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Abstract. In this paper four eminent numerical techniques of Finite Element Method 
(FEM), Boundary Element Method (BEM), Element Free Galerkin Method (EFGM) and 
Finite Volume Method (FVM) are evaluated comparatively. The bench marking plane 
strain problem of cantilever beam under end load is used as the basis for the analysis. Using 
MATLAB package a computer code has been written and examined for each routine. 
Triangular elements with nodes on their corners are used in FEM, linear elements are used 
in BEM, the polynomial of degree one is used for the approximation of the field function 
around each node in EFGM and constant strain triangles are used in the formation of the 
volumes in FVM. The effect of mesh refinement upon the accuracy of the results and the 
period of execution are evaluated and used as a criterion for the assessment of the routines. 

 
 

١ INTRODUCTION. The Finite Element Method (FEM) seems to be dominant to different 
computing disciplines such as the Computational Structure Mechanics (CSM), but this hasn’t 
caused the researchers to stop the struggles for finding better numerical approaches to solve 
problems more efficiently. Introducing fairly newer numerical methods such as Element Free 
Galerkin (EFG), Finite Volume (FV) for solid mechanics, Boundary Element (BE), Petrov-
Galerkin and so on are approaches which have formulated to conquer the FEM limitations. One 
of the FEM deficiencies is that the method requires obtaining all of the nodal values even if we 
require only one nodal value in a domain. Also in some cases such as the large deformation or 
crack growth problems the dependence of the method on a mesh leads to some complexities. In 
such cases mesh pattern may lead to skewed or compressed elements. So we need methods 
which could deal well with the extended regions, contrasting the FEM that yields large errors in 
this context. So first of all let’s have a brief survey on the history of the abovementioned 
methods.  
In the beginning of the twentieth century Fredholm (١) conducted a rigorous investigation into 
the classical kinds of integral equations. Most of the earlier researches were focused on the 
formulations of the potential theory and elasticity by means of the integral equations. The 
endeavors were based on the analytical procedures which reduced the application of integral 
equations to simple and trivial problems (٢). 
In ١٩٦٧, Rizzo (٣) used the direct boundary element method to solve two-dimensional 
elastostatic problems. Cruse (٤), extended Rizzo's work to three-dimensional problems of 
Elastostatics. Triangular elements were used to model the curved surface, thus converting the 
curved boundary into a piecewise flat surface. 
Within a relatively short span of time a number of important contributions in various fields were 
made by Cruse. Elastodynamic problems (٥), Elastoplasticity (٦), Fracture Mechanics (٧) were 
successfully attempted by his team of researchers who paved the way to further accelerate the 
upraising of the boundary element method. 



The element free Galerkin method (EFGM) is a relatively recent numerical method. At the 
beginning, Belytschko et al. (٨) proposed this tactic. Since then it has been applied to various 
fields such as the Fracture Mechanics (٩), thin plates and shells (١٠), transient coupled problems 
(١١) and material interfaces modeling (١٢). Recently more tendencies aroused to upgrade the 
type of the enforcement of essential boundary conditions in the EFG Method (١٣). 
Finite Volume (FV) is a fairly new numerical approach in the field of Computational Solid 
Mechanics (CSM). In this approach, instead of utilizing the energy minimization as in the FEM, 
the balance law is directly applied to the discretized volumes forming a domain. This approach 
has enabled successful analysis of the complex problems involving moving fluids and structure 
interactions (١٤). The early developed FV codes were based on the structural analysis 
procedures capable of predicting displacements, strains and stresses in two and three 
dimensional linear elastic loaded structures under small deformations (١٥). More recently these 
procedures have been focused on the nonlinear behavior of materials (١٦) as well as the large 
deformation of solids (١٧). 
In this paper, we present some comparisons between four numerical methods of Finite Element 
(FE), Boundary Element (BE), Finite Volume (FV) in the CSM field and Element Free Galerkin 
(EFG). To do this, the bench marking plane strain problem of cantilever beam under end load 
which it’s analytical solution is available is used as the basis for the analysis. Using MATLAB 
package a computer code is written and examined for each method. First order polynomials are 
employed for the interpolation of the field and the physical variables. For this purpose, 
triangular elements with nodes on their corners are used in FEM, linear elements are used in 
BEM, the polynomial of degree one is used for the approximation of the field function around 
each node in EFGM and constant strain triangles (CST) are used in the formation of the 
volumes in the FVM. The effect of mesh refinement or numbers of nodes upon the accuracy of 
the results is studied by means of the evaluation of the displacements or energy norms. The 
period of execution for each one of the computer codes is measured and used as a criterion for 
the assessment of the routines. Based on the potential of each method in the solution of the 
benchmarking problem, some suggestions regarding the choice of proper method in some 
instances in the field of solid mechanics are recommended. In the next we will bring the 
formulation of FVM because of being relatively newer than other mentioned methods. 
 
 
٢ FORMULATION OF THE FVM IN THE CSM FIELD. A two dimensional structure can 
be represented by a mesh of triangular elements connected alongside at their nodes. Finite 
control volumes are constructed around each node by connecting the centroids of the triangular 
elements to the midpoints of their sides. A typical volume constructed around a node P, 
surrounded by N elements is shown in Figure ١.  

 
Figure ١. Volume made up of triangular cells 

 
In general, the vertices of the volume are numbered from ١ to ٢N, commencing at one of the 
element centroids and continuing around anticlockwise via the element edge midpoints and 
centroids one after the other. 



 
Figure ٢. Geometry values of a triangular cell. 

 
According to figure ٢, considering one triangular cell constructing the control volume we can 
write for the strain components  
 cc uBε =  (١) 
where B is the differential operation matrix and uc collects the displacement components ui and 
vi. Consequently the strain components can be written as, 
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where t is the thickness of the sample and Ac is the area of the cell. Besides the meaning of Aix 
and Aiy can be found from Figure ٢ where for example Aix is the x component of Ai and Ai is in 
turn the area of the side cross section opposite to the vertex i.  
The constitutive equation may be written as 
 ccccc uBDεDσ ==  (٥) 
where σc collects the stress components, and the matrix Dc represents Hooke’s law for the 
isotropic homogeneous material. 
In order to write equilibrium equations it is necessary to express the forces acting through each 
side of the control volume surrounding the considered node. As stress components are uniform 
within each cell, the surface force such as T١ in Figure ٣ will be given by 
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and in a similar manner for the three nodes of the cell applied forces can be obtained by 
multiplying area and stress matrix as,  
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Using Equation (٥), Equation (٦) can be also written as 
 cccc At uBDBT −=  (٨) 
It is now possible to write equilibrium condition for each cell. We use the following equation, 
 ∑=

c

c
pp TT  (٩) 



 
Figure ٣. Forces corresponding to the node ١ of the cell 

 
where c

pT  is the resultant of the forces that act on the two sides of the volume surrounding node 
P belonging to the cell c and TP is the total force acting on all sides of volume surrounding node 
P. Similarly for external forces we have, 
 ∑=

c

c
PP EE  (١٠) 

where c
PE  is the external force that acts on the portion of the cell c which belongs to the volume 

surrounding node P, and PE  is the resultant of the external force acting on that volume. 
Equilibrium can then be written for the volume surrounding node P as 
 0ET =+ hh  (١١) 
Equation (١١) is a set of ٢n linear equations in the ٢n unknown ui and vi (i=١,…,n) which can be 
solved with the usual methods. 
 
 
٣ NUMERICAL RESULTS. In this section the results obtained by applying the four 
explicated numerical methods to a benchmarking problem are introduced. Having in hand the 
exact solution of the problem, in each case different assessments of errors are calculated. Also 
the period of execution for each one of the computer codes is measured and used as a criterion 
for the comparison of the methods. 
Consider a cantilever beam of length L, height H and thickness t subjected to end load P. This 
beam is shown in Figure ٤. Here the beam geometrical dimensions and the amount of load are 
taken to be,  

L = ٢ m,   H=٠,٥ m,    t = ٠,٠٥ m,    P = ١٠٥×١ N 

 
Figure ٤. Cantilever beam with the end loading 

 
Figures ٥ to ٨ show the manner which is used to discretise the domain to n-divisions along the 
length and m-divisions along the width. In each case the method that nodes are numbered is 
indicated on the picture.  
 

 
Figure ٥. Discretised domain in the FEM 



 
 

 
Figure ٦. Discretised domain in the BEM 

  

       
Figure ٧. Discretised domain in the FVM 

 

 
Figure ٨. Discretised domain in the EFGM 

 
 
 

 
Figure ٥. Displacment error for the point A versus the number of nodes 

 
 



١-٣ Node numbers effect. A closed form solution to this problem has been given by 
Timoshenko and Goodier (١٨). The percentage of the error in the displacement of point A (see 
Figure ٤) as per different numerical techniques is depicted in Figure ٩. 
In Figure ٩, the abscissa is the number of nodes and the ordinate shows the percentage of error 
calculated in different techniques. Based on Figure ٩ the method of Element Free Galerkin 
(EFG) shows the most accurate results and its error is less than ٪١ for all number of divisions. 
By using coarse meshes the error in the BEM solution will grow up to a level greater than that 
in the FEM, but as Figure ٩ reveals by refining the mesh, the answers of BEM draws near to the 
exact solution of the problem. So at least in this case, on the boundary nodes such as the point 
A, BEM solution yields more accurate answers than FEM. 
As can be seen in Figure for the defined problem the displacement error of the FVM and FEM 
solutions are coincident. 
 
٢‐٣ The effect of meshing on the energy norm. The energy norm for a structural numerical 
analysis is often calculated as 
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in which εEXACT is the strain calculated from an exact solution, εNUM is the strain obtained from 
the numerical approach and dΩ is the partial volume of the domain. The energy norm versus the 
number of nodes obtained in this study is depicted in Figure١٠. The figure shows that norm of 
energy in the EFGM solution is several times less than that in three other methods. Figure ١٠ 
also points out that compared to other methods the more is the number of the nodes the less will 
be the norm of energy in the EFGM solution. That is the EFGM line is steeper than the curve of 
other methods. Figure ١٠ also shows that by using coarse meshes the norm of energy in FEM 
solution is less than BEM energy norm. The situation will be reversed if fine meshes are used, 
so the BEM is more mesh-sensible than the FEM. This study suggests that typically by using 
fine meshes, the result of BEM is more accurate than that of the FEM solution. Figure also 
shows that the energy norm in FVM is similar to the FEM norm. 
The norm of energy values have also listed in table ١. 
 

 
Figure ٦. Energy norm 

 
 



٣-٣ Execution time. Using several divisions of domain, the execution period elapsed in each 
one of the algorithms have been listed in Table ٢ and also depicted in Figure١١. Figure ١١ 
discloses that EFGM is a weighty and prolonged method. The Figure also shows that the BEM 
takes less time than the FEM and FVM, and the FEM is slower than the FVM. 
 

Table ١. The values of energy norms 

 
 

Table ٢. The period of calculation for the nodal displacements in seconds 

number of nodes ١٢٧١ ٨٢٨ ٨٣٥ ١٨٩ 

BEM ٤٥٫١١ ١٨٫٤٨ ٦٫١٣ ٨٣٫٧٠ 

FEM ٣٨٫١٦ ٧٫٣٥ ١٫١٥ ٤٨٢٫٩٦

EFGM ٧١٫٨٤ ٢٩٢٫٣٠ ٨١٤٫٧ ١٦٥١ 

FVM ٤١٫٢٩ ٧٫٧٣ ١٫٣٠ ١٥٧٫١٠
 

 
Figure ٧. Expended time for the calculation of nodal displacements 

 
 
٤ CONCLUSIONS. In this paper in order to compare some techniques of computational 
mechanics, the local error in the displacement of a check point and the global norm of energy on 
the entirety of a cantilever beam under end loading as a benchmarking problem has been 
derived. Using the four methods of BEM, EFGM, FVM and FEM with the linear interpolation 
functions or basis some measures of errors are obtained and represented. The results show that 
both local and global norms of error for the EFGM were several times less than other three 
methods and that by using fine meshes the BEM is more accurate than the FEM. Also, the time 
of execution for each one of the computer codes has been measured and compared. While using 

٢×٥ ٤×١٠ ٦×١٥ ٨×٣٠ ١٠×٢٥ ١٢×٣٠ ١٤×٣٥ ١٦×٤٠ divisions 
١١٫٩٩٩٤ ٣٫٧١٢٩٤٫٣٠٤٦٥٫١٧١٩٦٫٥٢٦٥٨٫٧٨٦٣ ٢٫٩٧٢٦٣٫٢٨٨٦ FEM 
٣٢٫٦٥٣٣ ١٫٨٤١٧١٫٩٢٨٣٢٫١١٧٤٢٫٦٤٨٧٤٫٨١١٥ ١٫٧٦٥٩١٫٧٩٤٦S BEM 
١١٫٩٩٩٤ ٣٫٧١٢٩٤٫٣٠٤٦٥٫١٧١٩٦٫٥٢٦٥٨٫٧٨٦٣ ٢٫٩٧٢٦٣٫٢٨٨٦ FVM 
٦٫٦٥٥٣ ٠٫٤٢٧٦٠٫٥٠٦٣٠٫٦٢٠٨٠٫٨٠٣٨١٫١٨٠١ ٠٫٣٢٦٢٠٫٣٧٠٠ EFGM 



the CST leads to a similar stiffness matrix and consequently a comparable level of the accuracy 
in the FVM and FEM, it is interesting that the execution time for the FVM is less than that of 
the FEM for sufficiently fine mesh. The study also reveals that EFGM is the most time 
consuming method and also that the BEM takes less time than FVM or FEM. 
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