
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Chemical Engineering Journal 171 (2011) 69–80

Contents lists available at ScienceDirect

Chemical Engineering Journal

journa l homepage: www.e lsev ier .com/ locate /ce j

Reliable prediction of pore size distribution for nano-sized adsorbents with
minimum information requirements

A. Shahsavand ∗, M. Niknam Shahrak
Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, P.O. Box 91775-1111, Islamic Republic of Iran

a r t i c l e i n f o

Article history:
Received 25 December 2010
Received in revised form 9 March 2011
Accepted 10 March 2011

Keywords:
Condensation
Adsorption
PSD
Regularization
Cross validation

a b s t r a c t

Direct estimation of pore size distribution (PSD) for nano-structured adsorbents suffers from a number of
heavy shortcomings. On the other hand, conventional regularization techniques also require profoundly
detailed and accurate information about the proper local adsorption isotherm (kernel) to provide reliable
PSDs. Selection of improper kernel or use of inexact values for isotherm parameters can lead to serious
errors in PSD profiles.

Two new PSD determination techniques are presented in this article for efficient PSD recovery from
mere condensation data or condensation isotherms in the presence of adsorption. The second method
extends the first approach by considering a pre-adsorbed layer prior to condensation. Both procedures
use entirely different linear regularization technique compared to conventional regularization meth-
ods. The new proposed techniques do not require any a priori information about the shape of local
adsorption isotherm. They recruit minimum number of physical data or assumptions to produce reliable
performances for successful PSD recoveries.

Several comparative synthetic and real case studies are employed to illustrate the promising perfor-
mance of the newly proposed Techniques. The leave one out cross validation (LOOCV) criterion and the
generalized singular value decomposition (GSVD) technique are crucial for fast, efficient and reliable esti-
mation of optimal regularization level (�*). Simultaneous manual verification is also recommended to
ensure best possible performance. Although various heuristics are considered for estimation of adsorbed
film thickness, however, the proposed method provides almost same result for all different heuristics.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Efficient and reliable estimation of pore size distribution (PSD)
for heterogeneous solid adsorbents is crucial for successful design
and operation of any adsorption process. Direct measurement of
PSD is usually expensive and in many practical applications may
not be feasible. Multifaceted theories and sophisticated models are
required to obtain a realistic estimation of PSD from a set of noisy
measured isotherms.

Relatively simple heuristics methods (such as Barret, Joyner
and Halenda (BJH), Kruk–Jaroniec–Sayari (KJS), Horvath and Kawa-
zoe (HK) and Nguyen and Do (ND)) were presented from early
1950s to late 1990s by numerous researchers to predict PSD from
experimental adsorption isotherms [1–4]. In mid 1980s, Tarazona,
Marconi and Evans [5] applied Density Functional Theory (DFT)
to the adsorption isotherms. Two types of approximation were
employed for the hard-sphere free energy functional.

∗ Corresponding author. Tel.: +98 0915 514 9544; fax: +98 511 8816840.
E-mail address: shahsavand@um.ac.ir (A. Shahsavand).

In 1989, Seaton, Walton and Quirke [6] presented a practical
method based on mean-field density functional theory to deter-
mine pore size distribution from nitrogen isotherms. However,
their approach employed the presumption of a specific distribu-
tion function. The proposed method was able to determine both
the micropore and mesopore size ranges using a single analy-
sis tool. They used a pre-specified bimodal lognormal distribution
and tuned its various parameters to get the measured isotherm.
Although they mentioned that the so-called direct method1 pro-
vides infinite number of distributions, however, they claimed that
if the local adsorption isotherm consists of 20 or more measured
data points, then “two functions that represent the data equally
well may have different mathematical forms, their numerical val-
ues are very similar”. As it will be clearly illustrated in this article,
the infinite number of optimal distributions which satisfies Eq. (1)
will be entirely different even for much larger data sets.

In an entirely different approach, the ill-posed problem of find-
ing PSD of a solid adsorbent (f(r)) from a set of measured isotherms

1 Assuming both distribution (f(r)) and kernel (�(Pi , r)) to reconstruct the mea-
sured isotherm from Eq. (1).

1385-8947/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
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data from following integral equation2 was achieved using the
“inverse theory” [7]. In mathematical terms, the experimental
isotherm is the integral of the single pore isotherm multiplied by
the pore size distribution. For a slit-shaped pore, this can be written
as

� (Pi) = C�(Pi)
C� s

=
∫ rmax

rmin

� (Pi, r) f (r) dr (1)

where �(Pi, r) is the local adsorption isotherm (kernel) evalu-
ated at bulk pressure Pi and local pore size (r). The function f(r)
denotes the PSD of the heterogeneous solid adsorbent. Evidently, a
small perturbation in the data � (Pi) will almost certainly result
in a substantial alteration in the solution (f(r)). In the absence
of lateral interactions, the fractional adsorption of an adsorbate
on various sites of a solid adsorbent is described by numerous
adsorption isotherms such as Linear Driving Force (LDF), Langmuir,
Freundlich, Dubinin–Radushkevich (DR), Dubinin–Astakhov (DA),
Sips, Toth, Unilan, Jovanovich, Temkin, Brunauer–Emmett–Teller
(BET), Fowler and Harkins–Jura. The maximum adsorption capac-
ity C�s is only a function of temperature and does not depend on
pressure

(
C�s = C�s0 exp

[
−ˇ (T − Tr)

])
.

The following literature review emphasises on various
researches performed in the latter area which combines inverse
theory with linear regularization technique (also known as Phillips-
Twomey method or Tikhonov-Miller regularization) to extract pore
size distribution from a set of adsorption isotherm data. Two novel
techniques will be presented later in this article which both of them
enjoy the solid theoretical background of powerful regularization
technique to predict PSD from both just condensation data and
condensation with a pre adsorbed layer.

In a pioneering work, Merz [8] used the regularization the-
ory and generalized cross-validation (GCV) technique to determine
the adsorption energy distribution (AED), using Langmuir and BET
isotherm. House et al. [9] used similar approach to predict the
energy distribution of a heterogeneous solid adsorbent by employ-
ing the second order penalized least square (PLS) technique. They
reported that “the obtained results using the regularization method
indicate that the solution is entirely dependent on the quality and
range of the isotherm data and various approximate solutions may
be formulated according to the desired agreement between the
computed and experimental isotherms”.

In 1998, Bhatia [10] successfully applied the combination of
finite element collocation technique with regularization method
to extract various double peak pore size distributions from 100
synthetic isotherm data points contaminated with 1% normally
distributed random errors using DR isotherm. They applied the
constraint of non-negativity of solutions by simply utilizing a
Newton–Raphson technique. Although they reported that “the
method is stable over a wide range of values of the regular-
ization parameter”, however, we believe that the application of
non-negativity constraint usually provides unrealistic solutions.
Therefore, it would be more advantageous to provide non-negative
solution without using the above constraint.

Ryu et al. [11] carried out extensive adsorption studies of
a series of carbonaceous adsorbents including polyacrylonitrile
(PAN)-based activated carbon fibres, coal activated carbon and
pitch carbon bead. Nitrogen adsorption measurements were used
to evaluate the specific surface area, micropore surface area, micro-
pore volume and PSD. The PSDs of the samples were calculated
by employing the regularization method according to Density
Functional Theory (DFT) that is based on a molecular model for
adsorption of nitrogen in porous solids. Dubinin–Radushkevich

2 Known as the Fredholm integral of first kind.

Plots were employed to observe multi stages of adsorption and
pore filling procedure. Although the presented method is able to
successfully extract the PSD’s from several measured isotherms,
however, it requires too many parameters (such as: inter-nuclear
separation of the molecules, depth of the inter-molecular poten-
tial well, molecular diameter, energy and size parameters of
carbon–adsorbate interaction, number density of carbon atoms in
graphite and the separation of the graphite planes) to achieve this
task.

In 1999, Dion and Lasia [12] extracted several AEDs from various
synthetic and experimental data sets via regularization technique
using Frumkin–Temkin isotherms. They concluded that “the proper
choice of regularization parameter is the biggest problem”. This
problem can be avoided by resorting to the Leave One Out Cross
Validation (LOOCV) criterion [13].

In 2001, Do and Do [14] developed a theory for diffusion and
flow of pure sub-critical adsorbates in microporous activated car-
bon over a wide range of pressure, where capillary condensation
is occurring. The complete pore size distribution was required in
their theory for the calculation of the Ajax activated carbon per-
meability. The permeability was found to be dominated by pores
having size less than 2 nm or greater than 400 nm. The former is
by flow of condensate, while the latter is by Knudsen diffusion and
gaseous viscous flow.

Gill et al. [15] used Dubinin–Astakhov isotherm to evaluate the
micropore size distribution of several modified carbon molecu-
lar sieves. They actually used a nonnegative constraint first order
penalized least square cost function but named it as regularization
technique. As mentioned earlier, this method was originally used
in 1978 by House et al. [9].

In 2005, Herdes et al. [16] computed PSD from experimental
adsorption isotherms using regularization procedure. They con-
cluded that “the individual pore model seems to be accurate,
provided that an adequate method to generate the kernel of indi-
vidual adsorption isotherms and a robust mathematical procedure
to invert the adsorption integral equation are available”. As it will
be pointed out in subsequent sections, selection of inappropriate
kernel may bead to misleading pore size distributions.

Segura and Toledo [17] presented the simulation results of pore-
level drying of non-hygroscopic liquid-wet rigid porous media for
2D and 3D pore networks. Evaporation and drainage mechanisms
were considered under isothermal condition. Details of pore space
including pore size distribution and pore shape were used to cal-
culate the effective permeability of liquid and diffusivity of vapor.

In 2006, Solcova et al. [18] provided a large collection of valuable
experimental measurements (via mercury porosimetery) for a set
of controlled-pore glasses CPG10 with different nominal pore sizes.
The measured isotherms and the corresponding PSDs are valuable
assets for validation of any new method regarding PSD estimation
from condensation or adsorption data sets.

Podkoscielny and Nieszporek [19] used the regularization based
INTEG program developed by Jaroniec et al. [20] to predict the
non-symmetrical single peak adsorption energy distribution of var-
ious activated carbons using a number of experimental adsorption
isotherms borrowed from literature [21–23].

Gauden et al. [24] extended the Nguyen and Do method to
recover the bimodal PSD of various carbonaceous materials from
a variety of synthetic and experimental data. They concluded that
“the bimodality of the pore size distribution is a characteristic fea-
ture of the majority adsorbents possessing micropores and it results
from the similarity of the local adsorption isotherm in the range of
the pore widths for which the gap between peaks (related to the
primary and secondary micropore filling mechanism) exists”.

In 2008, Kang et al. [25] used chemical vapor deposition method
of benzene as a chemical agent to control pore size distribution
of activated carbon. Pore size distribution results investigated by
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Fig. 1. Unrealistic PSD computed via forward method which exactly recovers the isotherm data.

adsorption of various gases including CO2 (3.3 Å), n-butane (4.3 Å)
and iso-butane (5.0 Å), assured of the pore constriction or height-
ened energy barrier on the pore opening. They observed that
“the nitrogen diffusivity and the selectivity of treated samples
are inversely proportioned”. Pore size distribution by BET method
also showed that chemical vapor deposition narrowed pores and
improved the selectivity of target gas from air.

Choma et al. [26] improved Kruk–Jaroniec–Sayari (KJS) pore
size analysis technique to predict the pore size distribution of two
different channel-like mesoporous carbons from various sets of
Nitrogen and Argon adsorption isotherms. The article does not con-
tain any measured PSD’s for validation purposes.

In 2010, Shahsavand and Niknam [27] presented a new regu-
larization based algorithm to extract PSD of heterogeneous solid
adsorbents from highly noisy condensation isotherms with almost
no a priori assumption. The performance of the proposed method
was validated using various synthetic and experimental data sets.
A brief review of their work is necessary and will be presented in
the following section to familiarize the reader with the importance
and theoretical background of the newly proposed method.

Development of this new method will be considered in more
details. Various correlations will be examined for estimation of the
adsorbed film thickness (prior to condensation). Furthermore, a
synthetic illustrative example and several real case studies3 will
be used to demonstrate the promising performance of the newly
proposed method for extraction of PSD from ordinary condensation
data when the condensation process preceded by a pre-adsorbed
layer. Although, many previous methods accounted for the pre-
adsorbed layer during the condensation process in the past few
decades, however, to the best of our knowledge, this issue (i.e.
extracting PSD via linear regularization theory from condensation
isotherm when a pre-adsorbed layer precedes the condensation
process) has not been addressed previously.

2. Shortcomings of conventional PSD estimation
techniques

As mentioned earlier, various procedures have been used
conventionally to extract the pore size distributions of various
adsorbents from available adsorption isotherms. In the so called
“direct methods”, a pre-specified isotherm was used along with

3 For adsorption of nitrogen (in text) and argon (in appendix) on several different
adsorbents.

some assumed distribution (for f(r)) and then the corresponding
values of � (Pi) were computed by evaluating the integral term
of Eq. (1). The proposed distribution was decided to be accept-
able, if and only if, the computed isotherm could reconstruct the
experimental data [28,29].

It was clearly demonstrated in our recent article [27] that for
each local adsorption isotherm (or kernel), infinite distributions
(multiple solutions) can theoretically reproduce the adsorption
data, while only one of them provide proper distribution for the
adsorbent. As shown in Fig. 1, many other sub-optimal solutions
(which can successfully filter-out the noise and exactly recover
the true underlying isotherm hidden in a set of noisy data) can
be entirely inappropriate and may lead to exceedingly misleading
distributions.4 This is not surprising, because all of these unrealistic
distributions are actually the optimal solutions of a minimization
problem with no definite physical meaning. Langmuir isotherm has
been employed in both synthetic isotherm data generation step and
PSD recovery process of Fig. 1.

In the second alternative approach, Eq. (1) can be viewed as the
ill-posed problem of attempting to extract part of an integrand, f(r),
from knowledge of the integral � (P). In principle, this is unsat-
isfactory as there exists an infinite number of functions f(r) that
will be consistent with the measured � (P). Using combination of
inverse theory and linear regularization technique, the above ill
posed problem can be readily reduced to the solution of the fol-
lowing set of linear equations.

(RTR+ �BTB)f (r) = RT (2)

where the elements of the N × M matrix R are defined by Rij = �(Pi,
rj)(rj+1 − rj+1) and the elements of (M − 1) × M matrix B depends on
the order of regularization technique (used as a priori information)
[27]. The optimum level of regularization (�*) has crucial effect of
the recovered PSD and can be efficiently computed by minimizing
the LOOCV criterion [13].

CV(�) = 1
N

N∑
k=1

[
eT
k

[IN−H(�)]y

eT
k

[IN−H(�)]eT
k

]2

(3)

H(�) = R
(
RTR+ �BTB

)−1
RT (4)

4 Note the values of vertical axes on the left and right hand sides of the distribution
curves.
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Fig. 2. Dramatic failure of traditional regularization method when dissimilar
isotherms are used in data generation step and PSD recovery process.

As mentioned before, numerous kernels
(
�(Pi, r)

)
can be used for

a given set of adsorption data and each kernel may lead to entirely
a different solution (distribution). Furthermore, in most practical
applications, the kernel parameters are almost always estimated
by assuming (unconsciously) delta Dirac function for AED or PSD
[28,29]. Evidently, such unrealistic parameters are not consistent
with the actual pore size or energy distribution. A recursive method
should be used to correct the fitted parameters based on the com-
puted distribution.

Fig. 2 illustrates dramatic failure of traditional regularization
technique for capturing the PSD of a solid adsorbent from a set of
synthetic noisy isotherm. Different local adsorption isotherms were
employed in the isotherm generation and PSD extraction stages.
Langmuir isotherm was used in the process of synthetic data gen-
eration. Afterwards, the contaminated data (with 1% and 20% noise
levels) sets was recruited to predict PSD of the adsorbent by replac-
ing Langmuir with Sips local adsorption isotherm. We would like to
emphasize that the traditional regularization technique can easily
lead to severely unrealistic distributions, if inappropriate choice of
kernel is selected. Both newly proposed methods do not require any
knowledge about kernel and provide reliable PSDs with minimum
required information.

3. Mathematical issues

The above synthetic example clearly showed that appropriate
choice of kernel is essential for successful recovery of PSD via tra-
ditional regularization technique. Therefore, it would be extremely
advantageous if the kernel term in Eq. (1) can be omitted. Fortu-
nately, in the absence of appreciable adsorption and for the case of
mere condensation of a substance on pores of a solid (smaller than
the threshold radius rK,) the following equation can be used instead
of Eq. (1).

� (Pi) =
∫ rK (Pi)

0

f (r) dr (5)

The threshold radius for both condensation and evaporation
cases can be computed from the Kelvin equation [27]. For solids
exhibiting an adsorbed layer with specific thickness (t) prior to con-
densation, the total amount of adsorbed material at a given pressure

(Pi) for cylindrical pores5 can be computed via [4,29]6:

� (Pi) =
∫ rk(Pi)

0

f (r) dr + t
∫ rmax

rk(Pi)

2f (r)
r

dr (6)

where f(r) is the pore size distribution of the solid adsorbent and
rk (Pi) is the corrected pore radius calculated from Kelvin equation
at the corresponding adsorption pressure (rk = rK + t). The statistical
adsorbed film thickness (t) can be calculated as a function of pres-
sure from a variety of available correlations. This issue will receive
more attention in the next sections,

As it was fully discussed in our previous article [27], the fol-
lowing section briefly explains how to recover PSD from pure
condensation data. A more robust and new technique will be pre-
sented in Section 3.2 which is able to extract PSD from both only
condensation isotherms and for the cases where the condensation
process is accompanied with a single adsorption layer (Eq. (6)).

3.1. Mere condensation condition

The required PSD from pure condensation data can be computed
using the following partitioned matrix derived from Eq. (5) [27]:

(RTR)f
�

= RT� (7)

where N × Mt matrix R∈ �

[
N×

∑N

i=1
M(Pi)

]
has usually many

more columns than its rows, the overall PSD column vector

(f ∈ �

[∑N

i=1
M(Pi)×1

]
) has dimensions of

[∑N
i=1M(Pi) × 1

]
and � is

a [N × 1] vector. Matrix R is a lower triangular partitioned matrix as
described in [27].

Almost always, the Mt × Mt matrix RTR is ill-conditioned or
nearly singular. Hence, direct estimation of PSD from Eq. (7) is hope-
less and leads to extremely oscillatory solution. Using the proper
order of regularizations [7,27], the above equation can be rewritten
as:

(RTR+ �BTB)f
�

= RT� (8)

The required pore size distribution may then be calculated by
resorting to GSVD technique coupled with minimization of CV cri-
terion [13]. Fig. 1OSI7 illustrates the remarkable performance of
our previously proposed method (SHN18) for successful extrac-
tion of required PSD’s from various real experimental condensation
isotherms borrowed from literature [18,27]. Note that the pro-
posed method always performs better from all other techniques
used recently in 2006 by Solocova et al. [18] and provides excellent
match with mercury porosimetry data.

3.2. Condensation with prior adsorption

Although the newly proposed method performs brilliantly on
extraction of PSD from condensation data, however, it may not pro-
vide optimal distributions when the adsorption process becomes
more and more important. Fig. 3 compares typical performance of
our previous method (SHN1) and other available techniques with
the newly proposed method (SHN29) for recovery of PSD from two
different condensation isotherms. The first set belongs to mere

5 For slit shape pores, the multiplier (2) in the second right hand term vanishes
[35].

6 It is recommended to see our previous article [27] for elementary discussion on
adsorption modeling.

7 Online supporting information.
8 Stands for Shahsavand–Niknam previous (first) method [27].
9 Stands for Shahsavand–Niknam present (second) method .
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Fig. 3. Comparison of our two proposed method (SHN1 and SHN2) with other techniques applied recently (2006) [18] for PSD recovery from mere condensation isotherm
(CPG 75) and condensation accompanied with prior adsorption (Carbosilab-1) [18,30].

condensation process while the second set comes from conden-
sation with a prior adsorption layer. Both of our methods (SHN1
and SHN2) perform very adequately for mere condensation pro-
cesses. As it can be seen, our previous method (SHN1) relatively
fails when the condensation is accompanied with a pre-adsorbed
layer. While, the new proposed method (SHN2) performs very ade-
quately and provides impressive performances on PSD recovery of
meso-porous and micro-porous materials. The mercury porosime-
tery data for PSD shown in Fig. 3 was borrowed from literature [18].
Both new methods perform better than the traditional techniques
(e.g. BDB-rob, BDB-reg, BJH-reg10 and NLDFT11 which were used
very recently only a few years ago [18]) on pinpointing the peak
location from mere condensation isotherm but it is much simpler
to use for practical applications and requires far less physical data
or a priori assumptions.

As mentioned earlier, for solids exhibiting an adsorbed layer
with specific thickness (t) prior to condensation, the total amount
of adsorbed material at a given pressure (Pi) for cylindrical pores12

of radius r, can be represented by Eq. (6). The statistical adsorbed
film thickness (t) can be calculated as a function of total adsorbed
amount (� ), monolayer adsorbed amount (�m) and monolayer

10 In Fig. 4(top right), reg stands for the regularization technique.
11 Broekhoff–de Boer, Barret, Joyner and Halenda and Nonlocal density functional

theory.
12 For slit shape pores, the multiplier (2) in the second right hand term vanishes

when the pore radius (r) is replaced by pore width (x) [30].

adsorbed film thickness (tm) from the following equation [29,31]:

t(nm) = tm(nm)
[
�

�m

]
(9)

The value of tm depends on the method of stacking successive lay-
ers. For nitrogen, if cubical packing is assumed, tm = √

16.2 = 4.02 Å
(0.402 nm) while a more open packing will give a value of 0.43 nm.
For hexagonal close packing of any adsorbate gas the monolayer
adsorbed film thickness should be calculated via [31]:

tm = MVS
Na

(10)

where M is the gas molecular weight, VS is the liquid specific vol-
ume at saturation temperature, N is the Avogadro constant and
a is the area occupied by one molecule. For nitrogen adsorption
at 77 K the monolayer adsorbed film thickness is computed as

follows [29]: tm = 28 (kg/kg mol)×0.001237 (m3/kg)
6.023×1023 (molecule/g mol)×16.2×10−20 (m2/molecule)

=
0.354 nmFurthermore, the adsorbed film thickness may also be
obtained in terms of p (relative pressure p = P/P0) by combining the
BET equation with Eq. (9) to give [4,32]:

t = Ctmp

(1 − p)[1 + (C − 1)p]
(11)

where the coefficient C is a measure of the adsorptive power
on a unit surface is defined as follows: C = Ae(εA−ε1); εA =
Q
RT and ε1 = �

RT The exponent factor A is the characteristic of the
solid material, parameter Q is the energy of interaction between
the first layer of adsorbate and the surface and � is the heat of liq-
uefaction. Same as BET equation, Eq. (11) usually over predicts the
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Fig. 4. Flow chart for the calculation procedure of the newly proposed method (SHN2).

value of t in high pressure region. Several correlations have been
presented in the literature for computation of adsorbed film thick-
ness from relative pressure. Halsey, Franklin–Halsey–Hill (FHH),
Harkins and Jura (HaJu), Deboer (Db), Micromeritics13 (Micro),
Broekhoff and deBoer (BdB) and Nguyen and Do (ND) proposed

13 Presented by Micromeritics company.

the following equations, respectively [4,30,31,33]:

t(nm) = tm(nm)
[

5
ln(P0/Pi)

]1/3
(12)

t(nm) = tm(nm)
[

2.75
log(P0/Pi)

]1/2.99
(13)

t(nm) =
[

0.1399
0.034 − log(Pi/P0)

]1/2
(14)
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log
(
Pi
P0

)
− 0.1682e−1.137t(nm) + 0.1611

t(nm)2
= 0 (15)

t(nm) = 0.559(
log(P0/Pi)

)0.399
(16)

⎧⎨⎩ log(P0/Pi) − 0.1399

te(nm)2
+ 0.034 = 2.025

10(r(nm) − te(nm))
te < 1 nm

log(P0/Pi)−
0.1611

te(nm)2
+ 0.1682e−1.137te(nm)= 2.025

10(r(nm)−te(nm))
te > 1 nm

(17)

t(nm) = tm(nm)

[
Cp

1 − p

][
1 + (nf/2 − n/2)pn−1 + (nf + 1)pn + (nf/2 + n/2)pn+1

1 + (C − 1)p+ (Cf/2 − C/2)pn − (Cf/2 + C/2)pn+1

]
(18)

where n is the number of adsorbate layers (n = r/tm), f = e�ε1 , t =
te(1 − te/2r) and�ε1 is the excess of the reduced evaporation heat
due to interference of the layering on the opposite wall. As it can
be seen, the adsorbed film thicknesses in the two latter equations
are function of both relative pressure and pore radius. Furthermore,
Eq. (17) is derived for adsorption of nitrogen at 78 K and should not
be used for other adsorbates. Kruk and Jaroniec also proposed the
following empirical correlation for prediction of the nitrogen statis-
tical film thickness on the MCM-41 surface in the relative pressure
range of 0.1–0.95 [34]:

t(nm) = 0.1
[

60.65
0.03071 − ln(Pi/P0)

]0.3968
(19)

Fig. 2OSI compares various plots of nitrogen pre-adsorbed film
thickness (t) for Eqs. (12)–(19) (the average pore size is considered
2.5 nm for use in Eqs. (17) and (18)).

With any of the above calculated film thicknesses, the improved
threshold radius rk corresponding to a gas phase of pressure Pi can
be computed for adsorption and desorption processes respectively
via [29]:

rk(Pi) = t(Pi) + vM�
RT ln(P0/Pi)

(20)

rk(Pi) = t(Pi) + 2vM� cos �
RT ln(P0/Pi)

(21)

The following section uses Eq. (6) to provide a relatively simple pro-
cedure for estimation of pore size distribution from condensation
data when accompanied with a pre-adsorbed layer.

3.2.1. Theoretical aspects
For the case of mere condensation, the required pore size dis-

tribution was traditionally found by differentiating the first right
hand side term of Eq. (6) and using the Kelvin equation (second
right hand side term of Eq. (20)) to plot�� (Pi)/�r(Pi) versus r(Pi).
In almost all practical situations, the condensation is usually pre-
ceded by a pre-adsorbed layer and the traditional approach can lead
to severe error by neglecting this pre-adsorbed layer.

As our first trial, the same approach was extended by differen-
tiation Eq. (6) with respect to pore size which leads to following
equation:

d� (Pi)
dr(Pi)

= f1(r) + 2t(Pi)f2(r)
r(Pi)

+ 2dt(Pi)
dr(Pi)

∫ rmax

rk(Pi)

f2(r)
r

dr (22)

where f1(r) is the pore size distribution for the range of 0 ≤ r ≤ rk(Pi)
and f2(r) is the pore size distribution for the range of rk(Pi) ≤ r ≤ rmax.
Evidently, the actual pore size distribution of the solid adsorbent
will be simply the summation of f1(r) and f2(r). The following rela-
tively difficult, time consuming and inexact procedure may be used
to compute the required PSD from Eq. (22):

(a) Assume a distribution for f2(r) and compute
∫ rmax

rk(Pi)
f2(r)/r dr.

(b) Calculate t(Pi)/dr(Pi) using one of Eqs. (12)–(19) along with
Kelvin equation.

(c) Compute 	(Pi) = 2dt(Pi)/dr(Pi)
∫ rmax

rk(Pi)
f2(r)/r dr

(d) Assuming f1(r) =�� (Pi)/�r(Pi) from traditional approach,
then f2(r) can be found by plotting −r(Pi)	(Pi)/2t(Pi) versus r(Pi)
(using Kelvin equation for r(Pi) along with appropriate correla-
tion for t(Pi).

(e) Return to step (a) if f2(r) is not converged.
(f) Find actual distribution by mere summation of f1(r) and f2(r).

In an alternative approach which is much simpler and requires
no a priori information about the shape of pore size distribution
and provides more exact solution, Eq. (6) can be replaced by the
following “quadrature like” summation for N isotherm data, other
than origin (0,0):

�
(
P

P0

)
=

i∑
k=1

M(Pk)∑
j=1

f (rj) ×
( rj+1 − rj−1

2

)

+ t

N∑
i=1

M(Pi)∑
l=

i∑
k=1

M(Pk)

2f (rl)
rl

×
(
rl+1 − rl−1

2

)
; i = 1,2, ..., N (23)

where rj varies between zero and rk(Pi) and rl adapts a value
between rk(Pi) and rk,max. Also M(Pk) is the number of discretized
intervals between rK(Pi−1) and rK(Pi). The total number of dis-
cretization points is then equal to:Mt =

∑N
i=1M(Pi). Once again, we

are not usually interested in every point of the continuous function
f(r) and a large number Mt of (preferably) evenly spaced discrete
points rk,j, j = 1, 2, ...., Mt will suffice. Analogous to our previous
work, the above equation can be easily represented by the following
partitioned matrix:

R · f = � (24)

where N × Mt coefficient matrix R∈ �

[
N×

∑N

i=1
M(Pi)

]
has usually

many more columns than its rows, the overall PSD column vector

(f ∈ �

[∑N

i=1
M(Pi)×1

]
) has dimensions of

[∑N
i=1M(Pi) × 1

]
and � is

an [N × 1] vector. Eq. (24) can be expanded as:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

�r1
2t1
rP2

×�r2 . .
2t1
rPN

×�rN

�r1 �r2 . .
2t2
rPN

×�rN
. . . . .

. . . .
2tN
rPN

×�rN
�r1 �r2 . . �rN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1(r)
f2(r)

.

.

.

.

.
fN(r)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

�1
�2
.
.
.
.
.
�N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(25)

where [�ri, i = 1, ..., N] is a row vector with elements equals
to the selected increment lengths between two adjacent pres-
sures

[
�ri = (rk(Pi) − rk(Pi−1))/M(Pi)

]
and fi(r) is a column vector

representing the PSD between rk(Pi−1) and rk(Pi). The ultimate
PSD is then again the summation of all individual distributions
[fi(r), i = 1, ..., N]. Since matrix R has much greater number of
columns than its rows, therefore, the minimum norm concept
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Table 1
Equations of various true pore size distributions considered for synthetic example.

Distribution Function

Single peak Gaussian f(r) = 0.9 exp( − [(r − 12)/4]2)
Double peak Gaussian f(r) = exp( − [(r − 7)/2]2) + 0.8 exp( − [(r − 15)/1.5]2)
Triple peak Gaussian f(r) = exp( − (r − 3)2) + 0.7 exp( − [(r − 10)/1.5]2) + 0.9 exp( − [(r − 18)/2]2)

Ramp function (piecewise linear function)

{
f (r) = 0.1r − 0.5 5 ≤ r ≤ 12
f (r) = −0.1r + 1.9 12 ≤ r ≤ 19

Otherwise : f (r) = 0

Fig. 5. Actual and noisy (1%: × and 5%: (о) synthetic isotherms. (a) Double sided ramp. (b) Single Gaussian. (c) Double peak Gaussian. (d) Triple peak Gaussian.

(
∥∥Rf −�

∥∥2
) should be used again to compute the required PSD

from the solution of following set of linear equations:

(RTR)f
�

= RT� (26)

In almost all practical applications, the Mt × Mt matrix RTR is ill-
conditioned or nearly singular due to noisy data. Hence, direct
estimation of PSD from Eq. (26) is again hopeless and leads to
extremely unrealistic oscillatory solution. As in our previous work
[27], the above equation can be rewritten as following by resorting
to regularizations technique:

(RTR+ �BTB)f
�

= RT� (27)

The required pore size distribution may then be calculated by
resorting to generalized singular value decomposition (GSVD) tech-
nique coupled with minimization of leave one out cross validation
(LOOCV) criterion. Fig. 4 presents a typical flow chart for the above
calculation procedure. The following synthetic examples demon-
strate the effectiveness of the new proposed approach.

4. An illustrative synthetic example

Using similar procedures as our previous article, various
noisy data sets each containing of 100 non-equispaced data
points were generated employing different PSDs of Table 1 in

the range of [0< r < 25 nm]. Both data sets were divided into
two separate clusters for isotherm calculations. The primary
cluster contained 20 percent of data points in the domain of[
0< Pi/P0 < 0.8

]
and the other cluster consisted of the remain-

ing 80% data points in the domain of
[
0.8< Pi/P0 < 1

]
. Eq. (6)

was used to generate synthetic isotherms for nitrogen using Halsey
equation14 for adsorbed film thickness and the data are then
contaminated with pre-specified (1% and 5%) noise levels. Fig. 5
compares the computed noisy isotherms with truth for different
PSDs.

Fig. 3OSI demonstrates the optimal performances of new pro-
posed technique (SHN2) for recovery of a pre-specified true ramp
function PSD from various noisy data sets using different orders of
regularizations. Figs. 4OSI–6OSI illustrate similar performances for
single, double and triple peak Gaussians (Table 1) as true pore size
distributions. All predictions were computed using the optimum
levels of regularization (�*) which were found via LOOCV method
and verified manually. Table 2 presents the optimum values of reg-
ularization parameter for each case.

As it can be seen in Figs. 3OSI–6OSI, the new proposed method
(SHN2) provides excellent prediction for pore size distributions

14 For nitrogen: t (nm) = 0.354[5/ln(P0/Pi)]1/3.
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Table 2
Optimum levels of regularization (�*) for various true PSDs and different noise levels using several orders of regularization.

Distribution 1% noise 5% noise

Zero First Second Third Zero First Second Third

Single peak Gaussian 0.01024 5.2 671 1.72 × 105 0.06029 20.9 10,737 1.37 × 106

Double peak Gaussian 0.00706 0.222 107 1599 0.0168 3.872 1105 94,806
Triple peak Gaussian 0.001 0.3452 40.5 4830 0.002 2.5547 186 1.98 × 105

Ramp function 0.01051 1.44 44.58 1067 0.044 11.74 4325 8.17 × 105

First order

 Regularization
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Fig. 6. Optimal PSD recovery performance (�*) of the new proposed method for recovery of true ramp function, single, double and triple Gaussian peaks distribution from
different noisy data sets using first order regularization technique.
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Fig. 7. Optimal PSD recovery performance of the new method using Halsey relation in generation step and HaJu & dB correlations in recovery (5% noise, first order
regularization).



Author's personal copy

78 A. Shahsavand, M.N. Shahrak / Chemical Engineering Journal 171 (2011) 69–80

Fig. 8. Various isotherms borrowed from literature (N2: 77 K, C6H6: 373 K). Adsorption of Nitrogen on (a) D43/1 [30], (b) F 300 [30], (c) C873Cu [30], (d) Si-100 [35], (e)
carbosil ab-1 [30], (f) carbosil ab-4 [30], (g) C873 [30], (h) PICA HP [36], (i) MCM-41 [37], (j) PAN ACF 2 [30], (k) PAN ACF 3 [30], (l) CMC-1 [26], and finally (m) adsorption of
benzene on Si-100 [35]

when appropriate order of regularization with optimum regular-
ization level have been employed. Fig. 6 illustrates the selected
performances of our newly proposed method for various PSDs using
first order regularization technique at optimum levels of regular-
ization.

In all above predictions, the Halsey correlation was used for pre-
diction of adsorbed film thickness in both isotherm generation step
and PSD recovery. Figs. 7 and 7OSI compare the typical optimally
recovered PSDs (via the new proposed method) when other corre-
lations were used for calculation of the adsorbed film thickness in
PSD recovery steps. In all cases, Halsey correlation was used in gen-
eration steps while Harkins and Jura (Hal-HaJu), Deboer (Hal-dB),
Micromeritics (Hal-Micr), and Kruk and Jaroniec (Hal-KJ) correla-
tions were employed respectively in the PSD recovery operations.
Evidently, the new proposed method performs adequately for all
choices of adsorbed film thickness correlations. In other words, the
choice of correlation used for estimation of adsorbed film thickness
is not crucial.

5. Real case studies

In the previous section, the impressive performance of our new
proposed method (SHN2) was illustrated using various noisy data
sets and different correlations for calculation of pre-adsorbed film
thickness. In this section, the capabilities of the new method (SHN2)
will be put in to test by using various real data (isotherms) borrowed
from literature.

Fig. 8 shows various measured isotherms for adsorption of
nitrogen on different adsorbents [30,35–37]. These real isotherms
are used to compare the performances of several available tech-
niques (including ours) for PSD recovery. The initial loadings in all
isotherms clearly indicate the existence of a pre-adsorbed layer
prior to the condensation process or mere adsorption on the solid
adsorbent. Table 3 provides all the required physical properties of
nitrogen for PSD recovery via the new method (SHN2).

Figs. 9, 8OSI and 9OSI compare various PSD recovery perfor-
mances of our new method (SHN2) with traditional PSD estimation

Table 3
The only physical data required for PSD recovery with the new proposed method [27].

Description Symbol Unit Value Remarks

Adsorbate (N2) surface tension � N/m 8.72 × 10−3 At 77 K
Adsorbate liquid molar volume vM m3/g mol 3.468 × 10−5 –
Contact angle � rad 0 –
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Fig. 9. Comparison of the new method performance with BJH, BdB, KJS, DFT and ND techniques for single peak PSD recovery of various adsorbents from nitrogen and benzene
adsorption isotherm [26,30,35,37].

techniques, using the condensation and adsorption data sets pre-
sented in Fig. 8. Several other real case studies are also presented in
Figs. 10–13 of Online supporting information (10OSI–13OSI). Evi-
dently, the new technique performs very adequately for almost all
real case studies including single peak and multiple peak pore size
distributions.

Fig. 10 compares the typical performance of the new method
(SHN2) when different correlations are used calculation of for pre-
adsorbed film thickness (t) in the PSD recovery process of MCM41.
Once again, the new method performs very adequately for almost

Fig. 10. Comparison of the new method performance for PSD recovery of MCM41
adsorbent using various correlations for calculation of pre-adsorbed layer film thick-
ness (t).

all cases and its impressive performance has not been affected by
the choice of pre-adsorbed film thickness calculation procedure.
The recovered PSDs for three correlations of dB, Halsey and HaJu
(for computing t) are practically the same and it is almost impossi-
ble to distinguish between them.

6. Conclusion

A new method was presented in this article for reliable esti-
mation of pore size distribution of heterogeneous solid adsorbents
using simultaneous condensation and adsorption isotherms. The
proposed method is an extension of our previous method described
in full details elsewhere [27].

Numerous experimental data were used from literature to
compare the impressive performance of the new method with tra-
ditional techniques available for pore size distribution estimation.
The new method (SHN2) is simple, versatile and requires mini-
mum number of assumptions or a priori information while enjoying
a relatively solid theoretical background. It also employs power-
ful mathematical toolboxes such as linear regularization theory
and leave one out cross validation criterion for optimal stabi-
lization of the recovery process. It was clearly shown that the
proposed technique provided adequate PSD recovery performances
for mere condensation processes or in various conditions where a
pre-adsorbed layer precedes the condensation.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.cej.2011.03.049.
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