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Abstract
This paper presents the homotopy series solution of the Navier–Stokes and energy equations
for non-Newtonian flows. Three different problems, Couette flow, Poiseuille flow and
Couette–Poiseuille flow have been investigated. For all three cases, the nonlinear momentum
and energy equations have been solved using the homotopy method and analytical
approximations for the velocity and the temperature distribution have been obtained. The
current results agree well with those obtained by the homotopy perturbation method derived
by Siddiqui et al (2008 Chaos Solitons Fractals 36 182–92). In addition to providing
analytical solutions, this paper draws attention to interesting physical phenomena observed in
non-Newtonian channel flows. For example, it is observed that the velocity profile of
non-Newtonian Couette flow is indistinctive from the velocity profile of the Newtonian one.
Additionally, we observe flow separation in non-Newtonian Couette–Poiseuille flow even
though the pressure gradient is negative (favorable). We provide physical reasoning for these
unique phenomena.

PACS number: 02.30.Hq

1. Introduction

Although most of the common fluids in the real world
exhibit Newtonian behavior, there are important classes of
fluids that are classified as non-Newtonian. Non-Newtonian
fluids are those whose constitutive equation, the equation
that relates the stress and strain, is not a simple linear
relation. Blood and coal-based slurries are sample examples
of non-Newtonian fluids. In the current study, we seek
analytical velocity and temperature profiles of a third grade
fluid between two parallel plates with different temperatures
and velocities. According to the relative motion of plates,
three different problems are considered, the Couette flow,
the Poiseuille flow and the Couette–Poiseuille flow. As is
known, the governing partial differential equations (PDEs) for
velocity and temperature fields are nonlinear and no exact

solutions are available. Consequently, asymptotic methods
are usually applied to find analytical solution for these
equations. A brief review of these methods is given in [2].
Of various asymptotic methods, the one due to Liao is
the homotopy method [2–6]. The homotopy method is an
extension of the traditional perturbation method coupled with
the homotopy concept as used in the topology. The homotopy
method has been applied to obtain analytical solutions for
a wide class of stochastic and deterministic problems in
science and engineering involving algebraic, differential,
integro-differential and integral differential equations [7, 8].

Siddiqui et al [1, 9–13] have recently applied the
homotopy perturbation (HP) method, which is a specific form
of the basic homotopy method, to analyze flow problems
of non-Newtonian fluid mechanics. In the present paper,
we apply the more general homotopy method to study
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the non-Newtonian channel flow and compare our results
with that derived in [1] by using the HP method. Besides
providing analytical expressions for velocity and temperature,
we discuss some unique physical phenomenon related to
non-Newtonian fluids.

2. Governing equations

The governing equations for the conservation of mass,
momentum and energy for an incompressible fluid in tensor
notation are given by

ui, j = 0,

ρ

(
∂ui

∂t
+ u j

∂ui

∂x j

)
= ρ f + τi j, j , (1)

ρcp

(
∂θ

∂t
+ u j

∂θ

∂x j

)
= κθ, j j + τi j li, j ,

where u is the velocity, f is the body force, τ is the stress
tensor, θ is the temperature, ρ is the constant fluid density, κ

is the thermal conductivity, cp is the constant pressure specific
heat and l is the gradient of u. The constitutive equation for a
third grade fluid is

τi j = − pδi, j + µS1i j + α1S2i j + α2S2
1i j + β1S3i j

+ β2(S1i j S2i j + S2i j S1i j ) + β3(tr S2i j )S1i j , (2)

where p is the fluid pressure, µ is the coefficient of viscosity,
α1, α2, β1, β2, β3 are material constants and S1i j , S2i j , S3i j are
line kinematics tensors defined by

S1i j = (l j,i + li, j ), (3)

Sni j =
DS(n−1)i j

Dt
+ S(n−1)i j li. j + l j,i S(n−1)i j , n = 2, 3, 4 . . . .

(4)

2.1. Couette flow

Shear-driven flows are encountered in micromotors, comb
mechanisms and microbearings. Consider the steady-state
flow of a third grade fluid between two long parallel plates
distance 2 h apart. The lower plate is stationary and the upper
plate is moving with a constant speed U. The temperature of
the lower plate is θ0 and that of the upper plate is θ1. The lower
and upper plates are located in the planes y = −h and y = h.
The pressure gradient is zero and the velocity and temperature
fields are assumed to be of the form

u = u(y), θ = θ(y), (5)

The equation of continuity is satisfied and the momentum and
energy equations become (β1 = β3)

µ
d2u

dy2
+ 6(β2 + β3)

(
du

dy

)2 d2u

dy2
= 0,

κ
d2θ

dy2
+ µ

(
du

dy

)2

+ 2(β2 + β3)

(
du

dy

)4

= 0.

(6)

As a result, the problem reduces for solving the equations (6)
subject to the conditions of no slip and no temperature jump
at both of the plates

u(−h) = 0, u(h) = U,

θ(−h) = θ0, θ(h) = θ1.
(7)

We consider h as the characteristic length, U as the
characteristic velocity, and θ0 and θ1 as characteristic
temperatures and rewrite the above equations in dimen-
sionless form by using

y∗
=

y

h
, u∗

=
u

U
, θ∗

=
θ − θ0

θ1 − θ0
. (8)

In a non-dimensional form, after dropping the asterisks,
equations (6) become

d2u

dy2
+ 6β

(
du

dy

)2 d2u

dy2
= 0,

d2θ

dy2
+ λ

(
du

dy

)2

+ 2βλ

(
du

dy

)4

= 0,

(9)

where

β =

(
β2 + β3

µ

) (
U

h

)2

,

λ =
µU2

κ(θ1 − θ0)
=

µcp

κ
×

U 2

cp(θ1 − θ0)
= Pr Ec,

(10)

where Pr Ec is the Brinkman number that is the product of the
Prandtl number Pr and Eckert number Ec. The corresponding
boundary conditions are

u(−1) = 0, u(1) = 1,

θ(−1) = 0, θ(1) = 1.
(11)

2.2. Poiseuille flow

Now, the same problem is considered when both plates are
stationary and the fluid motion is induced by a constant
pressure gradient, other conditions on the velocity and
the temperature fields remain unchanged. In this case, the
momentum and energy equations yield

µ
d2u

dy2
+ 6(β2 + β3)

(
du

dy

)2 d2u

dy2
=

∂ p̂

∂x
,

∂ p̂

∂y
=

∂ p̂

∂z
= 0, (12)

κ
d2θ

dy2
+ µ

(
du

dy

)2

+ 2(β2 + β3)

(
du

dy

)4

= 0.

where p̂ denotes the generalized pressure given by

p̂ = p − (2α1 + α2)

(
du

dy

)2

. (13)

We find from (12) that

∂ p̂

∂x
= constant =

d p̂

dx
. (14)
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Thus, the problem reduces for solving the following
differential equations

µ
d2u

dy2
+ 6(β2 + β3)

(
du

dy

)2 d2u

dy2
=

d p̂

dx
,

κ
d2θ

dy2
+ µ

(
du

dy

)2

+ 2(β2 + β3)

(
du

dy

)4

= 0,

(15)

u(−h) = 0, u(h) = 0,

θ(−h) = θ0, θ(h) = θ1.
(16)

The non-dimensional form is

d2u

dy2
+ 6β

(
du

dy

)2 d2u

dy2
= −B,

d2θ

dy2
+ λ

(
du

dy

)2

+ 2βλ

(
du

dy

)4

= 0,

(17)

B =
−h2

Uµ

d p̂

dx
,

u(−1) = 0, u(1) = 0,

θ(−1) = 0, θ(1) = 1.
(18)

2.3. Couette–Poiseuille flow

For the Couette–Poiseuille flow, we assume that the fluid
motion is produced by both the motion of the upper plate with
constant velocity U and by a constant pressure gradient. All
other conditions on the temperature and the velocity remain
unchanged. Thus, the momentum and energy equations take
the form

µ
d2u

dy2
+ 6(β2 + β3)

(
du

dy

)2 d2u

dy2
=

∂ p̂

∂x
,

∂ p̂

∂y
=

∂ p̂

∂z
= 0, (19)

κ
d2θ

dy2
+ µ

(
du

dy

)2

+ 2(β2 + β3)

(
du

dy

)4

= 0,

with the boundary conditions

u(−h) = 0, u(h) = U,

θ(−h) = θ0, θ(h) = θ1.
(20)

In non-dimensional forms, we have

d2u

dy2
+ 6β

(
du

dy

)2 d2u

dy2
= −B,

d2θ

dy2
+ λ

(
du

dy

)2

+ 2βλ

(
du

dy

)4

= 0,

(21)

u(−1) = 0, u(1) = 1,

θ(−1) = 0, θ(1) = 1.
(22)

In the subsequent section, we use the homotopy method to
solve the three boundary-value problems described in this
section.

3. Homotopy method

By means of generalizing the traditional concept of homotopy,
Liao constructs the so-called zero-order deformation
equation [2, 3]

(1 − p)L(φ(r, t, p) − f0(r, t)) = h H(r, t)pN [φ(r, t, p)],
(23)

where p ∈ [0 − 1] is the embedding parameter, h is a nonzero
auxiliary parameter, H is an auxiliary function, L is an
auxiliary linear operator, f0(r, t) is an initial guess of f (r, t)
and φ(r, t, p) is an unknown function, respectively. It should
be emphasized that one has great freedom to choose the initial
guess, the auxiliary linear operator, the auxiliary parameter
and the auxiliary function H . Obviously, when p = 0 and
p = 1, it holds that

φ(r, t, 0) = f0(r, t), φ(r, t, 1) = f (r, t). (24)

Hence, as p increases from 0 to 1, φ(r, t, p) varies, or
deforms, from the initial guess f0(r, t) to the solution f (r, t).
Expanding φ(r, t, p) in the Taylor series with respect to the
embedding parameter p, one has

φ(r, t, p) = f0(r, t) +
∞∑

k=1

fk(r, t)pk, (25)

where

fk(r, t) =
1

k!

∂kφ(r, t, p)

∂pk
p=0

. (26)

If the auxiliary linear operator, the initial guess, the auxiliary
parameter h and the auxiliary function are so properly chosen
that the above series converges at p = 1, one has

f (r, t) = f0(r, t) +
∞∑

k=1

fk(r, t). (27)

Differentiating equation (23) m times with respect to the
embedding parameter p and then setting p = 0 and finally
dividing by m!, we have the so-called m th-order deformation
equation

L(φn(r, t, p) − χnφn−1(r, t, p)) = h H(r, t)RN [φn−1(r, t, p)]

(28)

χm =

{
0, m 6 1

1, otherwise.

Subject to the initial condition

φm(r, 0, p) = 0, (29)

where

Rn(φn−1(r, t, p)) =
1

(n − 1)!

∂n−1 N [φ(r, t, p)]

∂pn−1
p=0

. (30)

After assuming an initial guess, we can obtain subsequent
terms in homotopy series solution using equations (28)–(30).
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4. Solution and discussion

4.1. Couette flow

The linear part of the momentum equation in equation (9),
d2u/dy2, is chosen as the linear operator L in equation (23).
The non-linear operator N is the same as equation (9). Let us
take H = 1 and assume a zero-order solution of the form of
equation (31) which satisfies the boundary conditions,

u0(y) =
1
2 (1 + y). (31)

If we apply equation (28) to the above initial approximation,
integrating twice with respect to y and applying the
homogenous boundary conditions, we obtain the first-order
solution

u1(y) = 0. (32)

Similarly the solution to higher-order boundary value problem
is u2(y) = 0. Hence,

u(y, p) = u0(y) =
1
2 (1 + y). (33)

Substituting u(y) = (1 + y)/2 into the energy equation and
integrating the resulting equation with respect to y, we obtain
the solution for the temperature field

θ(y) =
λ

16
(2 + β)(1 − y2) +

1

2
(1 + y). (34)

The solution u(y) in (33) provides a linear velocity profile
that is the same as the solution of a Newtonian fluid and is
independent of the non-Newtonian parameter β. This feature
is attributed to a constant velocity boundary condition and
independent of flow properties from the pressure gradient in
the Couette flow. In fact, since pressure is constant along the
flow, the steady-state flow is only affected by shear stress
and the velocity boundary condition. The latter is a first-order
linear function in terms of velocity (see equation (7)). When
we decompose the momentum governing equation into linear
and non-linear terms, see equation (11), the linear boundary
condition satisfies the linear part of the equation and the
non-linear part, which is due to non-Newtonian effects,
remains trivial. Consequently, the steady state velocity profile
remains unaffected by nonlinearity or non-Newtonian forces.
From a physical point of view, we can interpret that the
nonlinear (non-Newtonian) modes in flow are not excited
by a constant wall velocity boundary condition. Therefore,
the velocity profile is the same for both Newtonian and
non-Newtonian flows. However, dependence of temperature
on the parameter β is evident, see equations (9), (11) and (34).

Figure 1 shows the effect of the variation of β when λ

is fixed. It is observed that the fluid temperature increases
with increase in the value of β. In order to compare homotopy
solutions with numerical results, we solved the nonlinear ODE
system given by equations (9) and (11) with MAPLE. As
observed in this figure, numerical solution agrees quite well
with the homotopy solution. In figure 2, the effect of the
change of the number λ for β = 1 is presented. It is observed
that the behavior of the temperature profile is similar to that
in figure 1 except for somewhat larger temperature rise in
this case.

θ

y

0 0.5 1.0 1.5
–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1.0
β = 0
β = 5
β = 10
β = 15
Numerical

Figure 1. Effect of the parameter β (when λ = 1) on the Couette
flow temperature profile.
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y

0 0.5 1.0 1.5 2.0 2.5 3.0
–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1.0
λ = 0
λ = 5
λ = 10
λ = 15

Figure 2. Effect of the parameter λ (when β = 1) on the Couette
flow temperature profile.

4.2. Poiseuille flow

Again, the linear part of the momentum equation in
equation (12), d2u/dy2, is chosen as the linear operator L
in equation (23). The nonlinear operator N is the same
as equation (12). We take H = 1 and assume a zero-order
solution of the form of equation (35) which satisfies the
boundary conditions,

u0(y) =
B

2
(1 − y2). (35)

By applying equation (28) to the above initial approximation,
we obtain other terms

u1(y) = −
1
2 hβ B3(1 − y4). (36)

4



Phys. Scr. 79 (2009) 065009 E Roohi et al

u2(y) = − 2h2β2 By6
− 0.5(hβ B3 + h2β B3)y4 + 0.5hβ B3

+ h(2hβ2 B5 + 0.5hβ B3) (37)

...

Other terms of the series, which depend on h, are com-
plicated and we do not present them here. If we set h = −1,
we get the same results as the HP method calculated by
Siddiqui et al [1]

h = −1 ⇒ u2(y) = −2β B5(1 − y6). (38)

h = − 1 ⇒ u3(y)

= − 12β B7 y8
− 4β2 B5 y6 + 4β B5 + 12β3 B (39)

...

Adding the first two terms to the zero-order solution, we get
an analytical expression for the velocity field

u(y) =
1
2 (1 − y2) −

1
2β B3(1 − y4) + 2β2 B5(1 − y6). (40)

We considered only the above terms in order to compare
our result with [1]. Equation (40) is exactly the same as the
result of the HP method of Siddiqui et al [1]. Figures 3
and 4 present the velocity profile u(y), given by equa-
tion (40), for various values of β when B is fixed at one.
It is observed from this figure that the velocity increases
with increasing β. Similar behavior of the solution is shown
in figure 4, which shows the u(y) curve for various values
of B when the value of β is taken to be one. Substituting
u(y) from (40) into (17) and solving the ODE equation,
we obtain

θ(y) =
1
2 + 1

2 y + 1
12λB2(1 − y4) −

1
15λβ B4(1 − y6)

+ 3
14λβ2 B6(1 − y8)

−
124
33 λβ4 B10(1 − y12) + 16λβ5 B12(1 − y14)

− 32λβ6 B14(1 − y16)

+ 1152
17 λβ7 B16(1 − y18) −

6912
95 λβ8 B18(1 − y20)

+ 6912
95 λβ9 B20(1 − y22). (41)

The expression for temperature θ(y), given by equa-
tion (41), is plotted in figure 5 for different values of β

when λ = 1, B = 1. This graphical study shows that the
temperature rapidly rises with increasing values of the
parameters β.

4.3. Couette–Poiseuille flow

Again, the linear part of the momentum equation in
equation (21) is chosen as the linear operator L in

u(y)

y

0 0.5 1.0 1.5 2.0
–1.0

–0.5

0

0.5

1.0

β = 0
β = 0.4
β = 0.7
β = 1

B = 1

Figure 3. Effect of the parameter β (when B = 1) on the Poiseuille
flow velocity profile.

u(y)

y

0 0.5 1.0 1.5 2.0
–1.0

–0.5

0

0.5

1.0

B = 0.25
B = 0.50
B = 0.75
B = 1

β = 1

Figure 4. Effect of the parameter B (when β = 1) on the Poiseuille
flow velocity profile.

equation (23). The nonlinear operator N is the same
as equation (21). We take H = 1 and the initial guess
u0(y), which satisfies the boundary conditions, is chosen
to be

u0(y) =
1

2
(1 + y) +

B

2
(1 − y2). (42)

Applying the homotopy method, we have

u1(y) = −
1

32

hβ(2By − 1)4

B
−

1

4
hβ(4B2 + 1)y

+
1

32

hβ(16B4 + 24B2 + 1)

B
. (43)

5
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Figure 5. Effect of the parameter β (when B = 1, λ = 1) on the
Poiseuille flow temperature profile.

u2(y) = − 2β2 B5 y6 + 6β2 B4 y5
−

15

2
β2 B3 y4

+

(
−2β2 B4 +

9

2
β2 B2

)
y3

+

(
−

9

8
β2 B + 3β2 B3

)
y2 +

(
1

4
β(4B2 + 1) − 4β2 B4

−
9

2
β2 B2

− β B2
−

1

4
β

)
y

+
1

32

β

B
+ 2β2 B3

−
1

32

β(16B4 + 24B2 + 1)

B
+

1

2
β B3

+
3

4
β B +

9

8
β2 B +

9

2
β2 B3. (44)

...

Again, the other terms are complicated and we avoid writing
them here. Setting h = −1, we have

u1(y) =
1
4β[3B(y2

−1) − 4B2(y3
−y) + 2B3(y4

−1)]. (45)

...

Similar to [1], we add up the zero- and first-order terms

u(y) =
1

2
(1 + y) +

B

2
(1 − y2) +

β

4
[3B(y2

− 1)

+ 4B2(y − y3) + 2B3(y4
− 1)]. (46)

The velocity profile (46) is plotted in figures 6 and 7 for
various values of β and B when one of them is chosen
to be one. Interesting cases are the curves for β = 0.3 and
B = 0.4. For β >0.3 and B >0.4, there is a back flow at
the lower plate. This back flow becomes more dominant as

u(y)

y

0 0.5 1.0
–1.0

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1.0

β = 0
β = 0.2
β = 0.3
β = 0.4
β = 0.6

B = 1

Figure 6. Effect of the parameter β (when B = 1) on the
Couette–Poiseuille flow velocity profile.

u(y)

y

–0.5 0 0.5 1.0
–1.0

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1.0

B = 0.2
B = 0.4
B = 0.6
B = 0.8
B = 1

β = 1

Figure 7. Effect of the parameter B (when β = 1) on the
Couette–Poiseuille flow velocity profile.

the values of β and B increase. In fact, the occurrence of
back flow is an indication of flow separation. For Newtonian
Couette–Poiseuille flow, back flow and separation are prone
to occur whenever an adverse pressure gradient (dp/dx >

0) is applied along the flow, for example, see figure 3.8
in [14]. In the case of Newtonian Couette–Poiseuille flow,
the flow solution is a linear superposition of corresponding
Couette and Poiseuille flows. The solution corresponding to
the Couette flow resists an adverse pressure gradient of the
Poiseuille flow until B = −0.5. Once B falls below this value,
shear stress at the walls becomes negative and separation and
back flow occurs. However, an interesting feature is observed
here for the non-Newtonian Couette–Poiseuille flow. Even the
pressure gradient is favorable (dp/dx < 0), i.e. B = 0.4, the
flow starts to separate. This behavior can only be attributed to
the interaction of nonlinear modes in the stress–strain relation
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θ

Figure 8. Effect of the parameter β (when B = 1, λ = 1) on the
Couette–Poiseuille flow temperature profile.

for non-Newtonian fluids with the pressure gradient, see the
third term on the left-hand side of equation (46). Therefore,
an important conclusion can be drawn here. The classical
criterion for flow separation which assumes flow separation
is unlikely to happen under a favorable pressure gradient,
is restricted to Newtonian fluids. As observed here, we had
shown that flow separation occurs under a favorable pressure
gradient for a third grade fluid.

Using the velocity field, we solve the boundary value
problem (21) and (22) to obtain the temperature distribution.
Thus, we find

θ(y) = A0 + A0 y + A0 y2 + · · · + A0 y13 + A0 y14. (47)

The coefficients Ai are the same as what is calculated in [1]
by the HP method. In figure 8, the temperature, given by
equation (48), is plotted for different values of β when B and
λ are fixed at one. The temperature rise with the increase
of β is again observed.

5. Conclusion

Analytical solutions for the velocity and the temperature
profile have been found for a non-Newtonian third grade fluid
between two parallel infinite plates, which are at different
temperatures and have different velocities. Considering three
common cases, the Couette flow, the Poiseuille flow and the
Couette–Poiseuille flow, Liao’s homotopy method has been
used to obtain analytical series solutions. It was observed
that the fluid velocity depends upon the parameter β except
in the case of the Couette flow. In addition, the velocity
increases with increasing value of β or B. In the Couette

flow, nonlinear modes in the stress–strain relation are not
excited by constant velocity of the upper plate. In the case
of the Couette–Poiseuille flow, the back flow behavior is
observed in some specific cases according to the values of β

and B. In other words, we have shown that flow separation
may occur under a favorable (negative) pressure gradient
for a non-Newtonian fluid. This phenomenon is unlikely for
Newtonian fluids. In all the three cases, the fluid temperature
depends on β and B. The obtained analytical solutions agree
well with the solutions calculated by He’s HP method [1].
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