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OBSERVER-BASED ADAPTIVE FUZZY CONTROL OF TIME-DELAY

UNCERTAIN NONLINEAR SYSTEMS

Reza Shahnazi, Naser Pariz, and Ali Vahidian Kamyad

ABSTRACT

An observer-based adaptive fuzzymodel following controller is proposed
for a class of MIMO nonlinear uncertain systems to cope with time-delay,
uncertainty in plant structure and disturbances. Based on universal approxi-
mation theorem the unknown nonlinear functions are approximated by fuzzy
systems, where the premise and the consequent parts of the fuzzy rules are
tuned with adaptive schemes. To have more robustness, and at the same time
to alleviate chattering, an adaptive discontinuous structure is suggested. More-
over, the availability of the states measurement is not required and an adaptive
observer is used to estimate the states. Asymptoic stability of the overall system
is ensured using suitable a Lyapunov-Krasovskii functional candidate.

Key Words: Nonlinear time-delay systems, universal approximation,
adaptive control, Lyapunov-Krasovskii functional.

I. INTRODUCTION

In most of the recent works in adaptive fuzzy
controllers the parameters of the consequent part of
the fuzzy controller were assumed free and were tuned
by adaptive laws derived using the Lyapunov method,
which also guaranteed stability of the system (see, for
example, [1, 2]). However, parameters of the premise
part of fuzzy controller had to be chosen appropriately.
Therefore, this methodology is not able to completely
make the designing of fuzzy rules systematic and
decrease the number of fuzzy rules. To overcome this
problem, recently, in [3–5] some novel methods for
designing adaptive fuzzy control with both premise
and consequent tuning have been proposed. However,
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the proposed methods are only valid for a class of
single input single output (SISO) nonlinear systems
with known or measurable states. But, in practical
situations the states of the nonlinear systems are fully
or partially unknown because the states are either not
available for measurement or the sensors or transducers
are very expensive to be used. In addition many plants
are modeled as multiple input multiple output (MIMO)
nonlinear systems.

It is well known that time delays are frequently
encountered in real engineering systems. It has been
shown that the existence of time delays usually becomes
the source of instability and degrading performance
of systems. Therefore, stability analysis and controller
synthesis for nonlinear time-delay systems are impor-
tant both in theory and in practice [6].

In this paper a full adaptive fuzzy observer-
based controller is proposed for a class of uncertain
time-delay MIMO nonlinear systems with unknown
but bounded disturbances. The unknown nonlinear
functions are approximated by fuzzy systems based on
universal approximation theorem, where the premise
and the consequent parts of the fuzzy rules are tuned
with adaptive schemes. The proposed approach does
not need the availability of the states and uses an
adaptive observer to estimate the states. An adaptive
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discontinuous structure is used as a robust control term
which also attenuates chattering in control effort. The
overall asymptotic stability is guaranteed based on
Lyapunov–Krasovskii approach.

II. PROBLEM FORMULATION

Consider a class of time-delay MIMO nonlinear
systems in the following form,

ẋ(t) = (A1+�A1(t))x(t)+(A2+�A2(t))x(t−�)

+B( f (x)+u+d(t, x))

y = Cx,

(1)

where f (x)=[ f1(x), . . ., fm(x)]T is an unknown
continuous nonlinear vector function, x=[x1, . . ., xn]T∈
Rn is the state vector. u=[u1, . . .,um]T ∈Rm and y=
[y1, . . ., ym]T ∈Rm are the input and the output vectors
of the system, respectively. A1, A2, B and C are known
matrices with appropriate dimensions, x(t−�) is the
time-delay state vector with �>0 is constant time delay.
�A1(t) and �A2(t) are corresponding uncertainties
that represent parameter variations, which are assumed
to satisfy the matching condition, that is, uniformly
bounded continuous functions MA1 (t) and MA2 (t) exist
such that �A1(t)= BMA1(t) and �A2(t)= BMA2(t).
d(t, x)=[d1(t, x), . . .,dm(t, x)]T is an unknown but
norm bounded external disturbance vector, where this
bound is also unknown. Let xd =[xd1, . . ., xdn]T be a
bounded desired state, e= x−xd =[e1, . . .,en]T be the
tracking error and x̂ be the estimation of x . Denote
ŷ=[ŷ1, . . ., ŷp]T =Cx̂ , ê= x̂−xd and ẽ=e− ê. The
control objective is to make all the signals involved are
uniformly bounded and limt→∞ e(t)=0. We have the
following assumptions:

Assumption 1. There exist matrix L and symmetric
positive-definite matrices P1, S1 and Q1 such that

P1(A1−LC)+(A1−LC)T P1+P1A2S
−1
1 AT

2 P1+S1

=−Q1, (2)

BT P1=C. (3)

Assumption 2. There exist matrix K and symmetric
positive-definite matrices P2, Q2 and S2 which satisfy
the following Lyapunov equality:

P2(A1−BK )+(A1−BK )T P2

+P2A2S
−1
2 AT

2 P2+S2=−Q2. (4)

III. THE PROPOSED METHOD

Based on the matching condition of the para-
metric uncertainties the uncertain nonlinear (1)
can be rewritten as

ẋ(t) = A1x(t)+A2x(t−�)+B f (x)

+B�(t, x, x(t−�))+Bu

y = Cx,

(5)

where �(t, x, x(t−�))=MA1 (t)x(t)+MA2(t)x(t−�)+
d(t, x). To approximate f (x) we use the following
fuzzy basis function network (FBFN) [3], with free
parameter vectors Ŵ , �̂ and ĉ:

f̂ (x̂, Ŵ , �̂, ĉ)

=[ f̂1(x̂, Ŵ1, �̂1, ĉ1), . . ., f̂m(x̂, Ŵm, �̂m, ĉm)]
=�(x̂, �̂, ĉ)Ŵ , (6)

where

Ŵ = [Ŵ T
1 , . . ., Ŵ T

m ]T

�(x̂, �̂, ĉ) = diag[�T1 (x̂, �̂1, ĉ1), . . .,�
T
m(x̂, �̂m, ĉm)]

and Ŵ T
i =[Ŵi1, . . ., ŴiM ], �̂=[�̂T

1 , . . ., �̂T
m]T , �̂T

i =
[�̂T

i1, . . ., �̂
T
iM ], �̂il =[�̂1

il, . . ., �̂
n
il ]T , ĉ=[ĉT1 , . . ., ĉTm]T ,

ĉTi =[ĉTi1, . . ., ĉTiM ], ĉil =[ĉ1il, . . ., ĉnil]T which should
be tuned appropriately. �Ti =[�i1, . . .,�iM ], each �il =
exp(−∑n

k=1 �̂k2
il (x̂k− ĉkil)

2) and M is the number of
fuzzy rules for each entry of f (x). The estimated
state x̂ comes from an adaptive observer which will
be introduced in (17). In this paper, we assume that
the fuzzy systems do not violate the universal approx-
imation property on the compact set Ux , which is
assumed large enough so that state variables remain
within Ux under closed-loop control. Considering this
and the boundedness of MA1 (t), MA2 (t) and d(t, x) it
can be concluded that there exists a positive constant
� such that ‖�(t, x, x(t−�))‖≤�. The desired state
is considered to obtain by the following reference
model:

ẋd = Amxd +A2xd(t−�)+Bmr, (7)

where r ∈Rm×1 is the bounded reference signal, and
Am , Bm are known matrices with appropriate dimen-
sions, that should satisfy the following equalities:

Am = A1+B(G−K ), Bm = BR, (8)
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where G and R are matrices with appropriate dimen-
sions. For each entry of f (x) we have:

fi (x)− f̂i(x̂, Ŵi , �̂i , ĉi )

=�Ti (x,�∗
i ,c

∗
i )W

∗
i −�Ti (x̂, �̂i , ĉi )Ŵi+�i , (9)

where �i is the approximation error of FBFN for the
i-th component of f (x), W ∗

i , �∗
i and c∗

i are ideal
parameters for Ŵi , �̂i and ĉi , which are assumed to
lie in some compact sets. Thus, there exist positive
constants bWi , b�i and bci such that ‖W ∗

i ‖≤bWi ,‖�∗
i ‖≤b�i and ‖c∗

i ‖≤bci . For simplicity consid-

ering �i (x,�
∗
i ,c

∗
i )=�∗

i , �i (x̂, �̂i , ĉi )= �̂i and define

W̃i =W ∗
i −Ŵi , �̃i =�∗

i − �̂i , we have

fi (x)− f̂i(x̂, Ŵi , �̂i , ĉi )

= �̃
T
i Ŵi + �̂

T
i W̃i + �̃

T
i W̃i +�i . (10)

If the vector of Gaussian membership functions is
linearized by using Taylor series expansion then �̃i can
be written as:

�̃i =

⎡
⎢⎢⎢⎣

�̃i1

...

�̃iM

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

��∗
i1

��∗
i

...

��∗
iM

��∗
i

⎤
⎥⎥⎥⎥⎥⎥⎥⎦∣∣∣∣∣∣

�∗
i =�̂i
c∗i =ĉi
x=x̂

�̃i

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

��∗
i1

�c∗
i

...

��∗
iM

�c∗
i

⎤
⎥⎥⎥⎥⎥⎥⎥⎦∣∣∣∣∣∣

�∗
i =�̂i
c∗i =ĉi
x=x̂

c̃i

+

⎡
⎢⎢⎢⎢⎢⎢⎣

��∗
i1

�x
...

��∗
iM

�x

⎤
⎥⎥⎥⎥⎥⎥⎦∣∣∣∣∣∣

�∗
i =�̂i
c∗i =ĉi
x=x̂

ẽ+hi

= �i �̃i +�i c̃i +�i ẽ+hi , (i =1, . . .,m), (11)

where �̃i =�∗
i −�̂i , c̃i =c∗

i − ĉi , ẽ= x− x̂ and hi
denotes higher order terms. Moreover, we have:

��∗
il

��∗
i

=
[
0 · · · 0︸ ︷︷ ︸
(l−1)×n

��∗
il

��∗1
il

· · · ��∗
il

��∗n
il

0 · · · 0︸ ︷︷ ︸
(M−l)×n

]

��∗
il

�c∗
i

=
[
0 · · · 0︸ ︷︷ ︸
(l−1)×n

��∗
il

�c∗1
il

· · · ��∗
il

�c∗n
il

0 · · · 0︸ ︷︷ ︸
(M−l)×n

]

��∗
il

�x
=

[
��∗

il

�x1
· · · ��∗

il

�xn

]
.

Therefore, using (11) in (10) it can be concluded

fi (x)− f̂ (x̂, Ŵi , �̂i , ĉi)

= (�̂
T
i −�̂T

i �T
i − ĉTi �T

i )W̃i

+(�̃T
i �T

i + c̃Ti �T
i )Ŵi +εi , (12)

where εi = (�∗T
i �T

i +c∗T
i �T

i )W̃i +(ẽT�T
i +hTi )W ∗

i +
�i . From (11) we have

‖hTi + ẽT�T
i ‖ = ‖�̃

T
i −�̃T

i �T
i − c̃Ti �T

i ‖
≤ �1+�2‖�̃i‖+�3‖c̃i‖, (13)

where �1, �2 and �3 are positive constants due to the
fact that FBFN and its derivatives are always bounded
by constants. From (12)

‖εi‖ ≤ �2‖�∗
i ‖‖W̃i‖+�3‖c∗

i ‖‖W̃i‖+�1‖W ∗
i ‖

+�2‖W ∗
i ‖‖�̃i‖+�3‖W ∗

i ‖‖c̃i‖+b�i , (14)

where b�i is a positive constant based on universal
approximation theorem of FBFN. On the other hand,
due to boundedness of ideal parameters we can write
‖W̃i‖≤bWi +‖Ŵi‖, ‖�̃i‖≤b�i + ‖�̂i‖ and ‖c̃i‖≤
bci +‖ĉi‖, thus (14) can be written as

‖εi‖ ≤ [�i1,�i2,�i3,�i4].[1,‖Ŵi‖,‖�̂i‖,‖ĉi‖]T

= �T
i �i , (15)

where �i1=2�2b�i bWi +2�3bci bWi +�1bWi +b�i ,�i2=�2b�i +�3bci , �i3=�2bWi , �i4=�3bWi and
�i =[1,‖Ŵi‖,‖�̂i‖,‖ĉi‖]T . Thus,

f (x)− f̂ (x̂, Ŵ , �̂, ĉ)

= (�(x̂, �̂, ĉ)−�1)W̃+�2�̃+�3c̃+ε, (16)

where �1=diag[�̂T
1 �T

1 + ĉT1 �T
1 , . . ., �̂T

m�T
m+ ĉTm�T

m],
�2=diag[Ŵ T

1 �1, . . ., Ŵ T
m �m], �3=diag[Ŵ T

1 �1, . . .,

Ŵ T
m �m], W̃ =W ∗−Ŵ , �̃=�∗−�̂, c̃=c∗− ĉ, and
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ε=[ε1, . . .,εm]T . To estimate the states the following
adaptive observer is proposed:

˙̂x(t) = A1 x̂(t)+A2x̂(t−�)+B f̂ (x̂, Ŵ , �̂, ĉ)

+Bu+ �̂oB(y− ŷ)+Buc+Bur , (17)

where �̂o, is an adaptive parameter and should be tuned
appropriately, uc and ur are robust structures as follows:

uc = [uc1, . . .,ucm]T (18)

ur = sgn(y− ŷ)�̂, (19)

where uci = sgn(yi − ŷi)�̂T
i �i . �̂i ∈R4 and �̂∈R

should be adapted appropriately. Therefore, we propose
a control law in the following form:

u = −K x̂(t)− f̂ (x̂, Ŵ , �̂, ĉ)

+G xd+Rr−uc−ur . (20)

Subtracting (17) and (7), using (8) and control law (20),
adding and subtracting (A1−BK )xd leads

˙̂e = ˙̂x− ẋd

= (A1−B K )ê+A2ê(t−�)+ �̂o B(y− ŷ). (21)

The observation error dynamics by subtracting (5) and
(17), using (16), adding and subtracting LCẽ with L
chosen matrix to satisfy Assumption 1, can be obtained
as follows:

˙̃e = ė− ˙̂e= ẋ− ˙̂x
= (A1−LC)ẽ+A2ẽ(t−�)+B(�(x̂, �̂, ĉ)−�1)W̃

+B�2�̃+B�3c̃− �̂o B(y− ŷ)−Buc−Bur

+B�(t, x, x(t−�))+Bε+LCẽ. (22)

Therefore, the following theorem can be expressed.

Theorem 1. Consider the nonlinear system (1) and
control law (20). The closed-loop system signals are
bounded and the tracking error converges to zero
asymptotically if the following adaptation laws hold:

˙̂W = �1(�
T (x̂, �̂, ĉ)−�T

1 )(y−ŷ), ˙̂�=�2�
T
2 (y−ŷ),

˙̂c = �3�
T
3 (y−ŷ), ˙̂�o=�4‖y−ŷ‖2, ˙̂�=�5‖y−ŷ‖,

˙̂�i = 	i‖yi−ŷi‖�i , i=1, . . .,m.

Proof. The proof of theorem is omitted here to save
space. For detailed proof the interested reader may
refer to [7]. �

IV. SIMULATION EXAMPLE

The Chen’s chaotic system as a nonlinear time-
delay MIMO system is used, with

f (x) =
[−x1x3

x1x2

]
, A1=

⎡
⎢⎣

−35 35 0

−7 28 0

0 0 −3

⎤
⎥⎦ ,

A2 =
⎡
⎢⎣

−0.1 0 0

0 0.1 0

0.2 0 0.1

⎤
⎥⎦ , B=

⎡
⎢⎣
0 0

1 0

0 1

⎤
⎥⎦ ,

�A1(t) =
⎡
⎢⎣

0 0 0

0.8sin2t 1+0.3sin2t 0

−1+0.5cos t 0 0.4

⎤
⎥⎦ ,

�A2(t) =
⎡
⎢⎣

0 0 0

0.1cos3t 0.2 0.1

0.2sin t 0 0.4sin3t

⎤
⎥⎦ ,

C= BT , and �=1. The desired trajectories are obtained
from dynamic system (7) with

Am =
⎡
⎢⎣

−35 35 0

0 −3 0

0 0 −3

⎤
⎥⎦ , Bm = B,

and without loss of generality the reference signal is
chosen r=[sin(t),cos(t)]T . P1=diag[1,1,1] and the
parameters �1=400, �2=�3=10, �4=�5=20, 	i =
20, i =1,2 and M=5 are chosen. The initial condition
of the system is x(0)=[0.5,0.5,−1]T and the observer
is x̂(0)=[1,1,−0.5]T . Without loss of generality
the disturbances are assumed d1(t)=3+e−t sin t and
d2(t)=2+e−3t cos2t occur at t=10sec and t=15sec,
respectively. Fig. 1 shows the results.

Remark 1. To avoid parameter drift and guarantee the
remaining of the adaptive parameters in some compact
sets the projection operator technique (see [1]) can be
utilized.

V. CONCLUSIONS

An output feedback robust controller for time-
delay nonlinear uncertain systems is designed based on
fuzzy logic systems and adaptive controlmethods. In the
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Fig. 1. (a) x(t) vs. xd (t) and (b) control signals.

proposed controller both consequent and premise parts
of fuzzy rules have been adjusted via adaptive laws. An
adaptive discontinuous structure is also used to make
the controller more robust while attenuating chattering
effectively. Asymptotic stability of the overall system is
ensured by using suitable Lyapunov–Krasovskii func-
tional candidate.
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