicated set of parameters is used. First, we introduce an
integrating factor, X0, such that

d

dt
(X0s) = 2GX0ė (24)

The above equation easily yields

ṡ= 2Gė − Ẋ0

X0
s (25)

Comparing Equations (25) and (16), one obtains the following scalar differential equation:

Ẋ0

X0
= 2G�̇ (26)
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Solving the above equation with the initial condition X0(0)= 1 leads to

X0 = exp(2G�) (27)

Now, another integrating factor x0 is introduced, such that

d

dt
[x0(�y − �p)] = −�Kx0�̇v (28)

This yields

ṗ= K �̇v + ẋ0

x0
1

�
(�y − �p) (29)

Comparing Equation (29) with Equation (12), the following relationship can be obtained:

ẋ0

x0
=−2�2K �̇ (30)

Solving the above scalar differential equation with the initial condition x0(0)= 1, one obtains

x0 = exp(−2�2K �̇) (31)

Comparing Equations (27) and (31), it is clear that

x0 = (X0)−�2K/G = (X0)1−H/G (32)

Note that Equations (24) and (28) are valid even when the material behaves elastically (�̇= 0).
Now, a new augmented stress vector X in the n + 2 dimensional space is defined as

X :=

⎧⎪⎪⎨
⎪⎪⎩
Xs

X p

X0

⎫⎪⎪⎬
⎪⎪⎭=

⎧⎪⎪⎨
⎪⎪⎩

Xs

x0(�y − �p)

X0

⎫⎪⎪⎬
⎪⎪⎭ = X0

⎧⎪⎪⎨
⎪⎪⎩

s

(X0)−H/G(�y − �p)

1

⎫⎪⎪⎬
⎪⎪⎭ (33)

The yield condition, Equation (4), in this new stress space can be expressed in the following form:

1
2 (X

s)TXs − (X0)2H/G(X p)2 = 0 (34)

In order to reach the form of Equation (23), taking the scalar product of Equation (25) with s
leads to

Ẋ0sTs + X0sTṡ= 2GX0sTė (35)

In the plastic phase, the yield function leads to the following equation:

sTs= 2(�y − �p)2 = 2[(X0)H/G−1X p]2 (36)

Substituting Equations (12) and (20) into the consistency condition, Equation (19), leads to

sTṡ= −2�KG

H
(�y − �p)�̇v + 2�2KG

H
sTė (37)

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2008; 74:799–826
DOI: 10.1002/nme



DRUCKER–PRAGER’S ELASTOPLASTIC MODELS 805

Combining Equations (35)–(37), the following evolution relation for X0 is achieved:

Ẋ0 = 1

�

[
(Xs)Tė + �K

G
(X0)H/G �̇v

]
(38)

where

� := H

G2
[(X0)H/G−1X p]2 (39)

Now, Equations (24), (28) and (38) can be rewritten in a more compact form as

d

dt
(X) = d

dt

⎧⎪⎪⎨
⎪⎪⎩

Xs

x0(�y − �p)

X0

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2GX0ė

−�Kx0�̇v

1

�

[
Xs ėT + �K

G
(X0)H/G �̇v

]
⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(40)

or

Ẋ= AX (41)

where A is a control matrix and, in the ON phase, is as follows:

A =

⎡
⎢⎢⎢⎣

O10×10 2G

[
ė, −�K

2G
(X0)−H/G �̇v

]T
1

�

[
ė,

�K

G
(X0)H/G �̇v

]
0

⎤
⎥⎥⎥⎦ (42)

Obviously, in the OFF phase, Ẋ0 = 0 and

A =
⎡
⎢⎣O10×10 2G

[
ė, −�K

2G
(X0)−H/G �̇v

]T
01×10 0

⎤
⎥⎦ (43)

Therefore, the basic plasticity model has been converted into a new model. Since A is a function
of X0 and X p, the dynamical system, Equation (41), does not have a closed-form solution. But if
one assumes that X0 and X p are constant in a time interval, A will depend only on ė and �̇v . This
means that if the strain path is rectilinear, i.e. ė and �̇v are constant in each time step, then A will
be constant in each step and there will exist a closed-form solution for Equation (41).

4. EXPLICIT STRESS UPDATING (ALGORITHM I)

A specified strain-controlled path can be approximated by a rectilinear strain path, such that
ė and �̇v are constant within each time step. These constant values at a discrete time t = tn are
denoted by �en and ��vn . Three constitutive quantities, rn, en and �n , are known at time tn in
a conventional finite element analysis. The updated strains, en+1 and �vn+1 , are known at tn+1.
The stress updating algorithm must integrate the plasticity constitutive equations over each time
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increment to determine rn+1 and �n+1. Here, this is done by solving the dynamical system,
Equation (41), with the following initial value:

X0 =

⎧⎪⎪⎨
⎪⎪⎩
Xs
0

X p
0

X0
0

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎨
⎪⎩

s0

�y − �p0

1

⎫⎪⎬
⎪⎭ (44)

where s0 and p0 are the initial deviatoric stress and initial hydrostatic stress, respectively. It
should be mentioned that according to Equation (27), at time t = 0, constitutive parameter � is
zero and therefore X0 = 1. The solution of Equation (41) is available in the following manner (see
Appendix A) for explanations):

Xn+1 = exp(A�t)Xn (45)

As mentioned before, integrating factors X0 and X p, which appear in A, are not constants, there-
fore, A varies with time in the ON phase. However, X0 and X p and therefore A may be assumed
constant within each time step. In a fully explicit manner, as suggested by Liu [10], the value of
A at the beginning of each time step, An , is considered throughout that step. Therefore, Equation
(45) can be expressed as

Xn+1 = exp(An�t)Xn = GnXn (46)

where

Gn =

⎡
⎢⎢⎣

I10×10 + an − 1

c2n
A12A21

bn
cn

A12

bn
cn

A21 an

⎤
⎥⎥⎦ (47)

and

A12 = 2G

{
�en

−�K

2G
(X0

n)
−H/G��vn

}

A21 = 1

�n

[
(�en)T,

�K

G
(X0

n)
H/G��vn

]

�n = H

G2
[(X0

n)
H/G−1X p

n ]2

cn =
√
2G

�n
(1 − V 2

n )‖�en‖

Vn = �K

G

��vn√
2‖�en‖

an = cosh(cn), bn = sinh(cn)

(48)

In the above relationships, I10×10 is the identity matrix and Vn is a parameter to characterize the
ratio of dilatational and deviatoric deformations in the nth time step. Also, it is supposed that
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the nth step is fully plastic and that sn lies on the yield surface. Otherwise, similar to all explicit
integration schemes, a partially plastic step should be divided into elastic and plastic portions and
then contact stress could be determined, e.g. References [6–8]. To accomplish this task, a scalar
parameter, r , that divides �e into an elastic step, r�e, and a plastic step, (1− r)�e, is used. Then,
�en and ��vn should be replaced by (1 − r)�en and (1 − r)��vn (Equation (48)). Appendix B
explains the procedure to calculate r and the corresponding contact stress. In the special case of
Vn = 1, after addressing the singularity issue, Gn will have the following form:

Gn =
[

I10×10 + 1
2A12A21 A12

A21 1

]
(49)

Since X0 and X p are considered constant in each time step, the induced approximation causes
the consistency condition not to be exactly enforced. A remedy to this could be a projection of
the solution on the yield surface at the end of each time step. Imposing consistency condition,
Equation (34), on the numerical solution of Xn+1 leads to

X0
n+1 =

[
1√
2

‖Xs
n+1‖

X p
n+1

]G/H

(50)

where Xs
n+1 and X p

n+1 are computed using Equation (46). Finally, the deviatoric stress at the end
of the time step is computed as

sn+1 = Xs
n+1

X0
n+1

(51)

The corresponding mean stress, pn+1, is simply derived from Equation (4). It must be mentioned
that X0 is not a history variable and can be set equal to 1 at the start of each time step.

5. AUGMENTED DIFFERENTIAL EQUATION SYSTEM (ALGORITHM II)

A different scheme proposed by Liu [10] converts the differential Equations (12) and (16) into the
following dynamical systems:

Ẋa = AaXa

Ẋb = AbXb

(52)

where Xa and Xb are augmented stress vectors. These dynamical systems will be solved by an
exponential map algorithm. Again, in the present study, to avoid the complexity of Liu’s [10]
formulation, a different set of parameters is used. Referring to Equation (27), the integrating factor
X0 can be used, such that

d

dt
(X0s) = 2GX0ė (53)
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Now, a time-dependent scalar parameter, R, which is the radius of the yield surface on the deviatoric
plane, is introduced by the following two definitions:

(a) R := ‖s‖
(b) R := √

2(�y − �p)
(54)

Taking the scalar product of Equation (53) by s leads to

Ẋ0sTs + X0ṡTs= 2GX0ėTs (55)

Using the definition of R in Equation (54a), one can easily obtain

R2 = sTs, RṘ = sTṡ (56)

Substituting the above relationships into Equation (55) leads to the following scalar differential
equation:

d

dt
(X0R) = 2G

R
X0ėTs (57)

Now, an augmented stress vector Xa in the n + 1 dimensional space is defined as

Xa :=
{
Xs
a

X0
a

}
= X0

{
s

R

}
(58)

Equations (53) and (57) can be rewritten in a more compact form as follows:

d

dt
(Xa) = d

dt

{
X0s

X0R

}
=

⎧⎨
⎩

2GX0ė

2G

R
X0sTė

⎫⎬
⎭ or Ẋa = AaXa (59)

where Aa is a control matrix and, in the ON phase, is as follows:

Aa = 2G

R

[
O9×9 ė

ėT 0

]
(60)

Similarly, regarding Equation (31), the integrating factor x0 can be used, such that

d

dt
[x0(�y − �p)] = −�Kx0�̇v (61)

Note that x0 and X0 are related to each other through Equation (32). Taking the product of the
above equation by (�y − �p) leads to the following relationship:

x0(�y − �p)
d

dt
(�y − �p) + ẋ0(�y − �p)2 =−�(�y − �p)Kx0�̇v (62)

By the definition of R from Equation (54b), one can easily obtain

R2 = 2(�y − �p)2, RṘ = 2(�y − �p)
d

dt
(�y − �p) (63)
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Substituting the above relationships in Equation (62) gives the following scalar differential equation:

d

dt
(x0R) =−2�

K

R
(�y − �p)x0�̇v (64)

Introducing Xb vector as

Xb :=
{
X1
b

X0
b

}
= x0

{
�y − �p

R

}
(65)

one can rewrite Equations (61) and (64) in the following form:

d

dt
(Xb) = d

dt

{
x0(�y − �p)

x0R

}
=

⎧⎨
⎩

−�Kx0�̇v

−2�
K

R
(�y − �p)x0�̇v

⎫⎬
⎭ or Ẋb = AbXb (66)

where Ab is a control matrix and, in the ON phase, is as follows:

Ab =−�
K

R
�̇v

[
0 1

2 0

]
(67)

Thus, the basic plasticity model has been converted to a new one. Aa and Ab are functions of
R and, therefore, time dependent. As a result, the dynamical systems, Equation (52), do not have
closed-form solutions. But if one assumes that R is constant in a time interval, Aa and Ab will
depend only on ė and �̇v . This means that if the strain path is rectilinear, i.e. ė and �̇v are constant
within each time step, then Aa and Ab will be constant throughout that time interval and there
will exist closed-form solutions for these systems.

6. EXPLICIT STRESS UPDATING (ALGORITHM II)

As mentioned before, approximating the strain-controlled path by a rectilinear one, ė and �̇v in
each time step will have constant values of �en and ��vn . To integrate the plasticity constitutive
equations, the dynamical systems, Equation (52), must be solved using the following initial values:

Xa,0 =
{
Xs
a,0

X0
a,0

}
=

{
s0

‖s0‖

}
, Xb,0 =

{
X1
b,0

X0
b,0

}
= (�y − �p0)

{
1

√
2

}
(68)

where s0 and p0 are deviatoric and hydrostatic stresses at time t = 0. Note that at time t = 0 the
constitutive parameter � is equal to zero, and considering Equations (27) and (31) X0 and x0 are
equal to one. The solution of Equation (59), when Aa is a constant, is

Xa,n+1 = exp(Aa,n�t)Xa,n = Ga,nXa,n (69)

and

Ga,n =
[

I9×9 + (gn − 1)�ên(�ên)T hn�ên

hn�êTn gn

]
(70)
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where �ên is the unitary direction of �en and scalar variables gn and hn are as follows:

gn = cosh

(
2G

Rn
‖�en‖

)
, hn = sinh

(
2G

Rn
‖�en‖

)
(71)

By a similar reasoning, the solution of system, Equation (66), can be obtained as

Xb,n+1 = exp(Ab,n�t)Xb,n = Gb,nXb,n (72)

with

Gb,n =
⎡
⎣ un

1√
2
vn

√
2vn un

⎤
⎦ (73)

and

un = cosh

(
−√

2�
K

Rn
��vn

)
, vn = sinh

(
−√

2�
K

Rn
��vn

)
(74)

Similar to algorithm I, if sn is inside the yield surface, one must replace �en and ��vn with
(1− r)�en and (1− r)��vn . According to Equation (58), in order to determine sn+1, the value of
X0
n+1 should be determined. At time t = tn+1, Equations (58) and (65) lead to

X0
a,n+1 = X0

n+1 · Rn+1

X0
b,n+1 = x0n+1 · Rn+1

(75)

Equation (32) and the above relationships give X0
n+1 as equation:

X0
n+1 =

[
X0
a,n+1

X0
b,n+1

]G/H

(76)

Finally, deviatoric stress at the end of time step, sn+1, is computed by

sn+1 = Xs
a,n+1

X0
n+1

(77)

Updated mean stress, pn+1, can be simply computed using Equation (4). As mentioned in the
previous updating algorithm, here X0 and x0 are auxiliary variables and can be set equal to one
simultaneously, at the start of each time step.

7. SEMI-IMPLICIT STRESS UPDATING (ALGORITHM I)

In the present study a more efficient stress-updating scheme will be presented. The evolution law
presented in Equation (46) is obviously an explicit one, because Gn is evaluated on the basis of X0

n
and X p

n , which are computed at time t = tn , i.e. at the start of the time step. In order to increase the
accuracy, one can estimate better values for X0 and X p and then compute G using these values.
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It is intended to use the values of X0 and X p at time t = tn+�, with 0<��1, and assume that they
remain constant throughout the step. To do this, first Xn+� is computed as

Xn+� = exp(An��t)Xn = G
�
nXn (78)

where

G
�
n =

⎡
⎢⎢⎣

I10× 10 + a� − 1

c2n
A12A21

b�

cn
A12

b�

cn
A21 a�

⎤
⎥⎥⎦ (79)

and

a� = cosh(�cn), b� = sinh(�cn) (80)

Note that A12,A21 an cn are still defined by Equation (48). In the special case of Vn = 1, after
addressing the singularity issue, G

�
n has the following form:

G
�
n =

[
I10× 10 + 1

2�
2A12A21 �A12

�A21 1

]
(81)

To impose the consistency condition on the numerical solution at time t = tn+�, it is required to
modify X0

n+� by the following relationship:

X0
n+� =

[
1√
2

‖Xs
n+�‖

X p
n+�

]G/H

(82)

Finally, Xn+1 can be computed using Equation (46), but with a modified Gn that is calculated at
time t = tn+�:

Xn+1 = Gn+�Xn (83)

where Gn+� is computed based on X0
n+� and X p

n+�, i.e.

�n+� = H

G2
[(X0

n+�)
H/G−1X p

n+�]2

c∗
n =

√
2G

�n+�
(1 − V 2

n )‖�en‖

a∗
n = cosh(c∗

n), b∗
n = sinh(c∗

n)
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A∗
12 = 2G

{
�en

−�K

2G
(X0

n+�)
−H/G��vn

}

A∗
21 = 1

�n+�

[
(�en)T,

�K

G
(X0

n+�)
H/G��vn

]

Gn+� =

⎡
⎢⎢⎢⎣

I10× 10 + a∗
n − 1

(c∗
n)

2
A∗
12A

∗
21

b∗
n

c∗
n
A∗
12

b∗
n

c∗
n
A∗
21 a∗

n

⎤
⎥⎥⎥⎦

(84)

This new scheme is named semi-implicit, because an iterative process is not performed to find the
converged values of X0 and X p at time t = tn+�.

8. SEMI-IMPLICIT STRESS UPDATING (ALGORITHM II)

This section intends to increase the accuracy of stress-updating algorithm II using a semi-implicit
process. According to the definitions of Ga,n and Gb,n in Equations (70) and (73), it is clear that
they are computed based on the value of Rn , which is the radius of the yield surface at time t = tn .
To develop an implicit method, the two control matrices must be calculated based on the value
of Rn+�, which is the radius of the yield surface at time t = tn+�. First, X0

a,n+� and X0
b,n+� are

computed using Equations (69) and (72) as

X0
a,n+� = X0

n(h�sTn�ê + g�Rn)

X0
b,n+� = x0n Rn(v� + u�)

(85)

where

g� = cosh

(
2G

Rn
�‖�en‖

)
, h� = sinh

(
2G

Rn
�‖�en‖

)
(86)

u� = cosh

(
−√

2�
K

Rn
���vn

)
, v� = sinh

(
−√

2�
K

Rn
���vn

)
(87)

Then, X0
n+� can be obtained using Equation (76), and finally Rn+� can be determined as

Rn+� = X0
a,n+�

[
X0
a,n+�

X0
b,n+�

]−G/H

(88)

Now, Xa,n+1 and Xb,n+1 can be computed by Equations (69) and (72) using the modified control
matrices calculated at time t = tn+� in the following manner:

Xa,n+1 = Ga,n+�Xa,n

Xb,n+1 = Gb,n+�Xb,n
(89)
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where Ga,n+� and Gb,n+� are computed based on the value of Rn+� as

Ga,n+� =
[

I9×9 + (g∗
n − 1)�ên(�ên)T h∗

n�ên

h∗
n�ê

T
n g∗

n

]
(90)

with

g∗
n = cosh

(
2G

Rn+�
‖�en‖

)
, h∗

n = sinh

(
2G

Rn+�
‖�en‖

)
(91)

and

Gb,n+� =
⎡
⎣ u∗

n
1√
2
v∗
n

√
2v∗

n u∗
n

⎤
⎦ (92)

with

u∗
n = cosh

(
−√

2�
K

Rn+�
��vn

)
, v∗

n = sinh

(
−√

2�
K

Rn+�
��vn

)
(93)

Similar to the previous section, since an iterative process is not performed to find a converged
value for Rn+�, the method is referred to as semi-implicit formulation.

9. NUMERICAL PRESENTATIONS

In the literature [10], the accuracy and convergency of explicit stress-updating schemes based on
exponential maps for the Drucker–Prager plasticity model were not investigated. Therefore, these
two issues for the explicit schemes developed by Liu [10] were examined and then compared with
the new presented schemes. For the sake of compactness, the following acronyms are adopted:

• EEX(I)—Exponential map with EXplicit stress updating (algorithm I);
• EEX(II)—Exponential map with EXplicit stress updating (algorithm II);
• EIM(I)—Exponential map with semi-IMplicit stress updating (algorithm I);
• EIM(II)—Exponential map with semi-IMplicit stress updating (algorithm II).

The numerical presentations are divided into two sections. In Section 9.1, iso-error maps are
presented for the above techniques to explore the accuracy of the algorithm. To make the com-
parison, these contours are also provided for the backward Euler’s method. In Section 9.2, the
accuracy and rate of convergency of the methods are explored through a piecewise stress–strain
history with different time steps.

9.1. Error contour plots

Error contour plots were first used in the literature by Krieg and Krieg [12] as a tool to present
the accuracy of integration methods in J2 plasticity. Loret and Prevost [1] extended the idea and
used the iso-error maps to show the accuracy of forward and backward Euler’s techniques in
Drucker–Prager’s plasticity. In the present study, error contours are used to compare the accuracy
of the backward Euler’s method with exponential map schemes for both explicit and semi-implicit
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Figure 2. (a) Definition of T, N and 	n in the deviatoric plane and (b) definition
of a positive �
 and a negative �R.

techniques. The accuracies will be computed for a purely plastic step, which means that the initial
stress state, i.e. stress point at time t = tn , lies on the yield surface. Then, an arbitrary deviatoric
strain step �e will be taken with principal directions identical to the principal directions of sn .
Furthermore, a value for V is chosen to completely characterize �e. Then, stress state at time
t = tn+1 is computed using a numerical approach and the exact method. In each case, the updated
deviatoric stress, sn+1, will have the same principal direction as sn . This causes the solutions to be
conveniently visualized in the deviatoric planes. Now, a parameter that normalizes the deviatoric
loading increment is defined as

� = 2G‖�e‖
‖sn‖ (94)

Then, a reference system of (n̂, t̂), which is an orthogonal basis in the deviatoric plane, is selected
such that n̂ be the unit normal to the loading surface at sn . A range of prescribed strain rate vectors
are examined with the same principal directions as the starting vector. They can be graphically
represented in the plane n̂–t̂ as vectors. Directions of these vectors in the deviatoric plane and
their amplitudes can be expressed in terms of a radial and a tangential projection as

N =√
2� cos(	n), T = √

2� sin(	n) (95)

As shown in Figure 2(a), 	n is the angle between �e and n̂. If one chooses values for the parameters
V, N and T , a unique �e in principal stress space can be constructed.

Hence, having sn, pn and �e, the deviatoric updated stress vectors sNn+1 and s
E
n+1 can be achieved

by numerical and exact methods, respectively. All exact solutions are computed by solving the
scalar differential equation extracted by Loret and Prevost [1]. More explanations are offered in
Appendix C. Now, the accuracy of a numerical scheme can be fully characterized by the following
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Figure 3. Trial stress vector in stress space: (a) V = 0 and (b) V = 1.

two scalar parameters:

�
 = cos−1

[
(sEn+1)

TsNn+1

‖sEn+1‖ · ‖sNn+1‖

]
(96)

�R =
[
1 − ‖sNn+1‖

‖sEn+1‖

]
× 100% (97)

where �
 is the error in the orientation of the final deviatoric stress and �R describes the relative
error in the estimation of the radius of the yield surface in the deviatoric plane. As can be seen
in Figure 2(b), the angle �
 is taken to be positive if sNn+1 lies between sn and sEn+1. In order to
compare the accuracy of different schemes, the iso-error maps are developed for the following N
and T domains [1]:

−5�N�5, 0�T�5 (98)

It is assumed that the material has the following parameters:

� = 0.125, � = 1, �y = 0 (99)

Two different values for V are selected: V = 0 and 1. As shown in Figure 3(a), in the case of
V = 0, the trial stress lies on the deviatoric plane and therefore 0�	n��/2 in order to guarantee
staying-outside the elastic domain. As a result N can not take a negative value. On the other
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Figure 4. Angular error of Euler’s backward method: (a) V = 1 and (b) V = 0, and radial error of Euler’s
backward method: (c) V = 1 and (d) V = 0.

hand, in case of V = 1 as shown in Figure 3(b), the trial stress lies on a plane tangential to the
yield surface and does not cross the yield surface, i.e. 0�n��, which leads to 0�	n��. Note
that 	n is the projection of n on the deviatoric plane. Therefore, N can take both positive and
negative values. Obviously, there is no need to consider negative values for 	n due to symmetry
and therefore T holds only positive values in both cases. The above conditions are translated as

V = 0 : 0�N�5, 0�T�5

V = 1 : −5�N�5, 0�T�5
(100)

Figure 4 shows the angular and radial errors of the one-step backward Euler’s method for two
different values of V (see Appendix D for a brief explanation of the Euler’s method). Figure 5
demonstrates the errors for algorithm I, with an explicit exponential map scheme, i.e. EEX(I). It
must be noted that in this method the estimation error for the radius of the yield surface is high for
large values of N and T. In other words, the procedure diverges as the size of the load step increases.
Therefore, a smaller domain, −0.75�N�0.75 and 0�T�0.75, is considered. Figure 6 indicates
angular and radial error contours of algorithm II with an explicit exponential map scheme, i.e.
EEX(II). As can be seen in this figure, the method has significantly lower error without divergency.
Figures 7 and 8 illustrate the iso-error maps for two exponential map methods with semi-implicit
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Figure 5. Angular error of EEX(I): (a) V = 1 and (b) V = 0, and radial error
of EEX(I): (c) V = 1 and (d) V = 0.

algorithm, i.e. EIM(I) and EIM(II). Here, a value of 0.5 for the � parameter is chosen, which
means that control matrices are computed at the midtime of a load step. These figures reveal the
better performance of the EIM(II) method. It seems that all exponential map algorithms show little
angular errors, but only semi-implicit ones, especially EIM(II), provide small radial error.

9.2. Pointwise stress–strain test

A biaxial non-proportional strain path is considered. The deviatoric strain component histories are
represented graphically in Figure 9. All the other strain components are identically equal to zero.
A constant volumetric strain increment is considered through the following relationship:

�v(t) = (2× 10−3) · t (101)

The material is assumed to have the following parameters:

� = 0.3, G = 1000Mpa, K = 2167Mpa, �y = 15Mpa (102)

It is important to note why a linear strain history is considered. Each integration method operates
under the restriction of a constant strain rate vector. For a finite-size load step, this leads to a
chordal approximation of a curved strain path. The use of a rectilinear strain path introduces
discretization errors. These errors are in addition to the ones from the integration of plasticity rate
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Figure 6. Angular error of EEX(II): (a) V = 1 and (b) V = 0, and radial error
of EEX(II): (c) V = 1 and (d) V = 0.

equations [13]. A linear strain path is chosen to eliminate the discretization errors. To investigate
the validity of exponential map algorithms, the results are compared with those of the classical
one-step Euler’s backward integration (see Appendix D for a brief explanation of the method).
The error for the updated deviatoric stress is defined as

En = ‖sNn − sEn ‖
‖sEn ‖ (103)

where sEn is the exact updated deviatoric stress vector at time t = tn , and sNn is the numerical one.
The exact solution is obtained by solving the scalar differential equation, presented by Loret and
Prevost [1], by a fourth-order Runge–Kutta procedure (see Appendix C).

Figure 10 shows the accuracy of Euler’s backward method and two EEX schemes. Since the
stress relative errors of the EIM formulations are two orders of magnitude smaller than EEX
schemes, they are demonstrated separately in Figure 11. In semi-implicit procedures, a value of
0.5 is adopted for �. In this figure, the first few time steps display no error due to the elastic
behavior of the material.

To investigate the rate of convergence of the methods, the stress relative error for each scheme
is calculated by selecting three practical step sizes of �t = 0.1, 0.05, 0.025 s. The results of stress
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Figure 7. Angular error of EIM(I): (a) V = 1 and (b) V = 0, and
radial error of EIM(I): (c) V = 1 and (d) V = 0.

relative errors for Euler’s backward method, EEX and EIM, are shown in Figures 12–14, re-
spectively. As seen on the figures, EIM formulations have clearly better convergency. Note that
using EIM(II) with practical time steps gives a very precise result, which in practical engineering
problems may be referred to as a near-exact approach.

In order to better investigate the rate of convergence of these methods, here, the total error can
be defined as [7]

ET =
N∑

n=1
�t‖sNn − sEn ‖ (104)

where sEn and sNn are defined in Equation (103). Then, by adopting different numbers of substeps,
the total error is computed for each scheme. The results are tabulated in Table I and are plotted
in Figure 15. In a logarithmic space of Figure 15, the relationship between the total error and the
number of sub-steps is linear. The slope of each line represents the rate of convergency of the
corresponding method. In the case of Euler’s backward scheme, EEX(I) and EEX(II), the slopes
represent a linear convergency. In the case of EIM(I) and EIM(II), the quadratic convergency can
be clearly appreciated.
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Figure 8. Angular error of EIM(II): (a) V = 1 and (b) V = 0 and
radial error of EIM(II): (c) V = 1 and (d) V = 0.

Figure 9. Deviatoric strain component histories.
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Figure 10. Stress relative error by Euler’s backward and two explicit exponential map schemes (�t = 0.1 s).

Figure 11. Stress relative error by two implicit exponential map schemes (�t = 0.1 s).

10. CONCLUSIONS

Two new numerical schemes based on exponential maps for the solution of the associative Drucker–
Prager’s elastoplastic constitutive law using a semi-implicit updating algorithm, EIM(I) and (II),
are presented. In addition, two previously published methods, referred as EEX(I) and (II) in
this study, are discussed and explained for deeper understanding. Extensive numerical tests are
performed to compare the performances of all four methods in addition to Euler’s backward
method. All formulations preserve the consistency condition. Linear convergency of EEX(I) and
(II) and quadratic convergency of EIM(I) and (II) are investigated through a pointwise numerical
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Figure 12. Stress relative error of Euler’s backward method with different load step sizes.

Figure 13. Stress relative error of (a) EEX(I) method and (b) EEX(II)
method with different load step sizes.

Figure 14. Stress relative error of (a) EIM(I) method and (b) EIM(II)
method with different load step sizes.
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Table I. Stress total error for different number of substeps.

Stress total error (ET)

No. of substeps Euler EEX(I) EEX(II) EIM(I) EIM(II)

5 46.2747 21.2160 9.3455 0.8515 0.1227
10 25.9949 10.2858 4.8072 0.2613 0.0334
15 17.8923 6.7761 3.2153 0.1234 0.0143
20 13.7394 5.0701 2.4224 0.0729 0.0082
25 11.0632 4.0522 1.9410 0.0480 0.0052
30 9.3081 3.3754 1.6192 0.0343 0.0036
35 8.0110 2.8960 1.3904 0.0258 0.0027
40 7.0455 2.5269 1.2164 0.0202 0.0022

Figure 15. Stress total error versus number of substeps.

test. Iso-error maps are presented for all formulations. The important feature arising from these
evaluations is that EIM(II) strategy poses the best performance, which may be considered as a
near-exact formulation.

APPENDIX A: SOLUTION OF LINEAR DIFFERENTIAL EQUATION SYSTEMS

A system of linear, constant coefficient, ordinary differential equations can be expressed

Ẋ= AX (A1)

where X=X(t) is a vector function of t , and A is a matrix independent of t . The solution can be
expressed in terms of the matrix exponential

X(t) = exp(A · t) · X(0) (A2)

where X(0) is the initial value of X. When A is time dependent, one can use a time-discrete
variable and assume that A is constant within each time step. Then, using Equation (A2) in a
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successive manner yields

X(tn+1) = exp(An · �t) · X(tn) (A3)

Note that the power series which defines the exponential map ex , also defines a map between
matrices as

exp(A) = I + A + AA

2! + AAA

3! + · · · (A4)

There are mathematical references that explain numerical and analytical methods for computing
matrix exponentials, e.g. Golub and Van Loan [14].

APPENDIX B: CALCULATION OF CONTACT STRESS

It is intended to find the scalar parameter r that divides a time step �t into r�t and (1−r)�t , which
are a fully elastic and a plastic time step, respectively. Suppose that at time t = tn the material
behaves elastically and stress point is inside the yield surface, which means

1
2 s

T
n sn − (�y − �pn)

2<0 (B1)

Now, stress state at the end of time step r�t is calculated using the following elastic relationships:

sn+r = sn + 2Gr�e (B2)

pn+r = pn + Kr��v (B3)

It is considered that at the end of time step r�t stress state lies exactly on the yield surface, i.e.

1
2 s

T
n+r sn+r − (�y − �pn+r )

2 = 0 (B4)

Substituting Equations (B2) and (B3) into (B4) leads to the following algebraic equation:

Ar2 + Br + C = 0 (B5)

where

A = 4G2�eT�e − 2K 2�2��2v (B6)

B = 4GsTn�e + 4K�(�y − �pn)��v (B7)

C = sTn sn − 2(�y − �pn)
2 (B8)

Finally, contact stress, sc, may be computed using an elastic updating

sc = sn + 2Gr�e (B9)

APPENDIX C: EXACT SOLUTIONS

Loret and Prevost [1] presented an exact solution for Drucker–Prager’s elastoplastic equations as
a part of a comprehensive study. Here, a brief review of their method is presented. Suppose that
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sn lies on the yield surface and �en and ��vn are increments of deviatoric and volumetric strains
in the nth time step. The heart of the scheme is the following scalar differential equation:

sign(sin	) ·
1
2 	̇

|sin 1
2	|p · |cos 1

2	|q = −2G‖�e‖
‖sn‖ · 1

|sin 1
2	n|p−1 · |cos 1

2	n|q−1
(C1)

where exponents p and q are defined as

p= 2 − G

H
(1 + Vn), q = 2 − G

H
(1 − Vn) (C2)

Vn and H are defined in Equations (48) and (21), respectively. 	n , the angle between �e and sn ,
is presented graphically in Figure 2(a) and can be computed by

	n = cos−1
(

sTn�e
‖sn‖ · ‖�e‖

)
(C3)

As p and q in Equation (C1) are not usually integers, this equation does not have a closed-
form solution. Using an accurate Runge–Kutta procedure in [0, 1] interval, Equation (C1) may be
integrated numerically to find 	n+1 =	(1). Finally, the updated deviatoric stress can be obtained
using the following relationships:

sn+1 = P(sn + 2GQ�e)

P = ‖sn+1‖ sin	n+1

‖sn‖ sin	n
, Q = ‖sn‖ sin(	n − 	n+1)

2G‖�e‖ sin	n+1

‖sn+1‖ = ‖sn‖
∣∣∣∣∣sin

1
2	n+1

sin 1
2	n

∣∣∣∣∣
1−p ∣∣∣∣∣cos

1
2	n+1

cos 1
2	n

∣∣∣∣∣
1−q

(C4)

Obviously, if sn is inside the yield surface, contact stress must be determined through calculating
a scalar parameter r , which is explained in Appendix B. Loret and Prevost [1] presented some
remarks on the method and discussed about the cases in which singularity arises in Equation (C1).
As they claimed, this method is very time consuming. In the present study, the above-mentioned
method is used as a benchmark for the proposed numerical techniques.

APPENDIX D: EULER’S BACKWARD METHOD

It is intended to briefly show how constitutive equations are integrated by the one-step backward
Euler integration method. Assume that the stress vector rn at time t = tn and the strain vector
increment �e are known. Decomposing �e into deviatoric and volumetric parts, a trial elastic stress
vector is established. Its deviatoric and volumetric components are as follows:

strn+1 = sn + 2G�e

ptrn+1 = pn + K��v
(D1)
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It may be shown that updated deviatoric stress vector and volumetric stress at the end of a time
step can be obtained as

sn+1 = strn+1 − �G
√
2

strn+1

‖strn+1‖
(D2)

pn+1 = ptrn+1 − �K� (D3)

where

� = f (rtrn+1)

G + �2K
(D4)

In Equation (D4), f is the yield function defined in Equation (3). Equation (D2) shows that the
deviatoric plastic strain vector is assumed to lie parallel to the trial deviatoric stress vector. In
other words, the final stress is found through a radial return in deviatoric plane accompanied by a
change in mean stress. In this method, rn may be inside the yield surface and there is no need to
find the contact stress.
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