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Abstract. In this paper four eminent numerical techniques of Finite Element Method
(FEM), Boundary Element Method (BEM), Element Free Galerkin Method (EFGM) and
Finite Volume Method (FVM) are evaluated comparatively. The bench marking plane
strain problem of cantilever beam under end load is used as the basis for the analysis. Using
MATLAB package a computer code has been written and examined for each routine.
Triangular elements with nodes on their corners are used in FEM, linear elements are used
in BEM, the polynomial of degree one is used for the approximation of the field function
around each node in EFGM and constant strain triangles are used in the formation of the
volumes in FVM. The effect of mesh refinement upon the accuracy of the results and the
period of execution are evaluated and used as a criterion for the assessment of the routines.

1 INTRODUCTION. The Finite Element Method (FEM) seems to be dominant to different
computing disciplines such as the Computational Structure Mechanics (CSM), but this hasn’t
caused the researchers to stop the struggles for finding better numerical approaches to solve
problems more efficiently. Introducing fairly newer numerical methods such as Element Free
Galerkin (EFG), Finite Volume (FV) for solid mechanics, Boundary Element (BE), Petrov-
Galerkin and so on are approaches which have formulated to conquer the FEM limitations. One
of the FEM deficiencies is that the method requires obtaining all of the nodal values even if we
require only one nodal value in a domain. Also in some cases such as the large deformation or
crack growth problems the dependence of the method on a mesh leads to some complexitics. In
such cases mesh pattern may lead to skewed or compressed elements. So we need methods
which could deal well with the extended regions, contrasting the FEM that yields large errors in
this context. So first of all let’s have a brief survey on the history of the abovementioned
methods,

In the beginning of the twentieth century Fredholm (1) conducted a rigorous investigation into
the classical kinds of integral equations. Most of the earlier researches were focused on the
formulations of the potential theory and elasticity by means of the integral equations. The
endeavors were based on the analytical procedures which reduced the application of integral
equations to simple and trivial problems (2).

In 1967, Rizzo (3) used the direct boundary element method to solve two-dimensional
elastostatic problems. Cruse (4), extended Rizzo's work to three-dimensional problems of
Elastostatics, Triangular elements were used to model the curved surface, thus converting the
curved boundary into a piecewise flat surface.

Within a relatively short span of time a number of important contributions in various fields were
made by Cruse, Elastodynamic problems (5), Elastoplasticity (6), Fracture Mechanics (7) were
successfully attempted by his team of researchers who paved the way to further accelerate the
upraising of the boundary element method.

57



- 2007 International Conference on Engineering and Mathematics

The. elf:me“t == Galerkin method (EFGM) is a relatively recent numerical method. At the
beginning, ‘Rﬁig_ﬂ_tchko et al. (8) proposed this tactic. Since then it has been applied to various
fields such ws e Fracture Mechanics (9), thin plates and shells (10), transient coupled problems
(11) and "Wwe=rial interfaces modeling (12). Recently more tendencies aroused to upgrade the
type of the vysErmmament of essential boundary conditions in the EFG Method (13).

Finite V_Oll\tm-.g {FV) is a fairly new numerical approach in the field of Computational Solid
Mechanics \LSSM)). In this approach, instead of utilizing the energy minimization as in the FEM,
the balance lywe 35 directly applied to the discretized volumes forming a domain. This approach
has enabled weg—essful analysis of the complex problems involving moving fluids and structure
INEractions (=__1y The early developed FV codes were based on the structural analysis
p!ocedlfrea “=Emable of predicting displacements, strains and stresses in two and three
dimensional ligmear elastic loaded structures under small deformations (15). More recently these
procedures hewee been focused on the nonlinear behavior of materials (16) as well as the large
deformation ww=spids (17).

In this papex; = present some comparisons between four numerical methods of Finite Element
(FE), Bounye Ejement (BE), Finite Volume (FV) in the CSM field and Element Free Galerkin
(EF.G)', '1:0 & nis, the bench marking plane strain problem of cantilever beam under end load
which it’s & wgacrizal solution is available is used as the basis for the analysis. Using MATLAB
. Package a qvgmminer code s written and examined for each method. First order polynomials are
er.nployed N e interpolation of the field and the physical variables. For this purpose,
triangular @srmv=nrs with nodes on their corners are used in FEM, linear elements are used in
BEM, the P\»<nomial of degree one is used for the approximation of the field function around
each node se "=FGM and constant strain triangles (CST) are used in the formation of the
volumes 1% ‘fre= VM. The effect of mesh refinement or numbers of nodes upon the accuracy of
the results i ssmyied by means of the evaluation of the displacements or energy norms. The
period of €xwrion for each one of the computer codes is measured and used as a criterion for
the asS€SShawre- o the routines. Based on the potential of each method in the solution of the
%)enchmarlsukg Troblem, some suggestions regarding the choice of proper method in some
INSIANCES 1% :zpee feld of solid mechanics are recommended. In the next we will bring the
fg@ul\fxtlo@%: VM because of being relatively newer than other mentioned methods..

2 FORMUR, Iy ON OF THE FVM IN THE CSM FIELD. A two dimensional structure can
be represenigms: “bv a mesh of triangular elements connected alongside at their nodes. Finite
control Volukwems: are constructed around each node by connecting the centroids of the triangular
elements tov s midpoints of their sides. A typical volume constructed around a node P,

surrounded Riw "% slements is shown in Figure 1.

FinneEloment

Lonrol \r’olumg__
Vertes \(

2 .\

Conteel Valume Finite Flemem

Figure 1. Volume made up of triangular cells

I'I' general, thyae weerrices of the volume are numbered from 1 to 2N, commencing at one of the
clement centtreryizis and continuing around anticlockwise via the element edge midpoints and

centroids oNes-xear the other. '

58

gt



1 e e D

2007 International Conference on Engineering and Mathematics

Figure 2. Geometry values of a triangular cell.

According to figure 2, considering one triangular cell constructing the control volume we can
write for the strain components

. e =Bu, 4y
where B is the differential operation matrix and w, collects the displacement components u; and
v;. Consequently the strain components can be written as,

1 3
£, == AL, 2
x 2A¢l|-zl xUj ()
L e r
'
Ty = -mE(Aixvi +A ) 4)

where t is the thickness of the sample and A, is the area of the cell. Besides the meaning of A;,
and A;, can be found from Figure 2 where for example A, is the x component of A;and A is in
turn the area of the side cross section oppasite to the vertex i.
The constitutive equation may be written as

¢.=D_ g =D Bu, (9
where o, collects the stress components, and the matrix D, represents Hooke’s law for the
isotropic homogeneous material.
In order to write equilibrium equations it is necessary to express the forces acting through each
side of the control volume surrounding the considered node. As stress components are uniform
within each cell, the surface force such as T, in Figure 3 will be given by

o
Tl'.l =l AIK 0 Al)’ cx (6)
Ty) T2 0 Ay Al
L% Je

and in a similar manner for the three nodes of the cell applied forces can be cbtained by
multiplying area and stress matrix as,

Tlx .] -Alx 0 Aly i
Tixy 0 A, Ay o
e o iMee O Ra] 2 @
Ty | 2| O Ag Ay ty
T3x Ajy 0 AS)’ o
I_TJy N |_ 0 A3y A3K .
Using Equation (5), Equation (6) can be also written as
T, =-tA_BD_Bu, ®
It is now possible to write equilibrium condition for each cell. We use the following equation,
T,=1IT; ©9)
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Figure 3. Forces corresponding to the node 1 of the cell

where T, is the resultant of the forces that act on the two sides of the volume surrounding node

P belonging to the cell ¢ and Ty is the total force acting on all sides of volume surrounding node
P. Similarly for external forces we have,

E, = ES (10)
<

where Ej is the external force that acts on the portion of the cell ¢ which belongs to the volume
surrounding node P, and E; is the resultant of the external force acting on that volume,
Equilibrium can then be written for the volume surrounding node P as

T, +E, =0 : an
Equation (11) is a set of 2n linear equations in the 2n unknown u; and v; (i=1,...,n) which can be
solved with the usual methods.

3 NUMERICAL RESULTS. In this section the resuits obtained by applying the four
explicated numerical methods to a benchmarking problem are introduced. Having in hand the
exact solution of the problem, in each case different assessments of errors are calculated. Also

the period of execution for each one of the computer codes is measured and used as a criterion
for the comparison of the methods.

Consider a cantilever beam of length L, height H and thickness t subjected to end load P. This

beam is shown in Figure 4. Here the beam geometzical dimensions and the amount of load are - :
taken to be, s i '

L=2m, H=05m, t=005m, P=I[xI0°N

(A

B

a4

y
L : =

Figure 4. Cantilever beam with the end loading
Figures § to 8 show the manner which is used to discretise the domain to n-divisions along the
length and m-divisions along the width. In each case the method that nodes are numbered is
indicated on the picture.

(o+1) Gmt 1)

2

........ a*l
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Figure 3. Displacment error for the point A versus the number of nodes

3-‘1 Node numbers effect. A closed form solution to this problem has been given by
Tgmoshenko and Goodier (18). The percentage of the error in the displacement of point A (see
Figure 4) as per different numerical techniques is depicted in Figure 9.
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In Figure 9, the abscissa is the number of nodes and the ordinate shows the percentage of errop
calculated in different techniques. Based on Figure 9 the method of Element Free Galerkj
(EFG) shows the most accurate results and its error is less than %! for all number of divisions,
By using coarse meshes the error in the BEM solution will grow up to a level greater than that -
in the FEM, but as Figure 9 reveals by reﬁning the mesh, the answers of BEM draws near to the 3
exact solution of the problem. So at least in this case, on the boundary nodes such as the pg,m
A, BEM solution yields more accurate answers than FEM.

As can be seen in Figure for the defined problem the displacement error of the FVM and FEM
solutions are coincident. '

3-2 The effect of meshing on the energy norm. The energy norm for a structural numerical -
analysis is often calculated as ‘ :

1n
energy norm = {% [[Chide ~gDACTAT TyfptlM . gEXACTy dﬂ}
0
EXACT ;

in which g is the strain calculated from an exact solution, & " is the strain obtained from
the numerical approach and dQQ is the partial volume of the domain. The energy norm versus the
number of nodes obtained in this study is depicted in Figurel0. The figure shows that norm of
energy in the EFGM solution is several times less than that in three other methods. Figure 10
also points out that compared to other methods the more is the number of the nodes the less will
be the norm of energy in the EFGM solution. That is the EFGM line is steeper than the curve of
other methods. Figure 10 also shows that by using coarse meshes the norm of energy in FEM
solution is less than BEM energy norm. The situation will be reversed if fine meshes are used,
so the BEM is more mesh-sensible than the FEM. This study suggests that typically by using
fine meshes, the result of BEM is more accurate than that of the FEM solution. Figure also
shows that the energy norm in FVM is similar to the FEM norm.
The norm of energy values have also listed in table 1.

10 —

Energy Nomt

L[ SO

10" ‘ — - e
10' 10’ @ 1
Nunaber of nedes

Figure 6. Energy norm

3-3 Execution time, Using several divisions of domain, the execution period elapsed in each
one of the algorithms have been listed in Table 2 and also depicted in Figurell. Figure 11
discloses that EFGM is a weighty and prolonged method. The Figure also shows that the BEM
takes less time than the FEM and FVM, and the FEM is slower than the FVM.

P
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* Table 1. The values of energy norms

divisions Ix2 10x4 | 15%6 | 30=8 | 25x]10 | 30=x]2 | 35x14 | 40x16
FEM 11.9994 | 8.7863 | 6.5265 | 5.1719 | 4.3046 | 3.7129 | 3.2886 | 2.9726
BEM 32.6533S [ 4.8115 | 2.6487 | 2.1174 | 1.9283 | 1.8417 | 1.7946 | 1.7659
FVM 11.9994 | 8.7863 | 6.5265 | 5.1719 | 4.3046 | 3.7129 | 3.2886 | 2.9726
EFGM 6.6553 | 1.1801 | 0.8038 | 0.6208 | 0.5063 | 0.4276 | 0.3700 | 0.3262

Table 2. The period of calculation for the nodal displacements in seconds

number of nodes | 189 | 835 | 828 | 1271
BEM . 6.13 | 1848 |45.11 | 83.70
FEM 1.15 | 7.35 38.16 | 482.96
EFGM 71.84 | 26230 | 814.7 } 1651
FVM 1306 {7.73 41.29 | 157.10
159 + - +
W BEM
B8 FEM o
1600 H 21 EFGM ; |
. VM
P -
A . =
3 IM 3 h:( -
600 - 1.:'
. i
- _-.}
0 2 _J—-t S “ll;._ -. ___.
159 £28
Nunber of noies

Figure 7. Expended time for the calculation of nodal displacements

4 CONCLUSIONS. In this paper in order to compare some techniques of computational
mechanics, the local error in the displacement of a check point and the global norm of energy on
the entirety of a cantilever beam under end loading as a benchmarking problem has been
derived. Using the four methods of BEM, EFGM, FVM and FEM with the linear interpolation
functions or basis some measures of errors are obtained and represented. The results show that
both local and global norms of error for the EFGM were several times less than other three
methods and that by using fine meshes the BEM is more accurate than the FEM. Also, the time
of execution for each one of the computer codes has been measured and compared. While using
the CST leads to a similar stiffness matrix and consequently a comparable level of the accuracy
in the FVM and FEM, it is interesting that the execution time for the FVM is less than that of
the FEM for sufficiently fine mesh. The study also reveals that EFGM is the most time
consuming method and also that the BEM takes less time than FVM or FEM.
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Abstract. In this paper four eminent numerical techniques of Finite Element Method
(FEM), Boundary Element Method (BEM), Element Free Galerkin Method (EFGM) and
Finite Volume Method (FVM) are evaluated comparatively. The bench marking plane
strain problem of cantilever beam under end load is used as the basis for the analysis. Using
MATLAB package a computer code has been written and examined for each routine.
Triangular elements with nodes on their corners are used in FEM, linear elements are used
in BEM, the polynomial of degree one is used for the approximation of the field function
around each node in EFGM and constant strain triangles are used in the formation of the
volumes in FVM. The effect of mesh refinement upon the accuracy of the results and the
period of execution are evaluated and used as a criterion for the assessment of the routines.

\ INTRODUCTION. The Finite Element Method (FEM) seems to be dominant to different
computing disciplines such as the Computational Structure Mechanics (CSM), but this hasn’t
caused the researchers to stop the struggles for finding better numerical approaches to solve
problems more efficiently. Introducing fairly newer numerical methods such as Element Free
Galerkin (EFG), Finite Volume (FV) for solid mechanics, Boundary Element (BE), Petrov-
Galerkin and so on are approaches which have formulated to conquer the FEM limitations. One
of the FEM deficiencies is that the method requires obtaining all of the nodal values even if we
require only one nodal value in a domain. Also in some cases such as the large deformation or
crack growth problems the dependence of the method on a mesh leads to some complexities. In
such cases mesh pattern may lead to skewed or compressed elements. So we need methods
which could deal well with the extended regions, contrasting the FEM that yields large errors in
this context. So first of all let’s have a brief survey on the history of the abovementioned
methods.

In the beginning of the twentieth century Fredholm () conducted a rigorous investigation into
the classical kinds of integral equations. Most of the earlier researches were focused on the
formulations of the potential theory and elasticity by means of the integral equations. The
endeavors were based on the analytical procedures which reduced the application of integral
equations to simple and trivial problems (V).

In Y41V, Rizzo (V) used the direct boundary element method to solve two-dimensional
elastostatic problems. Cruse (£), extended Rizzo's work to three-dimensional problems of
Elastostatics. Triangular elements were used to model the curved surface, thus converting the
curved boundary into a piecewise flat surface.

Within a relatively short span of time a number of important contributions in various fields were
made by Cruse. Elastodynamic problems (°), Elastoplasticity (1), Fracture Mechanics (V) were
successfully attempted by his team of researchers who paved the way to further accelerate the
upraising of the boundary element method.



The element free Galerkin method (EFGM) is a relatively recent numerical method. At the
beginning, Belytschko et al. (A) proposed this tactic. Since then it has been applied to various
fields such as the Fracture Mechanics (?), thin plates and shells () +), transient coupled problems
(VV) and material interfaces modeling (1Y). Recently more tendencies aroused to upgrade the
type of the enforcement of essential boundary conditions in the EFG Method (1 V).

Finite Volume (FV) is a fairly new numerical approach in the field of Computational Solid
Mechanics (CSM). In this approach, instead of utilizing the energy minimization as in the FEM,
the balance law is directly applied to the discretized volumes forming a domain. This approach
has enabled successful analysis of the complex problems involving moving fluids and structure
interactions (Yf). The early developed FV codes were based on the structural analysis
procedures capable of predicting displacements, strains and stresses in two and three
dimensional linear elastic loaded structures under small deformations (°). More recently these
procedures have been focused on the nonlinear behavior of materials (17) as well as the large
deformation of solids (V).

In this paper, we present some comparisons between four numerical methods of Finite Element
(FE), Boundary Element (BE), Finite Volume (FV) in the CSM field and Element Free Galerkin
(EFQ). To do this, the bench marking plane strain problem of cantilever beam under end load
which it’s analytical solution is available is used as the basis for the analysis. Using MATLAB
package a computer code is written and examined for each method. First order polynomials are
employed for the interpolation of the field and the physical variables. For this purpose,
triangular elements with nodes on their corners are used in FEM, linear elements are used in
BEM, the polynomial of degree one is used for the approximation of the field function around
each node in EFGM and constant strain triangles (CST) are used in the formation of the
volumes in the FVM. The effect of mesh refinement or numbers of nodes upon the accuracy of
the results is studied by means of the evaluation of the displacements or energy norms. The
period of execution for each one of the computer codes is measured and used as a criterion for
the assessment of the routines. Based on the potential of each method in the solution of the
benchmarking problem, some suggestions regarding the choice of proper method in some
instances in the field of solid mechanics are recommended. In the next we will bring the
formulation of FVM because of being relatively newer than other mentioned methods.

Y FORMULATION OF THE FVM IN THE CSM FIELD. A two dimensional structure can
be represented by a mesh of triangular elements connected alongside at their nodes. Finite
control volumes are constructed around each node by connecting the centroids of the triangular
elements to the midpoints of their sides. A typical volume constructed around a node P,
surrounded by N elements is shown in Figure V.

Finite Element
Node

Control Volume \

Vertex \/

| %

Control Volume Finite Element

Figure ). Volume made up of triangular cells

In general, the vertices of the volume are numbered from Y to YN, commencing at one of the
element centroids and continuing around anticlockwise via the element edge midpoints and
centroids one after the other.



Figure Y. Geometry values of a triangular cell.

According to figure Y, considering one triangular cell constructing the control volume we can

write for the strain components
g, =Bu, M

where B is the differential operation matrix and u, collects the displacement components u; and
vi. Consequently the strain components can be written as,

1 3
g, =— A u; Y
X 2Act1§1 X1 ( )
3
&y =~ 1 2 AV ()
YAt Y
1 3
=— A.v.+A. u. ¢
’YXy 2Act1§1( X "1 1y 1) ( )

where t is the thickness of the sample and A. is the area of the cell. Besides the meaning of Aj,
and A;y can be found from Figure Y where for example Ajy is the x component of A;and A;is in

turn the area of the side cross section opposite to the vertex i.

The constitutive equation may be written as
GC :DC 8C :DCBuC (o)

where o, collects the stress components, and the matrix D, represents Hooke’s law for the

isotropic homogeneous material.
In order to write equilibrium equations it is necessary to express the forces acting through each

side of the control volume surrounding the considered node. As stress components are uniform
within each cell, the surface force such as T, in Figure ¥ will be given by

Tlx _ l Alx 0 Aly
le ¢ 2 0 Aly Alx c
Xy |¢

and in a similar manner for the three nodes of the cell applied forces can be obtained by

Ox
oy @)
T

multiplying area and stress matrix as,

Tlx ] _Alx 0 Aly
Tlxy 0 Aly Alx _G
T2x 1 A2x 0 AZy *
- G ™)
Ty | 2| 0 Ay Ay | Y
T3x A3x 0 A3y _TXy
| T3y ] | 0 A3y As |
Using Equation (°), Equation (1) can be also written as
Q)

T, =—tA.BD_Bu,
It is now possible to write equilibrium condition for each cell. We use the following equation,
T, = ECJT; @)



3 TI=Ti+T"

Figure Y. Forces corresponding to the node ' of the cell

where T, is the resultant of the forces that act on the two sides of the volume surrounding node

P belonging to the cell c and Ty is the total force acting on all sides of volume surrounding node
P. Similarly for external forces we have,

E, =X Ep QD)

where E} is the external force that acts on the portion of the cell ¢ which belongs to the volume
surrounding node P, and E, is the resultant of the external force acting on that volume.
Equilibrium can then be written for the volume surrounding node P as

T,+E, =0 ")
Equation (1)) is a set of Yn linear equations in the Yn unknown u; and v; (i=),...,n) which can be
solved with the usual methods.

¥ NUMERICAL RESULTS. In this section the results obtained by applying the four
explicated numerical methods to a benchmarking problem are introduced. Having in hand the
exact solution of the problem, in each case different assessments of errors are calculated. Also
the period of execution for each one of the computer codes is measured and used as a criterion
for the comparison of the methods.

Consider a cantilever beam of length L, height H and thickness t subjected to end load P. This
beam is shown in Figure ¢. Here the beam geometrical dimensions and the amount of load are
taken to be,

F AV A

Figure ¢. Cantilever beam with the end loading

Figures © to A show the manner which is used to discretise the domain to n-divisions along the
length and m-divisions along the width. In each case the method that nodes are numbered is
indicated on the picture.

(b 1), (k1)

] : B n 1

Figure °. Discretised domain in the FEM



Errar (Y}

2n+m+1 - rhrt2

- !
]
|
! (ot 1) (1)
——— e — —————— —— e
! M
i
2frrm)+2 i
o Pmy [ S S S
W ]
i
2fartmyl |
20atm) I o N S S Y SN a2
]
|
]
o
1 2 & ooaBaan = I okl

Figure 1. Discretised domain in the BEM

freF 1. Gk 13

o n+3
1 2 3 R n nt+1
Figure V. Discretised domain in the FVM
G m+2
-+ ———
i i
1 1
z + -
! !
-+ -
i i
| |
o + -1
i i
pe "
Gehl 1) (m+1)
Z

Figure A. Discretised domain in the EFGM

10’ 10° 10
Mumber of nodes

Figure °. Displacment error for the point A versus the number of nodes



Y-\ Node numbers effect. A closed form solution to this problem has been given by
Timoshenko and Goodier (1A). The percentage of the error in the displacement of point A (see
Figure ) as per different numerical techniques is depicted in Figure

In Figure , the abscissa is the number of nodes and the ordinate shows the percentage of error
calculated in different techniques. Based on Figure the method of Element Free Galerkin
(EFG) shows the most accurate results and its error is less than  for all number of divisions.

By using coarse meshes the error in the BEM solution will grow up to a level greater than that
in the FEM, but as Figure reveals by refining the mesh, the answers of BEM draws near to the

exact solution of the problem. So at least in this case, on the boundary nodes such as the point
A, BEM solution yields more accurate answers than FEM.

As can be seen in Figure for the defined problem the displacement error of the FVM and FEM
solutions are coincident.

- The effect of meshing on the energy norm. The energy norm for a structural numerical
analysis is often calculated as

1/2
1
energy norm = {5 J‘(SNUM —sEXACT)T D(SNUM _SEXACT) dQ}

Q
in which AT is the strain calculated from an exact solution, €\"M is the strain obtained from
the numerical approach and dQ is the partial volume of the domain. The energy norm versus the

number of nodes obtained in this study is depicted in Figure . The figure shows that norm of
energy in the EFGM solution is several times less than that in three other methods. Figure

also points out that compared to other methods the more is the number of the nodes the less will
be the norm of energy in the EFGM solution. That is the EFGM line is steeper than the curve of
other methods. Figure  also shows that by using coarse meshes the norm of energy in FEM

solution is less than BEM energy norm. The situation will be reversed if fine meshes are used,
so the BEM is more mesh-sensible than the FEM. This study suggests that typically by using
fine meshes, the result of BEM is more accurate than that of the FEM solution. Figure also
shows that the energy norm in FVM is similar to the FEM norm.

The norm of energy values have also listed in table V.
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¥-¥ Execution time. Using several divisions of domain, the execution period elapsed in each
one of the algorithms have been listed in Table Y and also depicted in Figure)). Figure )
discloses that EFGM is a weighty and prolonged method. The Figure also shows that the BEM
takes less time than the FEM and FVM, and the FEM is slower than the FVM.

Table V. The values of energy norms

divisions ox v )ox & Jox 1 Frex A Yok )e | Fex )Y | Fox 16| £ex )T
FEM 11,999¢ | A,YATY | ,0oY%0 [ o0 A | £,¥e et | FLvaYa | Y YAAT | YAV
BEM TY,N0TYS | £,AV 0 | Y,TEAY [ Y,00VE [ ), AYAY [ ), A6 Y [ Y, VAT |y, ved
FVM Yy,444¢ AYATY | ,0Y700 | 0,3V | £, €67 | YL,VIYA | Y,YAAT | Y,4vYT
EFGM T,000Y [V, 0AY [ GACYA [ LAY AA [ e Y [ Yy [ Yy e | rYy

Table Y. The period of calculation for the nodal displacements in seconds

number of nodes | 47 | AT | ATA IV
BEM LAY [ YAEA | £0,0) | AT,V
FEM y,0e | v,Ye YA | EAY,40
EFGM VY,AE | YAY,Y. | AYE,Y | Yo
FVM Y, Y,vY £Y,Y4 | YoV, .
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Figure V. Expended time for the calculation of nodal displacements

¢ CONCLUSIONS. In this paper in order to compare some techniques of computational
mechanics, the local error in the displacement of a check point and the global norm of energy on
the entirety of a cantilever beam under end loading as a benchmarking problem has been
derived. Using the four methods of BEM, EFGM, FVM and FEM with the linear interpolation
functions or basis some measures of errors are obtained and represented. The results show that
both local and global norms of error for the EFGM were several times less than other three
methods and that by using fine meshes the BEM is more accurate than the FEM. Also, the time
of execution for each one of the computer codes has been measured and compared. While using



the CST leads to a similar stiffness matrix and consequently a comparable level of the accuracy
in the FVM and FEM, it is interesting that the execution time for the FVM is less than that of
the FEM for sufficiently fine mesh. The study also reveals that EFGM is the most time
consuming method and also that the BEM takes less time than FVM or FEM.
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