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Abstract
This paper presents an artifi cial neural network (ANN) model for the prediction of non-linear 
behavior of vertically loaded piles based on the results of standard penetration test (SPT) data. 
The geotechnical literature has in-cluded many methods, both theoretical and experimental, to 
predict pile behavior. Most of the available methods simplify the problem by incorporating several 
assumptions associated with the factors that affect pile behavior. With respect to the design of pile 
foundations, accurate prediction of pile behavior is necessary to ensure appropriate structural 
and serviceability performance. Approximately, 1,000 data sets, obtained from the published lit-
erature, are used to develop the ANN model. In addition, the paper discusses the choice of input 
and internal network parameters which were examined to obtain the optimum model. Finally, the 
paper proposes a series of charts for predicting pile behavior that will be useful for pile design.

1 INTRODUCTION

Pile foundations are the part of the sub-structure 
and their main function is to support and transfer 
loads to some depth below the ground surface. The 
evaluation of the load-settlement performance of a 
single pile is one of the main aspects in the design of 
piled foundations. In addition, the behavior of a pile is 
infl uenced by several factors, such as the mechanical 
non-linear behavior of the soil, the characteristics of 
the pile itself, as well as its method of installation 
(Berardi & Bovolenta 2005). There are many tech-
niques in the geotechnical literature, both theoreti-
cal and experimental, for predicting the settlement 
of piles. In recent years, artifi cial neural networks 
(ANNs) have been applied to many geotechnical en-
gineering problems and have demonstrated some 
degree of success. In this paper, ANNs are used to 
predict the behavior of piles based on standard pen-
etration test (SPT) data. The aim of the paper is to 
propose some ANN-based load-settlement charts 
for predicting pile behavior.

2 NEURAL NETWORK MODEL

The development of ANN models requires the deter-
mination of model inputs and outputs, division and 
pre-processing of the available data, the determination 
of appropriate network architecture, stopping crite-
ria and model validation (Shahin et al. 2002). In this 
work, the PC-based computer software NEUFRAME 

version 4.0 (Neurosciences Corp. 2000) is used to sim-
ulate ANN operation. The data used to calibrate and 
validate the neural network model were obtained from 
the literature of pile load tests. Suitable case studies 
were those having pile load tests that include fi eld 
measurements of full-scale pile settlements, as well 
as the corresponding information regarding the piles 
and soil characteristics. The database contains a total 
of 1,013 cases from 76 individual pile load tests. Details 
of the database are given by Pooya Nejad et al. (2009).

3 MODEL INPUTS AND OUTPUTS

In order to obtain accurate predictions of pile be-
havior (including settlement and capacity), an un-
derstanding of the factors affecting pile behavior is 
needed. Most traditional methods include the fol-
lowing fundamental parameters: pile geometry, pile 
material properties, soil properties and applied load 
(for prediction of settlement). Additional factors 
include the method of pile installation, the type of 
load test and whether the pile tip is closed or open. 
Since pile behavior depends on soil strength and 
compressibility and the SPT is one of the most com-
monly used tests in practice for quantifying such 
soil characteristics, the SPT blow count/300 mm (N) 
along the embedded length of the pile is used in this 
study. To account more accurately for the variability 
of soil properties along the shaft of the pile, the em-
bedded length of the pile is divided into fi ve seg-
ments of equal thickness, with each associated with 



IACMAG 2011 – Melbourne, Australia, 9–11 May 2011

6 Artificial Intelligence Techniques/Methods 565

an average of N over that segment. In addition, as 
suggested by Liao & Whitman (1986), for sand the 
value of Navej

 for each subdivision is corrected for 
overburden pressure, as given below. This correction 
is not used for clays.

correct N avej jN C N� �  (1)

N

v

95.76C �
�s

 (2)

where CN � the adjustment for effective overburden 
pressure; and s�v � the effective overburden pressure 
(kPa).

Hence, the factors that are presented to the ANN 
as model input variables are the: (i) type of pile load 
test (maintained load or constant rate of penetra-
tion); (ii) pile material (concrete, steel, composite 
and plastic); (iii) method of installation (replace-
ment or displacement); (iv) pile tip (closed or open); 
(v) axial rigidity of the pile (EA); (vi) cross-sectional 
area of the pile tip (Atip); (vii) perimeter of the pile in 
contact with the soil (O); (viii) length of the pile (L); 
(ix) embedded length of the pile (Lembed); (x–xiv) the 
averaged and corrected SPT blow count/300 mm 
along the embedded length of the pile (N1, N2, N3, 
N4, N5); (xv) the corrected SPT blow count/300 mm 
at the tip of the pile (Ntip); and (xvi) applied load (P). 
Pile settlement is the single output variable.

4 DATA DIVISION AND PRE-PROCESSING

In this study cross-validation, as suggested by Stone 
(1974) is implemented to divide the data are be into 
three sets: training, testing and validation. The train-
ing set is used to adjust the connection weights, 
whereas the testing set is used to check the perfor-
mance of the model at various stages of training and 
to determine when to stop training to avoid over-
fi tting. The validation set is used to estimate the per-
formance of the trained network in the deployed 
environment. In total, 85.6% of the data (867 cases) 
are used for training and 14.4% (146 cases) are used 
for validation. The training data are further divided 
into 81% (701 cases) for the training set and 19% 
(166 cases) for the testing set. Since it is essential that 
the data used for training, testing, and validation 
represent the same population (Masters 1993), the 
statistical properties (e.g. mean, standard deviation 
and range) of the data subsets need to be similar 
(Shahin et al. 2004). In this study in order to achieve 
this, several random combinations of the training, 
testing and validation sets are examined until three 
statistically consistent data sets are obtained (Pooya 
Nejad et al. 2009).

In general, after dividing the available data into 
their subsets, the variables are pre-processed by scal-
ing them to a suitable form and to eliminate their 

dimension, before presenting them to the ANN. The 
output variables also need to be scaled to be com-
mensurate with the limits of the transfer functions 
used in the output layers (Shahin 2003). In this par-
ticular application, scaling of the input variables is 
unnecessary. Hence, in this study the output vari-
ables are scaled between 0.0 to 1.0, as the sigmoid 
transfer function is used in the output layer.

5 ANN MODEL ARCHITECTURE

Determining the network architecture is one of the 
most important and diffi cult tasks in ANN model 
development (Maier & Dandy 2000). It requires the 
selection of the optimum number of hidden layers 
and the number of nodes in each of these. There is, 
however, no unifi ed theory for achieving this (Shahin 
2003). The number of nodes in the input and out-
put layers are restricted by the number of model in-
puts and outputs. A total of 16 input variables are 
included in this study and the output layer has 
a single node representing the measured value of 
settlement.

In this study, models incorporating a single and 
multiple hidden layers are examined. In order to de-
termine the optimum network geometry, fi rst ANNs 
with a single hidden layer are trained, followed by 
models with two, three and four hidden layers with 
different numbers of nodes in the hidden layers.

Both models (single layer and multi-hidden lay-
ers) have been trained with a sigmoidal and a hyper-
bolic tangent (tanh) transfer function for the hidden 
layers. In the single hidden layer model, a sigmoidal 
transfer function is adopted for the hidden and out-
put layers, and for the multi-hidden layer models, a 
tanh transfer function is used for the hidden layers 
and a sigmoidal transfer function is adopted for the 
output layer.

6 TRAINING

Training, or learning, is the process of optimizing 
the connection weights. Its aim is to identify a global 
solution to what is typically a highly non-linear op-
timization problem (White 1989). The method most 
commonly used for fi nding the optimum weight com-
bination of feed-forward neural networks is the back 
propagation algorithm (Rumelhart et al. 1986), 
which is based on fi rst-order gradient descent. The 
advantage of this method is that it has the ability to 
escape local minima in the error surface and, thus, 
produces optimal or near optimal solutions (Shahin 
2003). However, it also has a slow convergence rate. 
Consequently, in this study, the back-propagation 
algorithm is used for optimizing the connection 
weights.
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The general strategy adopted for identifying the 
optimal parameters that control the training pro-
cess is as follows. A number of trials are carried out 
using NEUFRAME’s default parameters, i.e. a mo-
mentum of 0.8 and a learning rate of 0.2. The network 
that performs best is then retrained with the differ-
ent combinations of momentum terms and learning 
rates in an attempt to improve model performance 
(Pooya Nejad et al. 2009).

7 STOPPING CRITERIA

Stopping criteria determine whether the model has 
been optimally or sub-optimally trained (Maier & 
Dandy 2000). Many approaches can be used to de-
termine when to stop training. As mentioned previ-
ously, the cross-validation technique (Stone 1974) is 
used in this work, as it is considered that suffi cient 
data are available to create training, testing and vali-
dation sets and it is the most valuable tool to ensure 
over-fi tting does not occur (Smith 1993). The train-
ing set is used to adjust the connection weights, 
whereas the testing set measures the ability of the 
model to generalize and, using this set, the perfor-
mance of the model is checked at many stages dur-
ing the training process and training is stopped 
when the testing set error begins to increase (Shahin 
et al. 2002).

8 MODEL VALIDATION

Once model training has been successfully accom-
plished, the performance of the trained model 
should be validated against data that have not been 
used in the learning process. This data set is known 
as the validation set. The purpose of the model vali-
dation phase is to ensure that the model has the 
ability to generalize within the limits set by the 
training data in a robust fashion, rather than simply 
having memorized the input-output relationships 
that are contained in the training data (Shahin et al. 
2002). The coeffi cient of correlation, r, the root 
mean squared error, RMSE, and the mean absolute 
error, MAE, are the main criteria that are used to 
evaluate the prediction performance of ANN mod-
els. The RMSE is the most popular measure of error 
and it has the advantage that large errors receive 
much greater attention than small ones (Hecht-
Nielsen 1990).

9 RESULTS

As stated previously, in this study two ANN models 
have been developed. The fi rst model incorporates 

a single hidden layer and the second utilizes multi-
ple hidden layers. In order to determine the optimum 
network geometry, ANNs are trained with a single 
hidden layer incorporating different numbers of 
hidden layer nodes, and then ANNs are trained with 
two, three and four hidden layers with different num-
bers of nodes in the hidden layers.

The results of the optimum networks for the sin-
gle hidden layer and the multiple hidden layers are 
summarized in Table 1. It is observed that Model 7 
is the optimum of the single layer models with 
7 nodes in the hidden layer, and Model 14-6 is the 
optimum of the two hidden layer models, with 14 
nodes in the fi rst hidden layer and 6 nodes in the 
second. Model 13-8-3 is the optimum of the three 
hidden layer models, with 13 nodes in the fi rst, 8 in 
the second and 3 in the third hidden layer. Finally, it 
can be seen that the best result is obtained by the 
four hidden layer model with 15-13-5-2 nodes in the 
four hidden layers.

The effect of the internal parameters controlling 
the back-propagation algorithm (i.e. momentum 
and learning rate) on model performance (model 
with 15-13-5-2 nodes in the four hidden layers) was 
examined by Pooya Nejad et al. (2009). The best pre-
diction was obtained with a momentum of 0.6 and 

Table 1 Results of optimum single and multiple hidden 
layer networks

Optimum single and multiple Correlation RMSE
hidden layer networks coefficient, r (mm)

7 (single)
Training 0.922  6.95
Testing 0.818  6.55
Validation 0.720 12.42

14-6
Training 0.993  2.12
Testing 0.937  3.02
Validation 0.950 10.34

13-8-3
Training 0.993  2.10
Testing 0.949  2.74
Validation 0.930  7.00

15-13-5-2
Training 0.991  2.42
Testing 0.930  3.20
Validation 0.961  5.12

Table 2 Results of optimum model with the optimum 
internal parameters

Optimum multiple hidden Correlation  RMSE
layer network coefficient, r (mm)

15-13-5-2
Training 0.993 2.17
Testing 0.958 2.47
Validation 0.972 4.49
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learning rate of 0.4. The results for the optimum 
model with optimal momentum and learning rate 
are shown in Table 2.

The relationship between the measured and pre-
dicted settlements for the validation and testing sets 
are shown in Figure 1. The results indicate that the 
model performs well, with an r and RMSE, respec-
tively, of 0.972 and 4.49 mm for the validation set 
and 0.958 and 2.47 mm for the testing set.

10 PILE DESIGN CHARTS

By implementing the optimum model, it is possible 
to generate several load-settlement charts for vari-
ous combinations of input parameters. Focusing 
on concrete piles, Figures 2 to 4 provide typical load-
settlement curves for maintained pile load tests on 
piles of different lengths (L) and diameters (d) in soil 
with various SPT numbers (average N along the pile 
shaft).

It can be observed that in some of the load-
settlement charts, immediately prior to plastic yield-
ing, the settlement decreases for increasing loads. 
This is noticeable at pile lengths of 20 m and 
greater. This behavior is unrealistic and is likely the 
result of a lack of measured data in the training set. 
This inaccuracy is likely to improve as more data 
become available and the model is subsequently 
retrained.
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Figure 1 Measured versus predicted settlements for ANN 
models with 4 hidden layers with 15-13-5-2 hidden layer 
nodes: (a) Validation set; and (b) Testing set.
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Figure 2 Load-settlement curves for maintained pile load 
tests on concrete piles 700 mm in diameter.
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Figure 3 Load-settlement curves for maintained pile load 
tests on concrete piles 1,000 mm in diameter.

11 CONCLUSIONS

A back-propagation neural network has been used 
to examine the feasibility of ANNs to predict the 
load-settlement characteristics of piles. A database 
containing 1,013 case records of fi eld measurements 
of pile settlements was used to develop and verify the 
model. The results indicate that back-propagation 
neural networks have the ability to predict the be-
havior of piles with an acceptable degree of accuracy 
(r � 0.972, RMSE � 4.49 mm) for settlements up to 
185 mm. The ANN method has an additional ad-
vantage over conventional methods in that, once the 
model is trained, it can be used as an accurate and 
quick tool for estimating the behavior of piles.

From the optimal model several load-settlement 
charts for concrete piles with various lengths and di-
ameters founded in soil with a range of SPT values 
(average of N along the pile) have been proposed to 
assist with pile design.
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